Perceived Inefficiencies in Data translation in web Services - wcf

I have been writing web services for about a year now and it seems that the process I use to get data from the Database all the way to display to the user and back again has some inefficiencies.
The purpose of this question is to make sure that I am following best practices and not just adding extra work in.
Here is the path for data from the DB, to the end user and back.
Service gets it from the database into a Data Access Layer (DAL) object.
Service Converts it to a DataContract to send to the client.
Client gets the DataContract and converts it to a client side object
Client displays the object / the user makes changes / objects are added
Client converts the client side object to a DataContact and sends it to the Service
Service recives the DataContract and converts it to a Data Access Layer object.
Service updates the Database with the changes/new objects.
If you were keeping track the object is converted 4 times (DAL->Contract->Client Object->Contract->DAL). That seems like a lot of conversions when your app starts to scale out it's data.
Is this the "Best" way to do this? Am I missing something?
In case it matters, I am using Visual Studio 2008, WCF, LinqToSQL and Windows Mobile 5.0 (NETCF).

You may be missing the issue of what happens if you reduce the number of conversions (that is, if you couple the layers more tightly together).
The service could directly return a DAL object. The problem is that DAL objects are likely to contain data that is about the fact that they are DAL objects, and not about the data they carry. For instance, LINQ to SQL classes derive from base classes that contain LINQ to SQL functionality - this base class data is not required on the client, and should not be sent.
The client could directly use the DAL object sent back from the server. But that requires the client and server use the same platform - .NET, for instance. They would also have to use compatible versions of .NET, so that the client can use the server-side DAL object.
The client could now display the DAL object however it likes, assuming it doesn't need client-side interfaces like INotifyPropertyChanged, The server doesn't need such code to run, but the client might need it for data binding and validation.
Note that each layer contributes its own requirements. By keeping these requirements independent, the code is easier to design and maintain. Yes, you have to do some copying of data, but that's cheap compared to the cost of maintaining code that has to do four different things at the same time.

Related

WCF Business Objects or DataContracts

I have three projects:
WCF Service project (Interface and Implementation)
aspx web project (client) that consumes the WCF Service
class library project that holds my business objects (shared by both WCF project and client)
I have a method in the WCF Service implementation class file that retrieves a generic list of data from SQL (referencing the project that holds the business objects), serialize the data using System.Web.Script.Serialization.JavaScriptSerializer and returns the result as a string.
The web client takes this string and deserializes it back to the appropriate business object (referencing the project that holds the business objects)
This is an intranet app and I want to make sure I am doing this correctly.
My questions are:
Should I be using DataContracts instead of business objects? Not sure when to use DataContracts and when to use the business objects.
If I am using DataContracts, should I not use
System.Web.Script.Serialization.JavaScriptSerializer?
Any clarification would be appreciated.
Of course there is no one answer. I think the question is whether you want to use business objects in the first place, otherwise my fourth point pretty much covers it.
Do use the business objects if they look like the data contracts would, i.e. they are a bunch of public properties and do not contain collections of children/ grandchildren etc.
Don't use the business objects if they contain a bunch of data you don't need. For example populating a grid with hundreds of entities begs for a data contract specific to that grid.
Do use the business objects if they contain validation logic etc that you would otherwise have to duplicate in your web service.
Do use the business objects if you are just going to use the data contracts to fully inflate business objects anyway.
Don't use the business objects if you ever want to consume that service interface from non .net code.
Don't use the business objects if you have to massively configure their serialization.
Don't use the business objects if they need to "know" where they are (web server or app server)
Not your case but: Do use the business objects if you are building a rich client for data entry.
Thats all for now, I'll see if anything more occurs to me. :)

Is shared assembly the only way to create objects from WCF REST service

I am writing an application that is consuming an in-house WCF-based REST service and I'll admit to being a REST newbie. Since I can't use the "Add Service Reference", I don't have ready-made proxy objects representing the return types from the service methods. So far the only way I've been able to work with the service is by sharing the assembly containing the data types exposed by the service.
My problem with this arrangment is that I see only two possibilities:
Implement DTOs (DataContracts) and expose those types from my service. I would still have to share an assembly but this approach would limit the types contained in the assembly to the service contract and DTOs. I don't like to use DTOs just for the sake of using them, though as they add another layer of abstraction and processing time to convert from domain object to DTO and vice versa. Plus, if I want to have business rules, validation, etc. on the client, I'd have to share the domain objects anyways, so is the added complexity necessary.
Support serialization of my domain objects, expose those types and share that assembly. This would allow me to share business and validation logic with the client but it also exposes parts of my domain objects to the client that are meant only for the service app.
Perhaps an example would help the discussion...
My client application will display a list of documents that is obtained from the REST service (a GET operation). The service returns an array of DocumentInfo objects (lightweight, read-only representation of a Document).
When the user selects one of the items, the client retrieves the full Document object from the REST service (GET by id) and displays a data entry form so the user can modify the object. We would want validation rules for a rich user experience.
When the user commits the changes, the Document object is submitted to the REST service (a PUT operation) where it is persisted to the back-end data store.
If the state of the Document allows, the user may "Publish" the Document. In this case, the client POSTs a request to the REST service with the Document.ID value and the service performs the operation by retrieving the server-side Document domain object and calling the Publish method. The Publish method should not be available to the client application.
As I see it, my Document and DocumentInfo objects would have to be in a shared assembly. Doing this makes Document.Publish available to the client. One idea to hide it would be to make the method internal and add an InternalsVisibleTo attribute that allows my service app to call the method and not the client but this seems "smelly."
Am I on the right track or completely missing something?
The classes you use on the server should not be the same classes you use on the client (apart from during the data transfer itself). The best approach is to create a package (assembly/project) containing DTOs, and share these between the server and the client. You did mention that you don't want to create DTO's for the sake of it, but it is best practice. The performance impact of adding extra layers is negligible, and layering actually helps make your application easier to develop and maintain (avoiding situations like yours where the client has access to server code).
I suggest starting with the following packages:
Service: Resides on server only, exposes the service and contains server application logic.
DTO: Resides on both server and client. Contains simple classes which contain data which need to be passed between server and client. Classes have no code apart from properties. These are short lived objects which survive long enough only to transfer data.
Repository: Resides on client only. Calls the server, and turns Model objects into DTO's (and vice versa).
Model: Resides on client only. Contains classes which represent business objects and relationships. Model objects stay in memory throughout the life of the application.
Your client application code should call into Repository to get Model objects (you might also consider looking into MVVM if your not sure how to go about this).
If your service code is sufficiently complex that it needs access to Model classes, you should create a separate Model package (obviously give it a different name) - the only classes which should exist both on server and client are DTO classes.
I thought that I'd post the approach I took while giving credit to both Greg and Jake for helping guide me down the path.
While Jake is correct that deserializing the data on the client can be done with any type as long as it implements the same data contract, enforcing this without WSDL can be a bit tricky. I'm in an environment where other developers will be working with my solution both to support and maintain the existing as well as creating new clients that consume my service. They are used to "Add Service Reference" and going.
Greg's points about using different objects on the client and the server were the most helpful. I was trying to minimize duplicate by sharing my domain layer between the client and the server and that was the root of my confusion. As soon as I separated these into two distinct applications and looked at them in isolation, each with their own use cases, the picture became clearer.
As a result, I am now sharing a Contracts assembly which contains my service contracts so that a client can easily create a channel to the server (using WCF on the client-side) and data contracts representing the DTOs passed between client and service.
On the client, I have ViewModel objects which wrap the Model objects (data contracts) for the UI and use a service agent class to communicate with the service using the service contracts from the shared assembly. So when the user clicks the "Publish" button in the UI, the controller (or command in WPF/SL) calls the Publish method on the service agent passing in the ID of the document to publish. The service agent relays the request to the REST API (Publish operation).
On the server, the REST API is implemented using the same service contracts. In this case, the service works with my domain services, repositories and domain objects to carry out the tasks. So when the Publish service operation is invoked, the service retrieves the Document domain object from the DocumentRepository, calls the Publish method on the object which updates the internal state of the object and then the service passes the updated object to the Update method of the repository to persist the changes.
I am pleased with the outcome as I believe this gives me a more robust and extensible architecture to work with. I can change the ViewModels as needed to support the UI with no concern over poluting the service(s) and, likewise, change the internal implementation of the service operations (domain layer) without affecting the client application(s). All that binds the two are the contracts they share. Pretty clean.
You can serialize your domain objects and then de-serialize them into different types on the client. Both types need to implement the same data contract. All serializable types have at least a default data contract that includes all public read/write properties and fields.

How would I know if I should use Self-Tracking Entities or DTOs/POCOs?

What are some questions I can ask myself about our design to identify if we should use DTOs or Self-Tracking Entities in our application?
Here's some things I know of to take into consideration:
We have a standard n-tier application with a WPF/MVVM client, WCF server, and MS SQL Database.
Users can define their own interface, so the data needed from the WCF service changes based on what interface the user has defined for themselves
Models are used on both the client-side and server-side for validation. We would not be binding directly to the DTO or STE
Some Models contain properties that get lazy-loaded from the WCF service if needed
The Database layer spams multiple servers/databases
There are permission checks on the server-side which affect how the data is returned. For example, some data is either partially or fully masked based on the user's role
Our resources are limited (time, manpower, etc)
So, how can I determine what is right for us? I have never used EF before so I really don't know if STEs are right for us or not.
I've seen people suggest starting with STEs and only implement DTOs if they it becomes a problem, however we currently have DTOs in place and are trying to decide if using STEs would make life easier. We're early enough in the process that switching would not take too long, but I don't want to switch to STEs only to find out it doesn't work for us and have to switch everything back.
If I understand your architecture, I think it is not good for STEs because:
Models are used on both the client-side and server-side for validation. We would not be binding directly to the DTO or STE
The main advantage (and the only advantage) or STEs is their tracking ability but the tracking ability works only if STE is used on both sides:
The client query server for data
The server query EF and receive set of STEs and returns them to the client
The client works with STEs, modifies them and sends them back to the server
The server receives STEs and applies transferred changes to EF => database
In short: There are no additional models on client or server side. To fully use STEs they must be:
Server side model (= no separate model)
Transferred data in WCF (= no DTOs)
Client side model (= no separate model, binding directly to STEs). Otherwise you will be duplicating tracking logic when handling change events on bounded objects and modifying STEs. (The client and the server share the assembly with STEs).
Any other scenario simply means that you don't take advantage of self tracking ability and you don't need them.
What about your other requirements?
Users can define their own interface, so the data needed from the WCF service changes based on what interface the user has defined for them.
This should be probably possible but make sure that each "lazy loaded" part is separate structure - do not build complex model on the client side. I've already seen questions where people had to send whole entity graph back for updates which is not what you always want. Because of that I think you should not connect loaded parts into single entity graph.
There are permission checks on the server-side which affect how the data is returned. For example, some data is either partially or fully masked based on the user's role
I'm not sure how do you want actually achieve this. STEs don't use projections so you must null fields directly in entities. Be aware that you must do this when entity is not in tracking state or your masking will be saved to the database.
The Database layer spams multiple servers/databases
It is something that is not problem of STEs. The server must use a correct EF context to load and save data.
STEs are implementation of change set pattern. If you want to use them you should follow their rules to take full advantage of the pattern. They can save some time if used correctly but this speed up comes with sacrifice of some architectural decisions. As any other technology they are not perfect and sometimes you can find them hard to use (just follow self-tracking-entities tag to see questions). They also have some serious disadvantages but in .NET WPF client you will not meet them.
You can opt STE for given scenario,
All STEs are POCOs, .Net dynamically add one layer to it for change tracking.
Use T4 templates to generate the STEs, it will save your time.
Uses of tools like Automapper will save your time for manually converting WCF returned data contract to Entity or DTO
Pros for STE -
You don't have to manually track the changes.
In case of WCF you just have to say applydbchanges and it will automatically refresh the entity
Cons for STE -
STEs are heavier than POCO, because of dynamic tracking
Pros for POCO -
Light weight
Can be easily bridged with EF or nH
Cons for POCO -
Need to manually track the changes with EF.(painful)
POCO are dynamic proxied and don't play nice on the wire see this MSDN article for the workaround though. So they can be made to but IMO you're better off going STE as I believe they align nicely with WPF/MVVM development.

OData WCF Data Service with NHibernate and corporate business logic

Let me first apologise for the length of the entire topic. It will be fairly long, but I wish to be sure that the message comes over clearly without errors.
Here at the company, we have an existing ASP.NET WebApplication. Written in C# ASP.NET on the .NET Framework 3.5 SP1. Some time ago an initial API was developed for this web application using WCF and SOAP to allow external parties to communicate with the application without relying on the browsers.
This API survived for some time, but eventually the request came to create a new API that was RESTfull and relying on new technologies. I was given this assignment, and I created the initial API using the Microsoft MVC 2 Framework, running inside our ASP.NET WebApplication. This took initially quiet some time to get it properly running, but at the moment we're able to make REST calls on the application to receive XML detailing our resources.
I've attended a Microsoft WebCamp, and I was immediatly sold by the OData concept. It was very similar then what we are doing, but this was a protocol supported by more players instead of our own implementation. Currently I'm working on a PoC (Proof of Concept) to recreate the API that I developed using the OData protocol and the WCF DataService technology.
After searching the Internet for getting NHibernate 2 to work with the Data Services, I succeeded in creating a ReadOnly version of the API that allows us to read out the entities from the internal business layer by mapping the incoming query requests to our Business layer.
However, we wish to have a functional API that also allows the creation of entities using the OData protocol. So now i'm a bit stuck on how to proceed. I've been reading the following article : http://weblogs.asp.net/cibrax/default.aspx?PageIndex=3
The above articly nicely explains on how to map a custom DataService to the NHibernate layer. I've used this as a base to continue on, but I have the "problem" that I don't want to map my requests directly to the database using NHibernate, but I wish to map them to our Business layer (a seperate DLL) that performs a large batch of checks, constraints and updates based upon accessrights, privledges and triggers.
So what I want to ask, I for example create my own NhibernateContext class as in the above articly, but instead rely on our Business Layer instead of NHibernate sessions, could it work? I'd probably have to rely on reflection alot to figure out the type of object I'm working with at runtime and call the correct business classes to perform the updates and deletes.
To demonstrate with a smal ascii picture:
*-----------------*
* Database *
*-----------------*
*------------------------*
* DAL(Data Access Layer) *
*------------------------*
*------------------------*
* BUL (Bussiness Layer) *
*------------------------*
*---------------* *-------------------*
* My OData stuff* * Internal API *
*---------------* *-------------------*
*------------------*
* Web Application *
*------------------*
So, would this work, or would the performance make it useless?
Or am I just missing the ball here?
The idea is that I wish to reuse whatever logic is stored in the BUL & DAL layer from the OData WCF DataService.
I was thinking about creating new classes that inherit from the EntityModel classes in the Data.Services namespace and create a new DataService object that marks all calls to the BUL & DAL & API layers. I'm however not sure where/who to intercept the requests for creating and deleting resources.
I hope it's a bit clear what I'm trying to explain, and I hope someone can help me on this.
The devil is in the details, but it sounds like the design you're proposing should work.
The DataService class is where you get to define the access rights applicable to everyone, configuration settings, and custom operations. In this scenario, I think you will be focusing more on the data context instead (the 'T' in DataService).
For the context, there are really two interesing paths: reads and writes. Reads happen through the IQueryable entry points. Writing a LINQ provider is a good chunk of work, but NHibernate already supports this, although it would return what I imagine we're calling DAL entities. You can use query interceptors to do access checks here if you can express those in terms that the database would understand.
The update path is from what I understand where you are trying to run more business logic (you mentioned validation, extra updates, etc). To do this, you'll want to focus on the IUpdatable implementation (IDataServiceUpdateProvider if you're using the latest version). Here you can use whichever objects you want - they could be DAL objects or business objects. You can do everything in the DAL and then run validation on SaveChanges(), or do everything on business objects if they validate as they go.
There are two places where you might 'jump' from one kind of objects to another. One is in the GetResource() API, where you get an IQueryable, presumably in term of DAL entities. The other is in ResolveResource(), where the runtime is asking for an object to serialize, just like it would get from an IQueryable, so it's presumably also a DAL entity.
Hope this helps - doing uniform access over non-uniform APIs can be hard, but often well worth it!

Converting serialized WCF objects back to native objects

I miss the .Net remoting days when I could just send an object over the wire and it would work on both sides of the middle layer without much work. Here's why:
I've been given an assignment. I'm building a Logic/Data Abstraction layer (stupid PCI Compliance) so that we can move our database servers off of the corporate network into a protected network. I did a project like this once under .Net 2.0 with remoting. I built the object on the middleware layer and sent that object to the client and the client had my .Net object to work with. But WCF requires serialization to be able to send stuff up and down the pipe and serialization takes away from my fancy methods that do incredible things with the fields I have in place.
I've come up with two different strategies to get around this: (1) Move the methods from the class itself to a static utility class and (2) "Deserialize" the data on the client side and rebuild the native object with data from the serialized object.
nativeObject.Name = serializedObject.Name;
The flaw of the second method is that I have to re-serialize the object before I can send it back to the middleware layer.
serializedObject.Name = nativeObject.Name;
Both methods work but it is making writing objects take much longer than it should because of the whole serialization mess that the middle layer is causing. I would go back to .Net Remoting, but the architect says he wants this Abstraction Layer done in WCF because (my words, not his) it's new and sexy.
So how does one go about working with .Net native objects on both sides of a WCF connection... without writing 1,000 lines of glue code.
You can generate a proxy and tell it to use a specific set of classes instead of creating new ones. I belive this is done using the /r parameter of svutil.exe. If your using the IDE (VS2008), you can do this when adding a service reference click advanced, and make sure Reuse Types in Assemblies is selected (Which I think is the default).