Related
Thought this would be a good place to ask for some "brainstorming." Apologies if it's a little broad/off subject.
I was wondering if anyone here had any ideas on how to approach the following problem:
First assume that I have a select statement stored somewhere as an object (this can be the tree form of the query). For example (for simplicity):
SELECT A, B FROM table_A WHERE A > 10;
It's easy to determine the below would change the result of the above query:
INSERT INTO table_A (A,B) VALUES (12,15);
But, given any possible Insert/Update/Whatever statement, as well as any possible starting Select (but we know the Selects and can analyze them all day) I'd like to determine if it would affect the result of the Select Statement.
It's fine to assume that there won't be any "outside" queries, and that we know about all the queries being sent to the DB. It is also assumed we know the DB schema.
No, this isn't for homework. Just a brain teaser I've been thinking about and started to get stuck on (obviously, SQL can get very complicated.)
Based on the reply to the comment, I'd say that without additional criteria, this ranges between very hard and impossible.
Very hard (leastways, it would be for me) because you'd have to write something to parse and interpret your SQL statements into a workable frame of reference for your goals. Doable, but can it be worth the effort?
Impossible because some queries transcend phrases like "Byzantinely complex". (Think nested queries, correlated subqueries, views, common table expressions, triggers, outer joins, and who knows what all.) Without setting criteria such as "no subqueries, no views or triggers, no more than X joins" and so forth, the problem becomes open-ended enough to warrant an NP Complete answer.
My first thought would be to put a trigger on table_A, where if any of the columns you're affecting (col A in this case) changes to meet (or no longer meet) the condition (> 10 here), then the trigger records that an "affecting" change has taken place.
E.g. have another little table to record a "last update timestamp", which the trigger could pop a getdate() into when it detects such a change.
Then, you could check that table to see if the timestamp has changed since the last time you ran the select query - if it has, then you know you need to re-run it, if it hasn't, then you know the results would be the same.
The table could hold many such timestamps (one per row, perhaps with the table/trigger name as a key value in another column) to service many such triggers.
Advantage? Being done in a trigger on the table means no risk of a change that could affect the select statement being missed.
Disadvantage? I guess depending on how your select statements come into existence, you might have an undesirable/unmanageable overhead in creating the trigger(s).
A similar question has been asked, but since it always depends, I'm asking for my specific situation separately.
I have a web-site page that shows some data that comes from a database, and to generate the data from that database I have to do some fairly complex multiple joins queries.
The data is being updated once a day (nightly).
I would like to pre-generate the data for the said view to speed up the page access.
For that I am creating a table that contains exact data I need.
Question: for my situation, is it reasonable to do complete table wipe followed by insert? or should I do update,insert?
SQL wise seems like DELETE + INSERT will be easier (INSERT part is a single SQL expression).
EDIT: RDBMS: MS SQL Server 2008 Ent
TRUNCATE will be faster than delete, so if you need to empty a table do that instead
You didn't specify your RDBMS vendor but some of them also have MERGE/UPSERT commands This enables you do update the table if the data exists and insert if it doesn't
It partly depends on how the data is accessed. If you have a period of time with no (or very few) users accessing it, then there won't be much impact on the data disappearing (between the DELETE and the completion of the INSERT) for a short while.
Have you considered using a materialized view (MSSQL calls them indexed views) instead of doing it manually? This could also have other performance benefits as an indexed view gives the query optimizer more choices when its constructing execution plans for other queries that reference the table(s) in the view.
It depends on the size of the table and the recovery model on the database. If you are deleting many hundreds of thousands of records and reinstating them vs updating a small batch of a few hundred and inserting tens of rows, it will add an unnecessary size to your transaction logs. However you could use TRUNCATE to get around this as it won't affect the transaction log.
Do you have the option of a MERGE/UPSERT? If you're using MS-SQL you can use CROSS APPLY to do something similar if you don't.
One approach to handling this type of problem is to insert into new table, then do a table Rename. This will insure that all new data is present at the same time.
What if some data that was present yesterdays is not anymore? Delete may be safer or you could end up deleting some records anyway.
And in the end it doesnt really matter which way you go.
Unless on the case #kevinw mentioned
Although I fully agree with SQLMenace's answer I do would like to point out that MERGE does NOT remove unneeded records ! If you're sure that your new data will be a super-set of the existing data, then MERGE is great, otherwise you'll either need to make sure that you delete any superfluous records later on, or use the TRUNCATE + INSERT method ...
(Personally I'm still a fan of the latter as it usually is quite fast, just make sure to drop all indexes/unique constraints upfront and rebuild them one by one. This has the benefit of the INSERT transaction being smaller and the index-adding being done in (smaller) transactions again later on). (**)
(**: yes, this might be tricky on live system, but then again he already mentioned this was done during some kind of overnight anyway, I'm extrapolating there is no user-access at that time)
I need to do paging with the sort order based on a calculation. The calculation is similar to something like reddit's hotness algorithm in that its dependant on time - time since post creation.
I'm wondering what the best practice for this would be. Whether to have this sort as a SQL function, or to run an update once an hour to calculate the whole table.
The table has hundreds of thousands of rows. And I'm using nhibernate, so this could cause problems for the scheduled full calcution.
Any advice?
It most likely will depend a lot on the load on your server. A few assumptions for my answer:
Your calculation is most likely not simple, but will take into account a variety of factors, including time elapsed since post
You are expecting at least reasonable growth in your site, meaning new data will be added to your table.
I would suggest your best bet would be to calculate and store your ranking value, and as Nuno G mentioned retrieve using an ordered clause. As you note there are likely to be some implications, two of which would be:
Scheduling Updates
Ensuring access to the table
As far as scheduling goes you may be able to look at some ways of intelligently recalculating your value. For example, you may be able to identify when a calculation is likely to be altered (for example, if a dependant record is updated you might fire a trigger, adding the ID of your table to a queue for recalculation). You may also do the update in ranges, rather then in the full table.
You will also want to minimise any locking of your table whilst you are recalculating. There are a number of ways to do this, including setting your isolation levels (using MS SQL terminonlogy). If you are really worried you could even perform your calculation externally (eg. in a temp table) and then simply run an update of the values to your main table.
As a final note I would recommend looking into the paging options available to you - if you are talking about thousands of records make sure that your mechanism determines the page you need on the SQL server so that you are not returning the thousands of rows to your application, as this will slow things down for you.
If you can perform the calculation using SQL, try use Hibernate to load the sorted collection by executing a SQLQuery, where your query includes a 'ORDER BY' expression.
OK, so practically every database based application has to deal with "non-active" records. Either, soft-deletions or marking something as "to be ignored". I'm curious as to whether there are any radical alternatives thoughts on an `active' column (or a status column).
For example, if I had a list of people
CREATE TABLE people (
id INTEGER PRIMARY KEY,
name VARCHAR(100),
active BOOLEAN,
...
);
That means to get a list of active people, you need to use
SELECT * FROM people WHERE active=True;
Does anyone suggest that non active records would be moved off to a separate table and where appropiate a UNION is done to join the two?
Curiosity striking...
EDIT: I should make clear, I'm coming at this from a purist perspective. I can see how data archiving might be necessary for large amounts of data, but that is not where I'm coming from. If you do a SELECT * FROM people it would make sense to me that those entries are in a sense "active"
Thanks
You partition the table on the active flag, so that active records are in one partition, and inactive records are in the other partition. Then you create an active view for each table which automatically has the active filter on it. The database query engine automatically restricts the query to the partition that has the active records in it, which is much faster than even using an index on that flag.
Here is an example of how to create a partitioned table in Oracle. Oracle doesn't have boolean column types, so I've modified your table structure for Oracle purposes.
CREATE TABLE people
(
id NUMBER(10),
name VARCHAR2(100),
active NUMBER(1)
)
PARTITION BY LIST(active)
(
PARTITION active_records VALUES (0)
PARTITION inactive_records VALUES (1)
);
If you wanted to you could put each partition in different tablespaces. You can also partition your indexes as well.
Incidentally, this seems a repeat of this question, as a newbie I need to ask, what's the procedure on dealing with unintended duplicates?
Edit: As requested in comments, provided an example for creating a partitioned table in Oracle
Well, to ensure that you only draw active records in most situations, you could create views that only contain the active records. That way it's much easier to not leave out the active part.
We use an enum('ACTIVE','INACTIVE','DELETED') in most tables so we actually have a 3-way flag. I find it works well for us in different situations. Your mileage may vary.
Moving inactive stuff is usually a stupid idea. It's a lot of overhead with lots of potential for bugs, everything becomes more complicated, like unarchiving the stuff etc. What do you do with related data? If you move all that, too, you have to modify every single query. If you don't move it, what advantage were you hoping to get?
That leads to the next point: WHY would you move it? A properly indexed table requires one additional lookup when the size doubles. Any performance improvement is bound to be negligible. And why would you even think about it until the distant future time when you actually have performance problems?
I think looking at it strictly as a piece of data then the way that is shown in the original post is proper. The active flag piece of data is directly dependent upon the primary key and should be in the table.
That table holds data on people, irrespective of the current status of their data.
The active flag is sort of ugly, but it is simple and works well.
You could move them to another table as you suggested. I'd suggest looking at the percentage of active / inactive records. If you have over 20 or 30 % inactive records, then you might consider moving them elsewhere. Otherwise, it's not a big deal.
Yes, we would. We currently have the "active='T/F'" column in many of our tables, mainly to show the 'latest' row. When a new row is inserted, the previous T row is marked F to keep it for audit purposes.
Now, we're moving to a 2-table approach, when a new row is inserted, the previous row is moved to an history table. This give us better performance for the majority of cases - looking at the current data.
The cost is slightly more than the old method, previously you had to update and insert, now you have to insert and update (ie instead of inserting a new T row, you modify the existing row with all the new data), so the cost is just that of passing in a whole row of data instead of passing in just the changes. That's hardly going to make any effect.
The performance benefit is that your main table's index is significantly smaller, and you can optimise your tablespaces better (they won't grow quite so much!)
Binary flags like this in your schema are a BAD idea. Consider the query
SELECT count(*) FROM users WHERE active=1
Looks simple enough. But what happens when you have a large number of users, so many that adding an index to this table would be required. Again, it looks straight forward
ALTER TABLE users ADD INDEX index_users_on_active (active)
EXCEPT!! This index is useless because the cardinality on this column is exactly two! Any database query optimiser will ignore this index because of it's low cardinality and do a table scan.
Before filling up your schema with helpful flags consider how you are going to access that data.
https://stackoverflow.com/questions/108503/mysql-advisable-number-of-rows
We use active flags quite often. If your database is going to be very large, I could see the value in migrating inactive values to a separate table, though.
You would then only require a union of the tables when someone wants to see all records, active or inactive.
In most cases a binary field indicating deletion is sufficient. Often there is a clean up mechanism that will remove those deleted records after a certain amount of time, so you may wish to start the schema with a deleted timestamp.
Moving off to a separate table and bringing them back up takes time. Depending on how many records go offline and how often you need to bring them back, it might or might not be a good idea.
If the mostly dont come back once they are buried, and are only used for summaries/reports/whatever, then it will make your main table smaller, queries simpler and probably faster.
We use both methods for dealing with inactive records. The method we use is dependent upon the situation. For records that are essentially lookup values, we use the Active bit field. This allows us to deactivate entries so they wont be used, but also allows us to maintain data integrity with relations.
We use the "move to separation table" method where the data is no longer needed and the data is not part of a relation.
The situation really dictates the solution, methinks:
If the table contains users, then several "flag" fields could be used. One for Deleted, Disabled etc. Or if space is an issue, then a flag for disabled would suffice, and then actually deleting the row if they have been deleted.
It also depends on policies for storing data. If there are policies for keeping data archived, then a separate table would most likely be necessary after any great length of time.
No - this is a pretty common thing - couple of variations depending on specific requirements (but you already covered them):
1) If you expect to have a whole BUNCH of data - like multiple terabytes or more - not a bad idea to archive deleted records immediately - though you might use a combination approach of marking as deleted then copying to archive tables.
2) Of course the option to hard delete a record still exists - though us developers tend to be data pack-rats - I suggest that you should look at the business process and decide if there is now any need to even keep the data - if there is - do so... if there isn't - you should probably feel free just to throw the stuff away.....again, according to the specific business scenario.
From a 'purist perspective' the realtional model doesn't differentiate between a view and a table - both are relations. So that use of a view that uses the discriminator is perfectly meaningful and valid provided the entities are correctly named e.g. Person/ActivePerson.
Also, from a 'purist perspective' the table should be named person, not people as the name of the relation reflects a tuple, not the entire set.
Regarding indexing the boolean, why not:
ALTER TABLE users ADD INDEX index_users_on_active (id, active) ;
Would that not improve the search?
However I don't know how much of that answer depends on the platform.
This is an old question but for those search for low cardinality/selectivity indexes, I'd like to propose the following approach that avoids partitioning, secondary tables, etc.:
The trick is to use "dateInactivated" column that stores the timestamp of when the record is inactivated/deleted. As the name implies, the value is NULL while the record is active, but once inactivated, write in the system datetime. Thus, an index on that column ends up having high selectivity as the number of "deleted" records grows since each record will have a unique (not strictly speaking) value.
Then your query becomes:
SELECT * FROM people WHERE dateInactivated is NULL;
The index will pull in just the right set of rows that you care about.
Filtering data on a bit flag for big tables is not really good in terms of performance. In case when 'active' determinate virtual deletion you can create 'TableName_delted' table with the same structure and move deleted data there using delete trigger.
That solution will help with performance and simplifies data queries.
Working on a project at the moment and we have to implement soft deletion for the majority of users (user roles). We decided to add an is_deleted='0' field on each table in the database and set it to '1' if particular user roles hit a delete button on a specific record.
For future maintenance now, each SELECT query will need to ensure they do not include records where is_deleted='1'.
Is there a better solution for implementing soft deletion?
Update: I should also note that we have an Audit database that tracks changes (field, old value, new value, time, user, ip) to all tables/fields within the Application database.
I would lean towards a deleted_at column that contains the datetime of when the deletion took place. Then you get a little bit of free metadata about the deletion. For your SELECT just get rows WHERE deleted_at IS NULL
You could perform all of your queries against a view that contains the WHERE IS_DELETED='0' clause.
Having is_deleted column is a reasonably good approach.
If it is in Oracle, to further increase performance I'd recommend partitioning the table by creating a list partition on is_deleted column.
Then deleted and non-deleted rows will physically be in different partitions, though for you it'll be transparent.
As a result, if you type a query like
SELECT * FROM table_name WHERE is_deleted = 1
then Oracle will perform the 'partition pruning' and only look into the appropriate partition. Internally a partition is a different table, but it is transparent for you as a user: you'll be able to select across the entire table no matter if it is partitioned or not. But Oracle will be able to query ONLY the partition it needs. For example, let's assume you have 1000 rows with is_deleted = 0 and 100000 rows with is_deleted = 1, and you partition the table on is_deleted. Now if you include condition
WHERE ... AND IS_DELETED=0
then Oracle will ONLY scan the partition with 1000 rows. If the table weren't partitioned, it would have to scan 101000 rows (both partitions).
The best response, sadly, depends on what you're trying to accomplish with your soft deletions and the database you are implementing this within.
In SQL Server, the best solution would be to use a deleted_on/deleted_at column with a type of SMALLDATETIME or DATETIME (depending on the necessary granularity) and to make that column nullable. In SQL Server, the row header data contains a NULL bitmask for each of the columns in the table so it's marginally faster to perform an IS NULL or IS NOT NULL than it is to check the value stored in a column.
If you have a large volume of data, you will want to look into partitioning your data, either through the database itself or through two separate tables (e.g. Products and ProductHistory) or through an indexed view.
I typically avoid flag fields like is_deleted, is_archive, etc because they only carry one piece of meaning. A nullable deleted_at, archived_at field provides an additional level of meaning to yourself and to whoever inherits your application. And I avoid bitmask fields like the plague since they require an understanding of how the bitmask was built in order to grasp any meaning.
if the table is large and performance is an issue, you can always move 'deleted' records to another table, which has additional info like time of deletion, who deleted the record, etc
that way you don't have to add another column to your primary table
That depends on what information you need and what workflows you want to support.
Do you want to be able to:
know what information was there (before it was deleted)?
know when it was deleted?
know who deleted it?
know in what capacity they were acting when they deleted it?
be able to un-delete the record?
be able to tell when it was un-deleted?
etc.
If the record was deleted and un-deleted four times, is it sufficient for you to know that it is currently in an un-deleted state, or do you want to be able to tell what happened in the interim (including any edits between successive deletions!)?
Careful of soft-deleted records causing uniqueness constraint violations.
If your DB has columns with unique constraints then be careful that the prior soft-deleted records don’t prevent you from recreating the record.
Think of the cycle:
create user (login=JOE)
soft-delete (set deleted column to non-null.)
(re) create user (login=JOE). ERROR. LOGIN=JOE is already taken
Second create results in a constraint violation because login=JOE is already in the soft-deleted row.
Some techniques:
1. Move the deleted record to a new table.
2. Make your uniqueness constraint across the login and deleted_at timestamp column
My own opinion is +1 for moving to new table. Its take lots of
discipline to maintain the *AND delete_at = NULL* across all your
queries (for all of your developers)
You will definitely have better performance if you move your deleted data to another table like Jim said, as well as having record of when it was deleted, why, and by whom.
Adding where deleted=0 to all your queries will slow them down significantly, and hinder the usage of any of indexes you may have on the table. Avoid having "flags" in your tables whenever possible.
you don't mention what product, but SQL Server 2008 and postgresql (and others i'm sure) allow you to create filtered indexes, so you could create a covering index where is_deleted=0, mitigating some of the negatives of this particular approach.
Something that I use on projects is a statusInd tinyint not null default 0 column
using statusInd as a bitmask allows me to perform data management (delete, archive, replicate, restore, etc.). Using this in views I can then do the data distribution, publishing, etc for the consuming applications. If performance is a concern regarding views, use small fact tables to support this information, dropping the fact, drops the relation and allows for scalled deletes.
Scales well and is data centric keeping the data footprint pretty small - key for 350gb+ dbs with realtime concerns. Using alternatives, tables, triggers has some overhead that depending on the need may or may not work for you.
SOX related Audits may require more than a field to help in your case, but this may help.
Enjoy
Use a view, function, or procedure that checks is_deleted = 0; i.e. don't select directly on the table in case the table needs to change later for other reasons.
And index the is_deleted column for larger tables.
Since you already have an audit trail, tracking the deletion date is redundant.
I prefer to keep a status column, so I can use it for several different configs, i.e. published, private, deleted, needsAproval...
Create an other schema and grant it all on your data schema.
Implment VPD on your new schema so that each and every query will have the predicate allowing selection of the non-deleted row only appended to it.
http://download.oracle.com/docs/cd/E11882_01/server.112/e16508/cmntopc.htm#CNCPT62345
#AdditionalCriteria("this.status <> 'deleted'")
put this on top of your #entity
http://wiki.eclipse.org/EclipseLink/Examples/JPA/SoftDelete