Array of pointers in objective-c - objective-c

I'm getting confused by pointers in objective-c.
Basically I have a bunch of static data in my code.
static int dataSet0[2][2] = {{0, 1}, {2, 3}};
static int dataSet1[2][2] = {{4, 5}, {6, 7}};
And I want to have an array to index it all.
dataSets[0]; //Would give me dataSet0...
What should the type of dataSets be, and how would I initialize it?

While it's laid out the same in memory, a pointer to a multidimensional array is different than a pointer to a flat array. The compiler has to convert the [][] index to a flat array index for any multidimensional arrays. Can't mix the two or the distinction for the compiler is lost. You can either use all flat arrays:
static int dataSet00[2] = {0,1};
static int dataSet01[2] = {2,3};
static int * dataSet0[2] = {dataSet00, dataSet01};
static int dataSet10[2] = {4, 5};
static int dataSet11[2] = {6, 7};
static int * dataSet1[2] = {dataSet10, dataSet11};
static int ** dataSets[2] = {dataSet0, dataSet1};
or one big multidimensional array:
static int dataSets[2][2][2] = {{{0,1},{2,3}},{{4,5},{6,7}}};
but not a combination of the two unless you clue the compiler in by declaring a special datatype per Jon's suggestion.

Pointers to multi-dimensional arrays can be tricky. A typedef can help:
typedef int (*DataSetType)[2];
DataSetType dataSets[] = { dataSet0, dataSet1 /* and so on*/ };

You could use an NSPointerArray.

Your index array would be an array of pointers to pointers to int.
So the declaration would look like:
int ** dataset[numOfDataSets] = {dataSet0, dataSet1, ...}
Remember that objective-c is a proper superset of ansi-c, and this question in particular is about the c language, really.
Edit: It's important to remember that in C, arrays are essentially just pointers, and two-dimensional arrays are pointers to pointers.
Edit 2: I think act actually I muffed operator precedence. Should be:
int (** dataset)[numOfDataSets] = {dataSet0, dataSet1, ...}

Related

How to use int[] type in Objective-C [duplicate]

I wrote a function containing array as argument,
and call it by passing value of array as follows.
void arraytest(int a[])
{
// changed the array a
a[0] = a[0] + a[1];
a[1] = a[0] - a[1];
a[0] = a[0] - a[1];
}
void main()
{
int arr[] = {1, 2};
printf("%d \t %d", arr[0], arr[1]);
arraytest(arr);
printf("\n After calling fun arr contains: %d\t %d", arr[0], arr[1]);
}
What I found is though I am calling arraytest() function by passing values, the original copy of int arr[] is changed.
Can you please explain why?
When passing an array as a parameter, this
void arraytest(int a[])
means exactly the same as
void arraytest(int *a)
so you are modifying the values in main.
For historical reasons, arrays are not first class citizens and cannot be passed by value.
For passing 2D (or higher multidimensional) arrays instead, see my other answers here:
How to pass a multidimensional [C-style] array to a function in C and C++, and here:
How to pass a multidimensional array to a function in C++ only, via std::vector<std::vector<int>>&
Passing 1D arrays as function parameters in C (and C++)
1. Standard array usage in C with natural type decay (adjustment) from array to ptr
#Bo Persson correctly states in his great answer here:
When passing an array as a parameter, this
void arraytest(int a[])
means exactly the same as
void arraytest(int *a)
Let me add some comments to add clarity to those two code snippets:
// param is array of ints; the arg passed automatically "adjusts" (frequently said
// informally as "decays") from `int []` (array of ints) to `int *`
// (ptr to int)
void arraytest(int a[])
// ptr to int
void arraytest(int *a)
However, let me add also that the above two forms also:
mean exactly the same as
// array of 0 ints; automatically adjusts (decays) from `int [0]`
// (array of zero ints) to `int *` (ptr to int)
void arraytest(int a[0])
which means exactly the same as
// array of 1 int; automatically adjusts (decays) from `int [1]`
// (array of 1 int) to `int *` (ptr to int)
void arraytest(int a[1])
which means exactly the same as
// array of 2 ints; automatically adjusts (decays) from `int [2]`
// (array of 2 ints) to `int *` (ptr to int)
void arraytest(int a[2])
which means exactly the same as
// array of 1000 ints; automatically adjusts (decays) from `int [1000]`
// (array of 1000 ints) to `int *` (ptr to int)
void arraytest(int a[1000])
etc.
In every single one of the array examples above, and as shown in the example calls in the code just below, the input parameter type adjusts (decays) to an int *, and can be called with no warnings and no errors, even with build options -Wall -Wextra -Werror turned on (see my repo here for details on these 3 build options), like this:
int array1[2];
int * array2 = array1;
// works fine because `array1` automatically decays from an array type
// to a pointer type: `int *`
arraytest(array1);
// works fine because `array2` is already an `int *`
arraytest(array2);
As a matter of fact, the "size" value ([0], [1], [2], [1000], etc.) inside the array parameter here is apparently just for aesthetic/self-documentation purposes, and can be any positive integer (size_t type I think) you want!
In practice, however, you should use it to specify the minimum size of the array you expect the function to receive, so that when writing code it's easy for you to track and verify. The MISRA-C-2012 standard (buy/download the 236-pg 2012-version PDF of the standard for £15.00 here) goes so far as to state (emphasis added):
Rule 17.5 The function argument corresponding to a parameter declared to have an array type shall have an appropriate number of elements.
...
If a parameter is declared as an array with a specified size, the corresponding argument in each function call should point into an object that has at least as many elements as the array.
...
The use of an array declarator for a function parameter specifies the function interface more clearly than using a pointer. The minimum number of elements expected by the function is explicitly stated, whereas this is not possible with a pointer.
In other words, they recommend using the explicit size format, even though the C standard technically doesn't enforce it--it at least helps clarify to you as a developer, and to others using the code, what size array the function is expecting you to pass in.
2. Forcing type safety on arrays in C
(Not recommended (correction: sometimes recommended, especially for fixed-size multi-dimensional arrays), but possible. See my brief argument against doing this at the end. Also, for my multi-dimensional-array [ex: 2D array] version of this, see my answer here.)
As #Winger Sendon points out in a comment below my answer, we can force C to treat an array type to be different based on the array size!
First, you must recognize that in my example just above, using the int array1[2]; like this: arraytest(array1); causes array1 to automatically decay into an int *. HOWEVER, if you take the address of array1 instead and call arraytest(&array1), you get completely different behavior! Now, it does NOT decay into an int *! This is because if you take the address of an array then you already have a pointer type, and pointer types do NOT adjust to other pointer types. Only array types adjust to pointer types. So instead, the type of &array1 is int (*)[2], which means "pointer to an array of size 2 of int", or "pointer to an array of size 2 of type int", or said also as "pointer to an array of 2 ints". So, you can FORCE C to check for type safety on an array by passing explicit pointers to arrays, like this:
// `a` is of type `int (*)[2]`, which means "pointer to array of 2 ints";
// since it is already a ptr, it can NOT automatically decay further
// to any other type of ptr
void arraytest(int (*a)[2])
{
// my function here
}
This syntax is hard to read, but similar to that of a function pointer. The online tool, cdecl, tells us that int (*a)[2] means: "declare a as pointer to array 2 of int" (pointer to array of 2 ints). Do NOT confuse this with the version withOUT parenthesis: int * a[2], which means: "declare a as array 2 of pointer to int" (AKA: array of 2 pointers to int, AKA: array of 2 int*s).
Now, this function REQUIRES you to call it with the address operator (&) like this, using as an input parameter a POINTER TO AN ARRAY OF THE CORRECT SIZE!:
int array1[2];
// ok, since the type of `array1` is `int (*)[2]` (ptr to array of
// 2 ints)
arraytest(&array1); // you must use the & operator here to prevent
// `array1` from otherwise automatically decaying
// into `int *`, which is the WRONG input type here!
This, however, will produce a warning:
int array1[2];
// WARNING! Wrong type since the type of `array1` decays to `int *`:
// main.c:32:15: warning: passing argument 1 of ‘arraytest’ from
// incompatible pointer type [-Wincompatible-pointer-types]
// main.c:22:6: note: expected ‘int (*)[2]’ but argument is of type ‘int *’
arraytest(array1); // (missing & operator)
You may test this code here.
To force the C compiler to turn this warning into an error, so that you MUST always call arraytest(&array1); using only an input array of the corrrect size and type (int array1[2]; in this case), add -Werror to your build options. If running the test code above on onlinegdb.com, do this by clicking the gear icon in the top-right and click on "Extra Compiler Flags" to type this option in. Now, this warning:
main.c:34:15: warning: passing argument 1 of ‘arraytest’ from incompatible pointer type [-Wincompatible-pointer-types]
main.c:24:6: note: expected ‘int (*)[2]’ but argument is of type ‘int *’
will turn into this build error:
main.c: In function ‘main’:
main.c:34:15: error: passing argument 1 of ‘arraytest’ from incompatible pointer type [-Werror=incompatible-pointer-types]
arraytest(array1); // warning!
^~~~~~
main.c:24:6: note: expected ‘int (*)[2]’ but argument is of type ‘int *’
void arraytest(int (*a)[2])
^~~~~~~~~
cc1: all warnings being treated as errors
Note that you can also create "type safe" pointers to arrays of a given size, like this:
int array[2]; // variable `array` is of type `int [2]`, or "array of 2 ints"
// `array_p` is a "type safe" ptr to array of size 2 of int; ie: its type
// is `int (*)[2]`, which can also be stated: "ptr to array of 2 ints"
int (*array_p)[2] = &array;
...but I do NOT necessarily recommend this (using these "type safe" arrays in C), as it reminds me a lot of the C++ antics used to force type safety everywhere, at the exceptionally high cost of language syntax complexity, verbosity, and difficulty architecting code, and which I dislike and have ranted about many times before (ex: see "My Thoughts on C++" here).
For additional tests and experimentation, see also the link just below.
References
See links above. Also:
My code experimentation online: https://onlinegdb.com/B1RsrBDFD
See also:
My answer on multi-dimensional arrays (ex: 2D arrays) which expounds upon the above, and uses the "type safety" approach for multi-dimensional arrays where it makes sense: How to pass a multidimensional array to a function in C and C++
If you want to pass a single-dimension array as an argument in a function, you would have to declare a formal parameter in one of following three ways and all three declaration methods produce similar results because each tells the compiler that an integer pointer is going to be received.
int func(int arr[], ...){
.
.
.
}
int func(int arr[SIZE], ...){
.
.
.
}
int func(int* arr, ...){
.
.
.
}
So, you are modifying the original values.
Thanks !!!
Passing a multidimensional array as argument to a function.
Passing an one dim array as argument is more or less trivial.
Let's take a look on more interesting case of passing a 2 dim array.
In C you can't use a pointer to pointer construct (int **) instead of 2 dim array.
Let's make an example:
void assignZeros(int(*arr)[5], const int rows) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < 5; j++) {
*(*(arr + i) + j) = 0;
// or equivalent assignment
arr[i][j] = 0;
}
}
Here I have specified a function that takes as first argument a pointer to an array of 5 integers.
I can pass as argument any 2 dim array that has 5 columns:
int arr1[1][5]
int arr1[2][5]
...
int arr1[20][5]
...
You may come to an idea to define a more general function that can accept any 2 dim array and change the function signature as follows:
void assignZeros(int ** arr, const int rows, const int cols) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
*(*(arr + i) + j) = 0;
}
}
}
This code would compile but you will get a runtime error when trying to assign the values in the same way as in the first function.
So in C a multidimensional arrays are not the same as pointers to pointers ... to pointers. An int(*arr)[5] is a pointer to array of 5 elements,
an int(*arr)[6] is a pointer to array of 6 elements, and they are a pointers to different types!
Well, how to define functions arguments for higher dimensions? Simple, we just follow the pattern!
Here is the same function adjusted to take an array of 3 dimensions:
void assignZeros2(int(*arr)[4][5], const int dim1, const int dim2, const int dim3) {
for (int i = 0; i < dim1; i++) {
for (int j = 0; j < dim2; j++) {
for (int k = 0; k < dim3; k++) {
*(*(*(arr + i) + j) + k) = 0;
// or equivalent assignment
arr[i][j][k] = 0;
}
}
}
}
How you would expect, it can take as argument any 3 dim arrays that have in the second dimensions 4 elements and in the third dimension 5 elements. Anything like this would be OK:
arr[1][4][5]
arr[2][4][5]
...
arr[10][4][5]
...
But we have to specify all dimensions sizes up to the first one.
You are not passing the array as copy. It is only a pointer pointing to the address where the first element of the array is in memory.
You are passing the address of the first element of the array
You are passing the value of the memory location of the first member of the array.
Therefore when you start modifying the array inside the function, you are modifying the original array.
Remember that a[1] is *(a+1).
Arrays in C are converted, in most of the cases, to a pointer to the first element of the array itself. And more in detail arrays passed into functions are always converted into pointers.
Here a quote from K&R2nd:
When an array name is passed to a function, what is passed is the
location of the initial element. Within the called function, this
argument is a local variable, and so an array name parameter is a
pointer, that is, a variable containing an address.
Writing:
void arraytest(int a[])
has the same meaning as writing:
void arraytest(int *a)
So despite you are not writing it explicitly it is as you are passing a pointer and so you are modifying the values in the main.
For more I really suggest reading this.
Moreover, you can find other answers on SO here
In C, except for a few special cases, an array reference always "decays" to a pointer to the first element of the array. Therefore, it isn't possible to pass an array "by value". An array in a function call will be passed to the function as a pointer, which is analogous to passing the array by reference.
EDIT: There are three such special cases where an array does not decay to a pointer to it's first element:
sizeof a is not the same as sizeof (&a[0]).
&a is not the same as &(&a[0]) (and not quite the same as &a[0]).
char b[] = "foo" is not the same as char b[] = &("foo").
Arrays are always passed by reference if you use a[] or *a:
int* printSquares(int a[], int size, int e[]) {
for(int i = 0; i < size; i++) {
e[i] = i * i;
}
return e;
}
int* printSquares(int *a, int size, int e[]) {
for(int i = 0; i < size; i++) {
e[i] = i * i;
}
return e;
}
An array can also be called as a decay pointer.
Usually when we put a variable name in the printf statement the value gets printed in case of an array it decays to the address of the first element, Therefore calling it as a decay pointer.
And we can only pass the decay pointer to a function.
Array as a formal parameter like Mr.Bo said int arr[] or int arr[10] is equivalent to the int *arr;
They will have there own 4 bytes of memory space and storing the decay pointer received.and we do pointer arithmetic on them.

Different Objective-C enums with the same literals

I wish to have two different enums, but they might have the same literal; for example:
typedef enum {ONE,TWO,THREE,FOUR,FIVE,SIX} NumbersEnum;
typedef enum {ONE,TWO,THREE,FIVE,EIGHT} FibonacciEnum;
This will raise a compile error because ONE, TWO, THREE, FIVE are repeated in both enums.
Is there a way to make this work as-is (not changing the literals' names or adding a prefix or suffix)?
Is there any way my code using the literals can look like this: int num = NumbersEnum.SIX; and not like this int num = SIX;?
No. That's part of the C and Objective-C language from the beginning of time. You're not going to change it, and nobody is going to change it for you.
You cannot do this with enums; their members are global and the names must be unique. There is, however, a neat technique you can use to make pseudo-namespaces for constants with structs.
Declare your "namespace" in the appropriate header:
extern const struct _FibonacciNumbers
{
int one;
int two;
int three;
int five;
} FibonacciNumbers;
Then initialize the values in an implementation file:
const struct _FibonacciNumbers FibonacciNumbers = {
.one = 1,
.two = 2,
.three = 3,
.five = 5
};
You now access a constant as, e.g., FibonacciNumbers.one, and other struct types can use the same names since the names are private to each of them.
So that's "No" for your first option, but "Yes" to the second.

how to get the size of the following array

int first[] = {1, 4};
int second[] = {2, 3, 7};
arrayOfCPointers[0] = first;
arrayOfCPointers[1] = second;
NSLog(#"size of %lu", sizeof(arrayOfCPointers[0]) / sizeof(int));
I want to have an array of sub arrays. Each sub array needs to be a different size. But I need to be able to find out the size of each sub array?
The Log keeps returning 1
You need to store the size somewhere. The language does not do so for bare C arrays. All you have is the address of the first element.
I'd write a wrapper class or struct to hold the array and it's metadata (like length).
typedef struct tag_arrayholder
{
int* pArray;
int iLen;
}ArrayHolder;
int first[] = {1, 4};
ArrayHolder holderFirst;
holderFirst.pArray = first;
holderFirst.iArrayLen = sizeof(first) / sizeof(int);
arrayOfCPointers[0] = holderFirst;
NSLog(#"size of %lu", arrayOfCPointers[0].iLen);
Or, like trojanfoe said, store special value marking the last position (exactly the approach zero-terminated string uses)
The "sizeof" instruction could be used to know the amount of bytes used by the array, but it works only with static array, with dynamics one it returns the pointer size. So with static array you could use this formula : sizeof(tab)/sizeof(tab[0]) to know the size of your array because the first part give you the tab size in bytes and the second the size of an element, so the result is your amount of element in your array ! But with a dynamic array the only way is to store the size somewhere or place a "sentinal value" at the end of your array and write a loop which count elements for you !
(Sorry for my English i'm french :/)
The NSLog statement is printing the value 1 because the expression you're using is dividing the size of the first element of the array (which is the size of an int) by the size of an int.
So what you currently have is this:
NSLog(#"size of %lu", sizeof(arrayOfCPointers[0]) / sizeof(int));
If you remove the array brackets, you'll get the value you're looking for:
NSLog(#"size of %lu", sizeof(arrayOfCPointers) / sizeof(int));
As other answers have pointed out, this won't work if you pass the array to another method or function, since all that's passed in that case is an address. The only reason the above works is because the array's definition is in the local scope, so the compiler can use the type information to compute the size.

How to pass a two dimensional array of unknown size as method argument

I'm trying to pass a two-dimensional array, which size can be dynamic, as a method argument.
Within the method I'd like to use the array with the general array syntax.
int item = array[row][column];
To pass the array is not possible, so I thought about to use a pointer pointer.
- (void)doSomethingWithArray:(int **)array columns:(int)nColumns rows:(int)nRows
{
int item = array[n][m];
}
But I get the problem when I try to pass the array as the parameter
int array[numberOfRows][numberOfColumns];
[someObject doSomethingWithArray:array columns:numberOfColumns rows:numberOfRows];
I found a lot of tips & tricks, but somehow nothing really works in the way I would like to use it.
Thanks for help,
Eny
Is objective-c based on C99?
If it is, you can use the "new" syntax that allows you to pass dimension information directly.
#include <stdio.h>
void foo(int rows, int cols, int arr[rows][cols]) {
printf("%d, %d\n", arr[0][0], arr[1][4]);
}
int main(void) {
int arr[2][12] = {{1, 2, 3, 4, 5}, {11, 12, 13, 14, 15}};
foo(2, 12, arr);
}
You can see the code running on ideone.
- (void)doSomethingWithArray:(void *)array columns:(int)nColumns rows:(int)nRows {}
...
[someObject doSomethingWithArray:&array columns:numberOfColumns rows:numberOfRows];

Is the following syntax is correct for an enum?

enum {
ValidationLoginFailed=2000,
ValidationSessionTokenExpired=2001,
ValidationSessionTokenInvalid=2002,
ValidationEmailNotFound=2003
ValidationSucccesMIN=ValidationLoginFailed,
ValidationSucccesMAX=ValidationEmailNotFound,
ValdationValidSuccessCode=9999,
ValdationInvalidCode=10000
};
typedef int ValidationStatusCodes;
please help me out.
In your code, ValidationStatusCodes means int, not your anonymous enum type. So they aren't actually connected in any way.
However, since your enum contains int values, you could say that there's some sort of relation. You can pass the names of the enumerated values and they will be considered of the int or ValidationStatusCodes type.
By the way, Apple does something similar to what you do, except they typedef their collective names to NSInteger or NSUInteger instead of int or uint. See this question for an example.
With all that said, a more common practice is to typedef your custom type name directly to the anonymous enum, like this:
typedef enum {
ValidationLoginFailed = 2000,
ValidationSessionTokenExpired = 2001,
ValidationSessionTokenInvalid = 2002,
ValidationEmailNotFound = 2003
ValidationSuccessMIN = ValidationLoginFailed,
ValidationSuccessMAX = ValidationEmailNotFound,
ValdationValidSuccessCode = 9999,
ValdationInvalidCode = 10000
} ValidationStatusCodes;