Are MIFARE smart cards programmable in sense I could write a program they could execute? - embedded

Variations of MIFARE Ultralight cards are becoming quite widespread. For example, huge transport companies employ them as payment cards.
As I get from MIFARE site and Wikipedia there's a full-blown microcomputer inside the card - with a processor, memory, etc. When I move the card close to the reader its field induces current in the card antenna, the card computer turns on and runs some complicated protocol to communicate with the reader.
That's all cool but could I write my own program that would run on such a card and do something useful a card doesn't do by default? What are simple examples of what such program could do?

The microprocessor based contactless cards are easy to work with, our company has had good success with the the NXP JCOP product line with wireless capability (this wireless capability is provided via MIFARE technology, but these are microprocessor cards and not MIFARE Ultralight cards.) The JCOP cards let you install your own Global Platform or Javacard cardlet apps on the card and commmunicate with them wirelessly using the ISO 14443 A protocol.

MIFARE Ultralight cards just store data - you can't write a program to run on the card. The MIFARe Classic and Plus variants are similar. MIFARE ProX, SmartMX & DESFire Cards are all microprocessor based cards.
The memory only cards are easy to work with - readers and cheap & easy to obtain via eBay or similar. I'm not sure how you develop with the microprocessor based cards because we've never used them.

I think you need to talk to MIFARE about that. My guess is that have some sort of software development kit as well as a special programmer for the card for potential developers. I haven't fully perused their site, so they may not allow individual developers to work on it, but do the work themselves as a service.

Related

Is it possible to communicate mobile to embedded devices through ultrasonic audio signal

I am looking for a wireless communication technology for exchanging data between devices via sound in ultrasonic frequencies.It is possible to communicate with two mobile devices.I want to communicate a mobile and an embedded device.Is it possible?Any device is working with this protocol?
Of course it is possible. Back in the 1970's my TV remote control used ultrasound to change the channel and turn the TV off. The control was somewhat rudimentary IIRC a short press changed the channel up and a long press turned the TV off. It worked quite reliably for these functions.
Providing more functionality would require a more complicated modulation scheme which, as has been said in another answer, would be prone to interference from other sound sources. This probably explains why infra-red communucation signals are used in more modern remote control systems.
It is possible - why shouldn't it be? Smartphones are just embedded computers too. I imagine getting CE/FCC/etc certifications with such an embedded device will not be so easy. And production testing ...
But is it feasible? Probably not. Power consumption is a lot higher than with any RF-link, it's more susceptible to noise (quite literally) and the required components (microphone+speaker) are bigger than RF-components (antenna).
And then there's a whole bunch of other things you need to keep in mind when working with ultrasound, starting with the plastic design of the embedded device. But also things like the effect of ultrasound on people and their pets etc.

Is it possible to use my PC's fingerprint in C#?

I am developing a software which needs a fingerprint ID to get access or login. Meanwhile, I can't work with Arduino and fingerprint sensors, because There is no mushc time ahead. I am thinking about using the integrated-Fingerfrint of my laptop to get Finger's ID. Is it possible to do such operation?
The short answer is yes.
The long answer is you will need a lot of things to do so. The first is you will need to find out which fingerprint scanner you have in your laptop. Then you will need to find out what SDK's that device manufacturer offers. Most will provide a image acquisition API that you can use to capture images. Most of those SDKs are going to have a C api that you will need to wrap in PInvoke calls.
Once you have images you will need an algorithm. There is a chance that the Device manufacturer sells an SDK that includes an algorithm, if not there are other companies that just build algorithms that you can purchase.
NIST also has an algorithm that is free, but it only has a C interface so again, you will have to do some work.
You might want to checkout https://www.fulcrumbiometrics.com. They support a large number of device manufactures and may be able to help you find what you are looking for.

usb credit card reader for Cocoa Application

I am creating an application that requires a credit card reader but I don't know where to find one that will work with objective c or any other language that will be compatible with the cocoa application. It is for desktop.
Thanks
I know this is a bit of an old question but here goes. I would recommend a MagTek or IDTECH HID MSR (Magnetic Swipe Reader). MagTek's output is ASCII and IDTECH is Hex so you can decide which is easiest.
If you are unable to interface with a HID device, you could use a Keyboard Emulated (KBE) but these are less secure as anyone can swipe into it any time and read the swipe data so I would not recommend as your first choice.
What Gateway are you going to be using for your payment processing? There are many out there, and many have encryption as an option to you. Axia Payments is one but there are dozen and dozens to choose from.
The last thing you need to keep in mind is the addition of EMV or Chip and PIN or Sig in the US. If your application will be taking card present transactions, your users would be required to keep their input abot 75% to not be subject to the burdens of liability post incident.

ARM TrustZone development

I am wondering if anyone have any information on development boards where you can utilize ARM TrustZone? I have the BeagleBoard XM which uses TI's OMAP3530 with Cortex-A8 processor that supports trust zone, however TI confirmed that they have disabled the function on the board as it is a general purpose device.
Further research got me to the panda board which uses OMAP4430 but there is no response from TI and very little information on the internet. How do you learn how to use trust zone?
Best Regards
Mr Gigu
As far as I know, all the OMAP processors you can get off-the-shelf are GP devices, i.e. with the TrustZone functions disabled (or else they're processors in production devices such as off-the-shelf mobile phones, for which you don't get the keys). The situation is similar with other SoC manufacturers. Apart from ARM's limited publications (which only cover the common ARM features anyway, and not the chip-specific features such as memory management details, booting and loading trusted code), all documentation about TrustZone features comes under NDA. This is a pity because it precludes independent analysis of these security features or leverage by open-source software.
I'm afraid that if you want to program for a TrustZone device, you'll have to contact a representative of TI or one of their competitors, convince them that your application is something they want to happen, and obtain HS devices, the keys to sign code for your development boards, and the documentation without which you'll have a very hard time.
As of today OP-TEE runs on quite a few devices (see OP-TEE platforms supported) and several of them are development boards readily available. To name a few HiKey, Raspberry Pi3, ARM Juno Board, Freescale i.MX6 variants etc. Either you could pick up one of those or you could simply try it all using QEMU which is very well supported in OP-TEE.
You can get 45 days trial version for ARM fastmodels. RaspberyPI is supposed to support TrustZone too. www.openvirtualization.org has full open source implementation of ARM TrustZone. ARM is moving away from its proprietary TrustZone APIs to globalplatform API. GlobalPlatform also defines the APIs for Inter process communication etc.
There are a few select boards at this time that do allow development with TrustZone. As far as general purpose board, the FriendlyARM board is a good start (http://www.friendlyarm.net). Also, any board with a Cortex A15 processor must have TrustZone available due to the fact that the virtualization extensions can only be utilized from the Normal world. There may still be a question of whether or not the manufacturer has their own code running in the Secure world, but you can always try. The Arndale is a good development board, but unfortunately Samsung already has code running in the Secure world, so by the time you get access, you're running in the Normal world. So if you need Secure world access, look for non-Samsung, Cortex A15 processors. That'd be your best bet.
It's also worth noting the TI did not technically disable TrustZone. Instead, the bootrom code transitions the processor into the Normal world prior to switching execution to U-boot. So it's actually using TrustZone to move to the Normal world, but then doesn't provide a mechanism for moving back to the Secure world. To prove this, just try to read the SCR and you'll get an undefined exception, which is what will typically happen from the Normal world. However, if you perform a SMC call, it will execute just as expected (i.e., it switches to the Secure world, but then just switches right back to the Normal world), so it looks like nothing happened.
regarding openvirtualization, it can be ported to arm development board like the samsung exynos 4XXX.
you will have access to all source code including the secure os if you use openvirtualization.
but if you just want to develop programs that use the trustzone, I wonder if it is necessary. maybe there are standard driver or api that allow you to do it without worrying about compiling your own secure os?
the best thing you can do is contact parties like Gemalto and the people that brought Mobicore. Note that they will indeed ask you to sign an NDA.
Secondly, you can buy the ARM DS5 development suite. This comes with a lot of documentation including some on trustzone.
You should really take a look at the USB armory from Inverse Path: http://www.inversepath.com/usbarmory.html
It's built on open hardware and open source with full access to Trustzone (you can blow in die fuse to enable secure boot): https://github.com/inversepath/usbarmory
They successfully ran Genode within TZ and Linux in the normal world.

How to find an embedded platform?

I am new to the locating hardware side of embedded programming and so after being completely overwhelmed with all the choices out there (pc104, custom boards, a zillion option for each board, volume discounts, devel kits, ahhh!!) I am asking here for some direction.
Basically, I must find a new motherboard and (most likely) re-implement the program logic. Rewriting this in C/C++/Java/C#/Pascal/BASIC is not a problem for me. so my real problem is finding the hardware. This motherboard will have several other devices attached to it. Here is a summary of what I need to do:
Required:
2 RS232 serial ports (one used all the time for primary UI, the second one not continuous)
1 modem (9600+ baud ok) [Modem will be in simultaneous use with only one of the serial port devices, so interrupt sharing with one serial port is OK, but not both]
Minimum permanent/long term storage: Whatever O/S requires + 1 MB (executable) + 512 KB (Data files)
RAM: Minimal, whatever the O/S requires plus maybe 1MB for executable.
Nice to have:
USB port(s)
Ethernet network port
Wireless network
Implementation languages (any O/S I will adapt to):
First choice Java/C# (Mono ok)
Second choice is C/Pascal
Third is BASIC
Ok, given all this, I am having a lot of trouble finding hardware that will support this that is low in cost. Every manufacturer site I visit has a lot of options, and it's difficult to see if their offering will even satisfy my must-have requirements (for example they sometimes list 3 "serial ports", but it appears that only one of the three is RS232, for example, and don't mention what the other two are). The #1 constraint is cost, #2 is size.
Can anyone help me with this? This little task has left me thinking I should have gone for EE and not CS :-).
EDIT: A bit of background: This is a system currently in production, but the original programmer passed away, and the current hardware manufacturer cannot find hardware to run the (currently) DOS system, so I need to reimplement this in a modern platform. I can only change the programming and the motherboard hardware.
I suggest buying a cheap Atom Mini-ITX board, some of which come with multi - 4+ RS232 ports.
But with Serial->USB converters, this isn't really an issue. Just get an Atom. And if you have code, port your software to Linux.
Here is a link to a Jetway Mini-Itx board, and a link to a 4 port RS232 expansion module for it. ~$170 total, some extra for memory, a disk, and a case and PSU. $250-$300 total.
Now here is an Intel Atom Board at $69 to which you could add flash storage instead of drives, and USB-serial converters for any data collection you need to do.
PC104 has a lot of value in maximizing the space used in 19" or 23" rackmount configurations - if you're not in that space, PC104 is a waste of your time and money, IMHO.
The BeagleBoard should have everything you need for $200 or so - it can run Linux so use whatever programming language you like.
A 'modern' system will run DOS so long as it is x86, I suggest that you look at an industrial PC board from a supplier such as Advantech, your existing system may well run unchanged if it adheres to PC/DOS/BIOS standards.
That said if your original system runs on DOS, the chances are that you do not need the horsepower of a modern x86 system, and can save money by using a microcontroller board using something fairly ubiquitous such as an ARM. Also if DOS was the OS, then you most likely do not need an OS at all, and could develop the system "bare-metal". The resources necessary just to support Linux are probably far greater than your existing application and OS together, and for little or no benefit unless you intend on extending the capability of the system considerably.
There are a number of resources available (free and commercial) for implementing a file system and USB on a bare-metal system or a system using a simple real-time kernel such as FreeRTOS or eCOS which have far smaller footprints than Linux.
The Windows embedded site ( http://www.microsoft.com/windowsembedded/en-us/default.mspx )
has a lot of resources and links to hardware partners, distributors and development kits. There's even a "Spark" incubation project ( http://www.microsoft.com/windowsembedded/en-us/community/spark/default.mspx )
What's also really nice about using windows ce is that it now supports Silverlight as a development environment.
I've used the jetway boards / daughter cards that Chris mentioned with success for various projects from embedded control, my home router, my HTPC front end.
You didn't mention what the actual application was but if you need something more industrial due to temperature or moisture constraints i've found http://www.logicsupply.com/ to be a good resource for mini-itx systems that can take a beating.
A tip for these board is that given your minimal storage requirements, don't use a hard drive. Use an IDE adapter for a compact flash card as the system storage or an SD card. No moving parts is usually a big plus in these applications. They also usually offer models with DC power input so you can use a laptop like or wall wart external supply which minimizes its final size.
This http://www.fit-pc.com/web/ is another option in the very small atom PC market, you'd likely need to use some USB converters to get to your desired connectivity.
The beagle board Paul mentioned is also a good choice, there are daughter cards for that as well that will add whatever ports you need and it has an on board SD card reader for whatever storage you need. This is also a substantially lower power option vs the atom systems.
There are a ton of single board computers that would fit your needs. When searching you'll normally find that they don't keep many interface connectors on the processor board itself but rather you need to look at the stackable daughter cards they offer which would provide whatever connections you need (RS-232, etc.). This is often why you see just "serial port" in the description as the final physical layer for the serial port will be defined on the daughter card.
There are a ton of arm based development boards you could also use, to many to list, these are similar to the beagle board. Googling for "System on module" is a good way to find many options. These again are usually a module with the processor/ram/flash on 1 card and then offer various carrier boards which the module plugs into which will provide the various forms of connectivity you need.
In terms of development, the atom boards will likely be the easiest if your more familiar with x86 development. ARM is strongly supported under linux though so there is little difficulty in getting these up and running.
Personally i would avoid windows for a headless design like your discussing, i rarely see a windows based embedded device that isn't just bad.
Take at look at one of the boards in the Arduino line, in particular the Arduino Mega. Very flexible boards at a low cost, and the Mega has enough I/O ports to do what you need it to do. There is no on-chip modem, but you can connect to something like a Phillips PCD3312C over the I2C connector or you can find an Arduino add-on board (called a "shield") to give you modem functionality (or Bluetooth, ethernet, etc etc). Also, these are very easy to connect to an external memory device (like a flash drive or an SD card) so you should have plenty of storage space.
For something more PC-like, look for an existing device that is powered by a VIA EPIA board. There are lot of devices out there that use these (set-top boxes, edge routers, network security devices etc) that you can buy and re-program. For example, I found a device that was supposed to be a network security device. It came with the EPIA board, RAM, a hard drive, and a power supply. All I had to do was format the hard drive, install Linux (Debian had all necessary drivers already included), and I had a complete mini-computer ready to go. It only cost me around $45 too (bought brand new, unopened on ebay).
Update: The particular device I found was an EdgeSecure i10 from Ingrian Networks.