SSL security concern - ssl

I'm wondering why ssl encrypted data can't be cracked easily once the packets are intercepted. As i understand it when you connect to a site like facebook the browser and site agree on a cipher, what stops the sniffer from seeing what cipher they agreed to?

SSL uses asymmetric encryption, meaning the decryption key is different than the encryption key. So if you as a client encrypt your packets with the server's public key, it can only be decrypted by the private key, which remains on the server. Of course, this is a simplification of everything that happens in an SSL transaction, but that's the basis of the concept.

Imagine sending a box with an open padlock to the other side - when the other side wants to send a message, they put it inside the box, lock the padlock and send it back to you, where you use your (private) key to unlock it. Even if the intercepting party has sees the padlock, they still don't have the key.

There's a lot of ways to describe it. For me, my ah-hah moment was when I figured out that, after information is encrypted multiple times, it can be decrypted in any order.
A encrypts first, passes to B a single encrypted message [A encryption].
B encrypts the message a second time, and passes to A a double encrypted message [A encryption and B encryption]
A removes [A encryption] from the message, leaving only [B encryption], and sends the message to B.
B now has a [B encrypted] message, and knows how to decrypt it.
The sniffer sees the message encrypted three different ways: [A], [AB], and [B].
That's three message passes to exchange one message, but once it's passed and both sides have the unique information to decrypt further communication, future messages only need one trip.
If you want a simple example of how a message could be decrypted in any order, you can use XOR as a sample encryption method. For keys A and B, message M, and XOR is ^, then
M ^ A ^ A = M
M ^ A ^ B ^ A ^ B = M

Facebook signs it's package with a certificate that Facebook got from an certificate authority such as RapidSLL.
As long as you trust the certificate authorities that all certificate they issue for facebook.com do really belong to facebook.com the connection is safe.
Facebook then sends you via a signed message it's public encyrption key which you can use to encrypt your messages to be read by facebook.

Yes, the cipher is public. However, the client asymmetrically encrypts a random session key (or rather a precursor) using Facebook's public key (they verify it's really Facebook's key by checking that it is signed by someone trusted). So only Facebook (who has a private key) should be able to derive the actual symmetric keys that are used to exchange website data.
See this detailed walk-through. In that example, an eavesdropper can tell that the connection uses RSA, RC4, and MD5. But they don't have Amazon's private key, so they can't derive the session keys.

Like Derek H said, there are fundamental differences between symmetric and asymmetric encryption. Look up stuff like DH key exchange protocol and RSA cipher, they are fundamental in SSL/TLS. On the other hand, it's relatively easy to decrypt sniffed data (ROBOT attack).
If you just need to be sure your communication is secure, you can simply use SSL/TLS Server Test, there you can see if you're not using recommended algorithms or see if your SSL/TLS configuration is PCI-DSS/HIPAA/NIST compliant.

Related

Is RSA algorithm secure if I have fixed message pool and an interceptor have also the message pool?

Suppose I have a fixed message pool of 1000 messages, person A is sending message from this fixed message pool to person B using RSA.
If an interceptor also have the message pool he can precompute all the encrypted messages using B's public key. Now if he intercept A's message can he surely tell which message A has sent to B?
In this case should we use RSA only for a symmetric key exchange and then messages should be encrypted using a symmetric algorithm?
The text-book RSA encryption algorithm is deterministic. But the official RSA specifications (and also all implementations used in practice) include some (partly random) padding, so we don't actually encrypt plaintext, but pad(plaintext). So the above mentioned problem will not occur.
More details can be found in this answer https://stackoverflow.com/a/7933071/10690480

What's the security problem is a private key is leaked for a shared secret key

in the following case, if privateKeyOfA is leaked, what's the security problem? Can someone decrypt the message without privateKeyOfB??
Aes.encrypt(privateKeyOfA, publicKeyOfB, message)
Aes.decrypt(publicKeyOfA, privateKeyOfB)
If not, I guess why we need privateKeyOfA here is for A's signature?
The signature is needed since the receiver must know that the message is coming from someone that he can identify. If he cannot verify the signature, this means that he doesn't know the person.
If the private key of A is compromised by a hacker, he can send messages to everybody with signature impersonating the A.
A key exchange (e.g. using DH or ECDH) would be used by A to convert privateKeyOfA + publicKeyOfB into an AES key. This same AES key can also be generated identically by B using privateKeyOfB + publicKeyOfA. All traffic between A and B would be encrypted using the same AES key.
Assuming that all public keys are known (they are public after all), then anyone who has access to privateKeyOfA can regenerate all AES keys that were generated by A to communicate with anyone. This means all traffic involving this key (messages sent or received by A, with B or anyone else) would be compromised.
But if an ephemeral version was used (like in some modes of TLS), then a new key is generated for each session, so that if 1 key is ever compromised, only this session is compromised. You can read more about forward secrecy.
If the keys are used in the way you describe, then they are not used for signature.

How are the random numbers in SSL obfuscated to prevent a third party from generating the same master key?

My understanding of how SSL works:
The client sends a hello message containing the SSL version number, supported key, cipher and hash methods, and a randomly generated number.
Server replies selecting the key, cipher and hash methods, a randomly generated number, and its certificate.
Client and server generate a master key based on above randomly generated number(s).
Client request change cipher, server replies change cipher, and they are now both encrypted with the master key.
My question is that wouldn't a third party (eg man in the middle) be able to intercept the initial hello messages, use the intercepted randomly generated numbers and figure out the master key, and thereby able to figure out what the rest of the messages are for the entirety of the connection? Thanks!
SSL can encrypt your message and traffic.
If man in the middle able to intercept, he'll see an encrypted message but not danger because that's hash function a way.
Good luck!
By #Jackie

RSA two-way decryption?

I've been experimenting with RSA encryption in python (cryptography.hazmat.primitives.asymmetric). I have the following setup: On one end is the client with the public key sending encrypted data back to the server, which holds the private key. Right now I've got one-directional encryption working, but I'm wondering how you would (or if you should) securely decrypt a message client-side. I thought about just encrypting the private key and storing it, but then the password would appear in the code and expose the key to compromise. Is there a way to securely implement this with a key exchange? Or--the most likely alternative--is this a misuse of the protocol?
EDIT: Wanted to clarify that the possible concerns here would be that using RSA in this way might expose the private key on the file system or between the server and the client.
The normal way is for the server to encrypt the reply with the client's public key and client decrypt with its private key. This requires TWO RSA keypairs -- one for the client and one for the server, and requires each end to know the other's public key.
This need (along with high cost of PKE compared to symmetric encryption) is why PKE is normally only used for authentication and/or key exchange, and a symmetric cipher is used to actually encrypt traffic.

How does browser generate symmetric key during SSL handshake

I have a small confusion on SSL handshake between browser and server in a typical https web scenario:
What I have understood so far is that in the process of SSL handshake, client (browser in this case) encrypts a randomly selected symmetric key with the public key (certificate received from server). This is sent back to the server, server decrypts it (symmetric key) with the private key. This symmetric key is now used during rest of the session to encrypt/decrypt the messages at both the ends. One of main reasons to do so is given as faster encryption using symmetric keys.
Questions
1) How does browser pick and generates this "randomly" selected symmetric key?
2) Do developers (or/and browser users) have control on this mechanism of generating symmetric keys?
Here is a very good description of how HTTPS connection establishment works. I will provide summary how session key is acquired by both parties (client and server), this process is known as "a key agreement protocol", here how it works:
The client generates the 48 byte “pre-master secret” random value.
The client pads these bytes with random data to make the input equal to 128 bytes.
The client encrypts it with server's public key and sends it to the server.
Then master key is produced by both parties in following manner:
master_secret = PRF(
pre_master_secret,
"master secret",
ClientHello.random + ServerHello.random
)
The PRF is the “Pseudo-Random Function” that’s also defined in the
spec and is quite clever. It combines the secret, the ASCII label, and
the seed data we give it by using the keyed-Hash Message
Authentication Code (HMAC) versions of both MD5 and SHA-1 hash
functions. Half of the input is sent to each hash function. It’s
clever because it is quite resistant to attack, even in the face of
weaknesses in MD5 and SHA-1. This process can feedback on itself and
iterate forever to generate as many bytes as we need.
Following this procedure, we obtain a 48 byte “master secret”.
Quoting from a this great video on network video, minute 1:18:07
Well where do you get randomness on your computer because your
computer is a deterministic device?
Well it collects entropies like your mouse stroke movements, your key
stroke movements and the timing of your hard disk, it tries to collect
all that randomness from the universe into a pull so that it can generate random keys just for one connection [this session]. And if that randomness is broken and its happened many times
in the last 30 years, then none of this works. If the adversary can
figure what your randomness can be then they can guess your keys. So use good randomness.
Note: the keys are created per session.