How CPU finds ISR and distinguishes between devices - interrupt

I should first share all what I know - and that is complete chaos. There are several different questions on the topic, so please don't get irritated :).
1) To find an ISR, CPU is provided with a interrupt number. In x86 machines (286/386 and above) there is a IVT with ISRs in it; each entry of 4 bytes in size. So we need to multiply interrupt number by 4 to find the ISR. So first bunch of questions is - I am completely confused in mechanism of CPU receiving the interrupt. To raise an interrupt, firstly device shall probe for IRQ - then what ? The interrupt number travels "on IRQ" towards CPU? I also read something like device putting ISR address on data bus ; whats that then ? What is the concept of devices overriding the ISR. Can somebody tell me few example devices where CPU polls for interrupts? And where does it finds ISR for them ?
2) If two devices share an IRQ (which is very much possible), how does CPU differs amongst them ? What if both devices raise an interrupt of same priority simultaneously. I got to know there will be masking of same type and low priority interrupts - but how this communication happens between CPU and device controller? I studied the role of PIC and APIC for this problem, but could not understand.
Thanks for reading.
Thank you very much for answering.

CPUs don't poll for interrupts, at least not in a software sense. With respect to software, interrupts are asynchronous events.
What happens is that hardware within the CPU recognizes the interrupt request, which is an electrical input on an interrupt line, and in response, sets aside the normal execution of events to respond to the interrupt. In most modern CPUs, what happens next is determined by a hardware handshake particular to the type of CPU, but most of them receive a number of some kind from the interrupting device. That number can be 8 bits or 32 or whatever, depending on the design of the CPU. The CPU then uses this interrupt number to index into the interrupt vector table, to find an address to begin execution of the interrupt service routine. Once that address is determined, (and the current execution context is safely saved to the stack) the CPU begins executing the ISR.
When two devices share an interrupt request line, they can cause different ISRs to run by returning a different interrupt number during that handshaking process. If you have enough vector numbers available, each interrupting device can use its own interrupt vector.
But two devices can even share an interrupt request line and an interrupt vector, provided that the shared ISR is clever enough to go back to all the possible sources of the given interrupt, and check status registers to see which device requested service.
A little more detail
Suppose you have a system composed of a CPU, and interrupt controller, and an interrupting device. In the old days, these would have been separate physical devices but now all three might even reside in the same chip, but all the signals are still there inside the ceramic case. I'm going to use a powerPC (PPC) CPU with an integrated interrupt controller, connected to a device on a PCI bus, as an example that should serve nicely.
Let's say the device is a serial port that's transmitting some data. A typical serial port driver will load bunch of data into the device's FIFO, and the CPU can do regular work while the device does its thing. Typically these devices can be configured to generate an interrupt request when the device is running low on data to transmit, so that the device driver can come back and feed more into it.
The hardware logic in the device will expect a PCI bus interrupt acknowledge, at which point, a couple of things can happen. Some devices use 'autovectoring', which means that they rely on the interrupt controller to see to it that the correct service routine gets selected. Others will have a register, which the device driver will pre-program, that contains an interrupt vector that the device will place on the data bus in response to the interrupt acknowledge, for the interrupt controller to pick up.
A PCI bus has only four interrupt request lines, so our serial device will have to assert one of those. (It doesn't matter which at the moment, it's usually somewhat slot dependent..) Next in line is the interrupt controller (e.g. PIC/APIC), that will decide whether to acknowledge the interrupt based on mask bits that have been set in its own registers. Assuming it acknowledges the interrupt, it either then obtains the vector from the interrupting device (via the data bus lines), or may if so programmed use a 'canned' value provided by the APIC's own device driver. So far, the CPU has been blissfully unaware of all these goings-on, but that's about to change.
Now it's time for the interrupt controller to get the attention of the CPU core. The CPU will have its own interrupt mask bit(s) that may cause it to just ignore the request from the PIC. Assuming that the CPU is ready to take interrupts, it's now time for the real action to start. The current instruction usually has to be retired before the ISR can begin, so with pipelined processors this is a little complicated, but suffice it to say that at some point in the instruction stream, the processor context is saved off to the stack and the hardware-determined ISR takes over.
Some CPU cores have multiple request lines, and can start the process of narrowing down which ISR runs via hardware logic that jumps the CPU instruction pointer to one of a handful of top level handlers. The old 68K, and possibly others did it that way. The powerPC (and I believe, the x86) have a single interrupt request input. The x86 itself behaves a bit like a PIC, and can obtain a vector from the external PIC(s), but the powerPC just jumps to a fixed address, 0x00000500.
In the PPC, the code at 0x0500 is probably just going to immediately jump out to somewhere in memory where there's room enough for some serious decision making code, but it's still the interrupt service routine. That routine will first go to the PIC and obtain the vector, and also ask the PIC to stop asserting the interrupt request into the CPU core. Once the vector is known, the top level ISR can case out to a more specific handler that will service all the devices known to be using that vector. The vector specific handler then walks down the list of devices assigned to that vector, checking interrupt status bits in those devices, to see which ones need service.
When a device, like the hypothetical serial port, is found wanting service, the ISR for that device takes appropriate actions, for example, loading the next FIFO's worth of data out of an operating system buffer into the port's transmit FIFO. Some devices will automatically drop their interrupt request in response to being accessed, for example, writing a byte into the transmit FIFO might cause the serial port device to de-assert the request line. Other devices will require a special control register bit to be toggled, set, cleared, what-have-you, in order to drop the request. There are zillions of different I/O devices and no two of them ever seem to do it the same way, so it's hard to generalize, but that's usually the way of it.
Now, obviously there's more to say - what about interrupt priorities? what happens in a multi-core processor? What about nested interrupt controllers? But I've burned enough space on the server. Hope any of this helps.

I Came over this Question like after 3 years.. Hope I Can help ;)
The Intel 8259A or simply the "PIC" has 8 pins ,IRQ0-IRQ7, every pin connects to a single device..
Lets suppose that u pressed a button on the keyboard.. the voltage of the IRQ1 pin, which is connected to the KBD, is High.. so after the CPU gets interrupted, acknowledge the Interrupt bla bla bla... the PIC does simply add 8 to the number of the IRQ line so IRQ1 means 1+8 which means 9
SO the CPU sets its CS and IP on the 9th entry in the vector table.. and because the IVT is an array of longs it just multiply the number of cells by 4 ;)
CPU.CS=IVT[9].CS
CPU.IP=IVT[9].IP
the ESR deals with the device through the I/O ports ;)
Sorry for my bad english .. am an Arab though :)

Related

TinyAVR 0-Series: Can I use pin-change sensing without entering interrupt handler?

I am evaluating the ATtiny806 running at 20MHz to build a cycle-accurate Intel 4004 microprocessor emulator. (I know it will be a bit too slow, but AVRs have a huge community.)
I need to synchronize to the external, two-phase non-overlapping clocks. These are not fast clocks (the original 4004 ran at 750kHz)
but if I spin-wait for every clock edge, I risk wasting most of my time budget.
The TinyAVR 0-series has a very nice pin-change interrupt facility that can be configured to trigger only on rising edges.
But, an interrupt routine round-trip is 8 cycles (3 in, 5 out).
My question is:
Can I leverage the pin-change sensing mechanism while never visiting an ISR?
(Other processor families let you poll for interruptible conditions without enabling interrupts from that peripheral). Can polling be done with a tight skip-on-bit/jump-back loop, followed by a set-bit instruction?
Straightforward way
You can always just poll on the level of the GPIO pin using the single cycle skip if bit set/clear instruction on the appropriate PORT register and bit.
But as you mention, polling does burn cycles so I'm not sure exactly what you want here - either a poll (that burns cycles but has low latency) or an interrupt (that has higher latency but allows processing to continue until the condition is true).
Note that if things get really tight and you are looking for, say, power savings by sleeping between clock signal transitions then you can do tricks like having an ISR that nevers returns (saving the IRET cycles) but that requires some careful coding probably with something like a state machine.
INTFLAG way
Alternately, if you want to use the internal pin state machine logic and you can live without interrupts, then you can use the INTFLAGS flags to check for the pin change configured in the ISC bits of the PINxCTRL register. As long as global interrupts are not enabled in SREG then you can spin poll on the appropriate INTFLAG bit to check/wait for the desired condition, and then write a 1 to that bit to clear the flag.
Note that if you want to make this fast, you will probably want to map the appropriate PORT to a VPORT since the VPORT registers are in I/O Memory. This lets you use SBIS to test the INTFLAG bit a single cycle and SBI to clear the bit in a single cycle (these instructions only work on IO memory and the normal PORT registers are not in IO Memory).
Finally one more complication, if you need to leave the interrupts on when doing this, it is probably possible by hacking the interrupt priority registers. You'd set the pin change to be on level 0, and then make sure the interrupts you care about are level 1 or higher, and then trick the interrupt controller into thinking that there is already a level 0 running so these interrupts do not actually fire. There are also other restrictions to this strategy so avoid it if at all possible.
Programmable logic way
If you want to get really esoteric, it is likely possible that you could route the input value of a pin to a configurable custom logic LUT in the chip and then route the output of that module to a bit that you test using a 1-cycle bit test (maybe an unused IO Pin). To do this, you'd feedback the output of the LUT back into one of its inputs and then use the LUT to create a strobe on the edge you are looking for. This is very complex, and also since the strobe has no acknowledgement that if the signal changes when you are not looking for it (in a spin check) then it will be lost and you will have to wait for the next edge (probably fatal in your application).

What exactly is an interrupt?

I want to understand what exactly an interrupt is for my 6502 work-alike processor project in Logisim.
I know that an interrupt does the following steps:
Stops the current program from processing
Saves all unfinished data into the stack
Does "SOMETHING"
Loads back the unfinished data and let's the program keep running normally.
My question is: what happens during that "SOMETHING" step? Does the program counter get redirected to a special program to be executed? Something like reading the pressed button's ASCII code and saving that into a register or some memory location? If so, where is that special program usually stored in the memory? And can you make such a CPU that will handle different kinds of interrupts? Maybe if you press the button "a" then it's ASCII will be stored in A register, but if you press the button "b" then it will be stored in X register?
Any help is greatly appreciated.
Edit: Thanks to everybody for answers. I learned a lot and now can proceed with my project.
My question is: what happens during that "SOMETHING" step? Does the program counter get redirected to a special program to be executed?
What happens with a 6502 maskable interrupt is this:
the interrupt is raised (by this I mean the interrupt pin on the chip is forced low.
when it's time to execute a new instruction, the 6502 checks if the interrupt pin is low and the interrupt mask in the status register is not set. If either is not thew case i.e. if the interrupt pin is high or the interrupt mask is high, the CPU just carries on.
Assuming an interrupt is required, the CPU saves the PC on the stack
The CPU then saves the status register on the stack but with the B bit set to 0. The B bit is the "break" bit. It would be set to 1 for a BRK instruction and that is the only way to tell the difference between a hardware interrupt and a BRK instruction.
The CPU then fetches the address at locations $FFFE and $FFFF and stuffs it into the PC, so execution begins again at that address.
That's all it does. Everything else is up to the programmer until the programmer executes an RTI, then the status word and the return address are pulled off the stack and restored into their respective registers. It is the programmer's responsibility to save any registers and other data.
Does the program counter get redirected to a special program to be executed? Something like reading the pressed button's ASCII code and saving that into a register or some memory location?
That is correct. In 6502 based computer systems, there are three vectors at the top of memory:
$FFFA - $FFFB : Non maskable interrupt (as above except the I bit in the status register is ignored).
$FFFC - $FFFD : Reset vector used when the CPU detects a reset
$FFFE - $FFFF : Normal interrupt vector.
The above are usually in ROM because the reset vector (at least) has to be there when the CPU powers up. Each address will point to a routine in the machine's operating system for handling interrupts.
Typically, the interrupt routine will first do an indirect jump through a vector stored in RAM. This allows the interrupt routine to be changed when the machine is running.
Then the interrupt routine has to determine the source of the interrupt. For example, on the Commodore PET thew interrupt might originate from the VIA chip or either of the PIA chips and each of those may raise an interrupt for various reasons e.g. one of the PIA chips raises an interrupt when the monitor does a vertical blank i.e. when it finishes scanning the screen and goes back to the top line. During this interrupt, the PET executes a routine to scan the keyboard and another routine to invert the cursor. Another interrupt might occur when the VIA timer hits zero and the programmer can insert an interrupt routine to, for example toggle an output line to generate a square wave for sound.
Some answers to questions in the comments.
program counter goes to address $FFFE to get relocate to the address
No, the program counter is set to whatever is at that address. If you have:
FFFE: 00
FFFF: 10
the program counter will be set to $1000 (6502 is little endian) and that's where the interrupt routine must start. Also, the vector for NMI is at $FFFA. The normal interrupt shares $FFFE with the BRK instruction, not the NMI.
What exactly the reset vector does? Does it reset the cpu?
The reset vector contains the location of the code that runs after the processor has been powered on or when a reset occurs.
What's the difference between NMI and IRQ? Then I also would like to know what's up with masking? Is it the way to set the "I" flag in Processor Status Register high or low?
The 6502 status register contains seven flags. Mostly they are to do with the results of arithmetic instructions e.g. Z is set if the result of an operation is zero, C is set when an operation overflows eight bits and for shifts. The I flag enables and disables the normal interrupt (IRQ). If it's zero, interrupts on IRQ will be respected. If it's 1, interrupts are disabled. You can set it and disable it manually with the SEI and CLI instructions and it is set automatically when an interrupt occurs (this is to prevent an interrupt from interrupting an interrupt).
NMI is a non maskable interrupt. The difference is that it ignores the state of the I flag and uses a different vector.
And finally, what are vectors? Are they synonymous for indirect addresses?
Yes.
Oh, and if you do know, how are interrupt addresses starting from $FFFA stored in ROM instead of RAM in real 6502?
You have to arrange for the address decoding logic to point those address at ROM instead of RAM. In fact, in Commodore systems the whole block from $F000 is ROM containing part of the operating system. The same probably applies to most other 6502 based systems.
There are four types of interrupt on the 6502: RESET, NMI, IRQ and BRK. The first three are hardware interrupts and the last is a software interrupt. The hardware interrupts have physical input voltages on pins on the microprocessor itself. The software interrupt is caused by a BRK instruction.
All interrupts are 'vectored'. That means when they occur the program counter (PC) is immediately loaded from an address stored in memory, and instruction execution continues from that address.
The addresses are stored as two bytes little endian format at the end of the 64k memory space. They are (in hex):
NMI $FFFA/$FFFB
RESET $FFFC/$FFFD
IRQ $FFFE/$FFFF
BRK $FFFE/$FFFF
In the case of NMI, IRQ and BRK, the current PC address is pushed on to the stack, before loading the interrupt address. The processor status register is also pushed on to the stack.
Pushing the registers on to the stack, is enough information to resume execution after the interrupt has been serviced (processed). The A, X and Y registers however, are not pushed automatically on to the stack. Instead the interrupt service routine should do this if necessary - and pull them back off the stack at the end of the service.
Notice that the IRQ and BRK vectors have the same address. In order to distinguish what happened in your service code, you need to examine the Break Bit of the pushed processor status register. The Break Bit is set if the interrupt came from a BRK instruction.
The currently executing instruction will always be completed before servicing the interrupt.
There are many subtleties to interrupt processing. One of which is which type of interrupt wins in the case that they happen (asserted) at the same time. Another is the point at which an interrupt occurs during the instruction cycle. If the interrupt occurs before the penultimate cycle of the instruction, then it will be serviced on the next instruction. If on or after the penultimate cycle, then it will be delayed until one instruction after.
IRQ interrupts can be 'switched off' or ignored by setting a bit in the processor status register, using the SEI instruction.
Typically the interrupt service routine needs to determine the cause of the interrupt (disc drive, keyboard etc.) and to make sure the interrupt condition is cleared and perform any processing (e.g. putting key presses into a buffer). It can normally do this by reading/writing specific memory locations which are mapped to hardware.
There is more information at this link: https://www.pagetable.com/?p=410
Some more information on how interrupts work in a real 8 bit machine (pages 59, 86, 295): BBC Microcomputer Advanced User Guide
And more information on the physical chip package where you can see the NMI, RES(ET) and IRQ pins on the chip package itself (pages 2,3): 6502 Datasheet
I guess you ask for hardware interrupt (IRQ or NMI). At your step 2 in stack (not in stack register) are stored program counter and flags register. Later you call RTI to resume program execution. The program counter is loaded with start address of "something" which is interrupt subroutine or program to process the interrupt. It has to store A, X, Y registers if need to modify their values and restore them before RTI. The IRQ interrupt can be masked (delayed) with I flag and NMI is non-maskable i.e. it is always processed. They have different addresses for subroutine.
An interrupt is the signal to the running processor by means of hardware or software so that the processor will give attention to that action and does the action according to the interrupt message.
There are three kinds of interrupt:
Internal interrupt :- which include the clock cycle interrupt ,in which cpu has to perform the certain action until the particular time and has to go to perform for the another operation.
Software interrupt:- This interrupt is occurred when the problem or errors occurs in the software itself. For example user tries to divide something by zero and error occurs. And there is interrupt.
External interrupt:- External interrupt is caused by IO devices for example mouse and keyboards.
Cpu is designed to handle such type of interrupt and resumes the process before the interrupt occurred.

How would an ISR know what pin cause the interrupt?

Interrupts can be enabled for a specific pin(s) on a digital I/O port, correct? How would the ISR determine which pin caused the interrupt?
Because the vector table has only one slot for the Port1 ISR. So the same ISR function gets called no matter which input pin on Port1 needs attention unless I'm wrong...
As other people have suggested in comments this can be MCU dependent, but for ARM(The core behind MSP432) generally the answer is it doesnt know, it looks for it.
ARM has a vectored interrupt system, which means that every source has its own vector of interrupt, so CPU can easily find out which source is triggering thr interrupt. so far so good.
but then it happens that a device can trigger multiple interrupts, like GPIO as you said, in this case, CPU knows that which port has triggered interrupt so fires it's ISR but then it is ISR responsibility to poll device registers to figure out exact interrupt source, there are many of this peripherals with multiple interrupt, timers, DMAs just to name a few.
This is exactly why normally peripherals have an interrupt enable bit, that lets them trigger interrupts, but they also have bit masks that controls what exactly can trigger that interrupt internally,
Also have a look at this link for an in action example, specially at their ISR that does exactly the same as described above
In a typical MCU, there are hundreds, or at a stretch even thousands of potential interrupt sources. Depending on the application, only some will be important, and even fewer will be genuinely timing critical.
For a GPIO port, you typically enable only the pins which are interesting to generate an interrupt. If you can arrange only one pin of a port to be generating the interrupt, the job is done, your handler for that port can do the work, safely knowing that it will only be called when the right pin is active.
When you care about the cause within a single peripheral, and don't have the luxury of individually vectored handlers, you need to fall back on the 'non vectored' approach, and check the status registers before working out which eventual handler function needs to be called.
Interestingly, you can't work out which pin caused the interrupt - all you can see is which pins are still active once you get round to polling the status register. If you care about the phasing between two pulses, you may not be able to achieve this discrimination within a single GPIO unless there is dedicated hardware support. Even multiple exception vectors wouldn't help, unless you can be sure that the first exception is always taken before the second pin could become set.

Interrupt vector table: why do some architectures employ a "jump table" VS an "array of pointers"?

On some architectures (e.g. x86) the Interrupt Vector Table (IVT) is indeed what it says on the tin: a table of vectors, aka pointers. Each vector holds the address of an Interrupt Service Routine (ISR). When an Interrupt Request (IRQ) occurs, the CPU saves some context and loads the vector into the PC register, thus jumping to the ISR. so far so good.
But on some other architectures (e.g. ARM) the IVT contains executable code, not pointers. When an IRQ occurs, the CPU saves some context and executes the vector. But there is no space in between these "vectors", so there is no room for storing the ISR there. Thus each "vector instruction" typically just jumps to the proper ISR somewhere else in memory.
My question is: what are the advantages of the latter approach ?
I would kinda understand if the ISRs themselves had fixed well-known addresses, and were spaced out so that reasonnable IRSs would fit in-place. Then we would save one indirection level, though at the expense of some fragmentation. But this "compact jump table" approach seems to have no advantage at all. What did I miss ?
Some of the reasons, but probably not all of them (I'm pretty much self educated in these matters):
You can have fall through (one exception does nothing, and just goes to the next in the table)
The FIQ interrupt (Fast Interrupt Requests) is the last in the table, and as the name suggest, it's used for devices that need immediate and low latency processing.
It means you can just put that ISR in there (no jumping), and process it as fast as possible. Also, the way FIQ was thought with it's dedicated registers, it allows for optimal implementation of FIQ handlers. See https://en.wikipedia.org/wiki/Fast_interrupt_request
I think it has do with simplifying the processor's hardware.
If you have machine instructions (jump instructions) in the vector interrupt table, the only extra thing the processor has to do when it has to jump to an interrupt handler is to load the address of the corresponding interrupt vector in the PC.
Whereas, if you have addresses in the interrupt vector table, the processor must be able to read the interruption handler start address from memory, and then jump to it.
The extra hardware required to read from memory and writing to a register is more complex than the required to just writing to a register.

Z80 Multibyte Commands in IM0

I'm trying just for the fun to design a more complex Z80 CP/M system with a lot of peripheral devices. When reading the documentation I stumbled over an (undocumented?) behaviour of the Z80 CPU, when accepting an interrupt in IM0.
When an interrupt occurs, the Z80 activates M1 and IORQ to signal the external device: "Hey, give me an opcode". All is well if the opcode is rst 00 or something like this. Now the documentation tells, ANY opcode of any command can be given to the cpu, for instance a CALL.
But now comes the undocumented part: "The first byte of a multi-byte instruction is read during the interrupt acknowledge cycle. Subsequent bytes are read in by a normal memory read sequence."
A "normal memory read sequence". How can I determine, if the CPU wants to get a byte from memory or instead the next byte from the device?
EDIT: I think, I found a (good?) solution: I can dectect the start of the interrupt acknowlegde cycle by analyzing IORQ and M1. Also I can detect the next "normal" opcode fetch by analyzing MREQ and M1. This way I can install a flip-flop triggered by these two ANDed signals, i.e. the flip-flop is 1 as long as the CPU reads data from the io-device. This 1 I can use to inhibit the bus drivers to and from the memory.
My intentions? I'm designing an interrupt controller with 8 prioritized inputs in a CPLD. It's registers hold a 16 bit address for each interrupt pin. Just for the fun :-)
My understanding is that the peripheral device is required:
to know how many bytes it needs to feed;
to respond to normal read cycles following the IORQ cycle; and
to arrange that whatever would normally respond to memory read cycles does not do so for the duration.
Also the behaviour was documented by Zilog in an application note, from which your quote originates (presumably uncredited).
In practice I guess 99.99% of IM0 users just use an RST and 99.99% of the rest use a known-size instruction like CALL xxxx.
(also I'm aware of a few micros that effectively guaranteed not to put anything onto the bus during an interrupt cycle, thereby turning IM0 into a synonym of IM1 owing to open collector output).
The interrupt behavior is reasonably documented in the Z80 manual:
Interupt modes, IM2 allows you to supply an 8-bit address to a 16-bit pointer. At least halfway to the desired 16-bit direct address.
How to set the interrupt modes
My understanding is that the M1 + IORQ combination is used since there was no pin left for a dedicated interrupt response. A fun detail is also that the Zilog I/O chips like PIO, SIO, CTC reads the RETI instruction (as the CPU fetches it) to learn that the CPU is ready to accept another interrupt.