If I create a String with [NSString StringWithFormat], do I have to [retain] it?
My understanding is that convenience methods add the objects to autorelease pool. If that is the case, shouldn't we retain the object so that it doesn't get drained with pool at the end of the event loop?
If the string should persist beyond the current function, then yes, the object that needs it should retain it. Here's one of those places where the English phrasing seems trivial but is actually concealing a key concept. Rather than saying "do I have to retain it?" or (as I originally wrote) "if you want the string to persist," talk in terms of an object retaining the string. The difference is the latter expresses the concept of ownership (note: the Apple documentation uses "you" when talking of ownership, but it's a third-person neuter "you" rather than a second-person "you"). Of course, if you're storing the string in a property, then retaining (or copying) is handled for you. Unless you need to target older versions of OS X (10.4 and earlier), you should generally be using properties.
The standard collections own the objects they contain, and thus retain them. When an element is removed from a collection, the collection releases the element (note: they don't autorelease, so if the object has no other owners, the object will be destroyed). Read more about this topic in "Validity of Shared Objects". Apple's memory management documentation should tell you everything you need to know.
Related
When they are being nil'd out because the last strong reference is gone, can you have a problem if that occurs on another thread? And if so, does using atomic correct for that? Since I believe Swift doesn't have atomics, what is required for a thread-safe weak property there?
weak is part of ARC, and is promised to be atomic by Clang in the way you're describing. See particularly section 4.2 Semantics in the Automatic Reference Counting documentation for Clang.
Of specific interest for this are these sections (emphasis added):
Reading
For __weak objects, the current pointee is retained and then released at the end of the current full-expression. This must execute atomically with respect to assignments and to the final release of the pointee.
Assignment
For __weak objects, the lvalue is updated to point to the new pointee, unless the new pointee is an object currently undergoing deallocation, in which case the lvalue is updated to a null pointer. This must execute atomically with respect to other assignments to the object, to reads from the object, and to the final release of the new pointee.
Note that many other operations are not atomic, in particular strong assignments (for example, assigning a strong property on two different threads). But the retain counting itself is thread safe, which is really the piece you're worried about here. You are free to retain and release objects on any thread, and the retain count at the end will be correct, including "implicit" releases due to weak assignment. It's all the direct result of the following:
objc_retain is defined to be "exactly as if the object had been sent the retain message."
"Object allocation and retain count functions" are explicitly thread-safe.
The upshot of all of this is that, unlike most parts of Cocoa, reference counting is almost always going to be safely handled across threads.
Almost nothing in Swift is intrinsically thread safe — not references, not weak references, not arrays, not strings, nor any other mutable value.
If you want write/read or write/write access to anything from two threads, you must use locks to ensure safety.
https://medium.com/#mohit.bhalla/thread-safety-in-ios-swift-7b75df1d2ba6
This link should help!
I'm trying to learn/understand what happens and why when working with or creating various objects. (Hopefully to LEARN from the docs.)
I'm reading "Programming in Objective-C 2.0" (2nd edition, by Steven Kochan). On page 408, in the first paragraph is a discussion of retain counts:
Note that its reference count then goes to 2. The addObject: method does this automatically; if you check your documentation for the addObject: method, you will see this fact described there.
So I read the addObject: docs:
Inserts a given object at the end of the array.
There, the description is missing, while other items, like arrayByAddingObject:, state it:
Returns a new array that is a copy of the receiving array with a given object added to the end.
Where in the reference does it indicate that addObject: increases the retain count? Given the presence of ARC, I should still understand what these methods are doing to avoid bugs and issues. What does ARC bring to this? (Going to read that again...)
Great question, I'm glad to see someone actually reading the docs and trying to understand them!
Since you are looking for how to research answers using Apple's documentation more so than the actual answer itself, here is how I found the answer:
First I look at the class reference for addObject: which is a method of NSMutableArray and there is no mention of memory management.
Then I look at the Overview section at the top... Hmmm, still no luck.
Since the behavior might be inherited from a parent class, I look at the Inherits from section at the top of the class reference and see that NSArray is the most immediate parent. Let's check there:
Under the Overview There is one small section about retain's:
Special Considerations
In most cases your custom NSArray class should conform to Cocoa’s
object-ownership conventions. Thus you must send retain to each object
that you add to your collection and release to each object that you
remove from the collection. Of course, if the reason for subclassing
NSArray is to implement object-retention behavior different from the
norm (for example, a non-retaining array), then you can ignore this
requirement.
Okay, I'm still not happy... Where next? The parent class of NSArray is NSObject and I know that it won't be covered there in this case (from experience) so I won't bother checking that. (If the parent was another class or something that might be covered by NSObject, I would keep moving up the tree until I found something.)
The Companion Guides usually contains a lot of good information for these types of classes. Let's try the first one, Collections Programming Topics.
The first section (after Overview) is Accessing Indexes and Easily Enumerating Elements: Arrays. Sounds promising! Click on Relevant Chapters: “Arrays: Ordered Collections”
There it is under Array Fundamentals along with a link to even more information:
And when you add an object to an NSMutableArray object, the object
isn’t copied, (unless you pass YES as the argument to
initWithArray:copyItems:). Rather, an object is added directly to an
array. In a managed memory environment, an object receives a retain
message when it’s added; in a garbage collected environment, it is
strongly referenced. When an array is deallocated in a managed memory
environment, each element is sent a release message. For more
information on copying and memory management, see “Copying
Collections.”
The book must be referring to out of date documentation because you are correct it doesn't mention anything about the retain count. It does in fact retain the object though. The way you need to think of it is not in terms of retain counts (which are useless) but rather ownership. Especially so when using ARC.
When you add an object to an NSMutableArray, it is taking ownership of that object (in ARC terminology it has a strong reference to it).
"What does ARC bring to this?"
ARC does nothing different. All ARC does (besides some optimization) is add the same release, retain, and autorelease statements that you would add yourself without using ARC. All you need to care about is that once you add an object to the array, it will live at least as long as the array.
And the arrayByAddingObject: method creates a new NSArray (or NSMutableArray) containing the object you're passing, and keeps a strong reference to the passed object. The actual array object that it creates has no references yet unless you assign it to either an ivar, property, or local variable. What you assign it to determines it's lifespan.
Basically even without ARC, it's best to think of object life-cycles in terms of ownership, ARC just formalizes that. So because of that, when using the frameworks, it doesn't matter when retains happen or don't happen, you are only responsible for your objects until you pass ownership to another object and you can trust that the framework will keep the object alive as long as it needs it.
Now of course you have to intuit what constitutes ownership. For instance delegate properties are often assign, or in ARC unsafe_unretained or weak, to prevent circular retains cycles (where two objects each retain each other), though are sometimes retained/strong so you need to look into those on a case by case basis.
And also in cases like key value observing and NSNotification observing the object you are observing does not retain the observer.
But those are really exceptions to the rule. Generally you can assume a strong reference.
Regarding this sentence above: "The actual array object that it creates has no references yet unless you assign it to either an ivar, property, or local variable. What you assign it to determines it's lifespan." I'll try to explain:
When you run this piece of code: [someArray arrayByAddingObject:someObject]; you've instantiated a new NSArray or NSMutableArray object (depending on which object type someArray is) but you haven't actually assigned it to any reference. That means that if you're using ARC, it may be immediately released afterwards, or if not using ARC, it will be released when it's autoreleasepool is drained (probably on the next iteration of that thread's runloop).
Now if instead you did this: NSArray *someOtherArray = [someArray arrayByAddingObject:someObject]; you now have a reference to the newly created array, called someOtherArray. In this case, this is a local variable who's scope is only within whichever set of { } it resides (so it could be inside an if statement, a loop, or a method. Now if you do nothing else with it, it will die sometime after it's scope ends (it isn't guaranteed to die right away, but that isn't important, you just can't assume it lives longer).
Now if in your class you have an iVar (instance variable) declared in the header like NSArray *someOtherArray; (which is strong by default in ARC) and you run someOtherArray = [someArray arrayByAddingObject:someObject]; somewhere in your class, the object will live until you either remove the reference (someOtherArray = nil), you overwrite the reference (someOtherArray = someThirdArray), or the class is deallocated. If you were not using ARC, you would have to make sure to retain that to achieve the same effect (someOtherArray = [[someArray arrayByAddingObject:someObject] retain]; which is essentially what ARC is doing behind the scenes).
Or you may have a property declared instead like #property (nonatomic, strong) NSArray *someOtherArray in which self.someOtherArray = [someArray arrayByAddingObject:someObject]; would achieve the same effect but would use the proprety accessor (setSomeOtherArray:) or you could still use someOtherArray = [someArray arrayByAddingObject:someObject]; to set the iVar directly (assuming you #synthesized it).
Or assuming non-ARC, you might have declared the property like #property (nonatomic, retain) NSArray *someOtherArray in which self.someOtherArray = [someArray arrayByAddingObject:someObject]; would behave exactly as ARC would, but when setting the iVar directly you would still need to add that retain manually.
I hope that clears things up a bit, please let me know if there's anything I glossed over or left out.
As you mentioned in your comment, the key here is intuitively knowing when an object would be considered owned by another one or not. Luckily, the Cocoa frameworks follow a pretty strict set of conventions that allow you to make safe assumptions:
When setting an NSString property of a framework object (say the text property of a UILabel for example) it is always copied (if anyone knows of a counter-example, please comment or edit). So you don't have to worry about your string once you pass it. Strings are copied to prevent a mutable string from being changed after it's passed.
When setting any other property other than delegate, it's (almost?) always retained (or strong reference in ARC)
When setting delegate properties, it's (almost?) always an assign (or weak reference) to prevent circular retain cycles. (For instance, object a has a property b that is strong referenced and b has a strong referenced delegate property. You set a as the delegate for b. Now a and b are both strongly referencing each other, and neither object will ever reach a retain count of 0 and will never reach it's dealloc method to dealloc the other object. NSURLConnection is a counter-example that does strongly reference it's delegate, because it's delegate is set via a method -- see that convention below -- and it's convention to nil out or release an NSURLConnection after it completes rather than in dealloc, which will remove the circular retain)
When adding to an array or dictionary, it's always retained (or strong reference).
When calling a method and passing block(s), they are always copied to move them from the stack (where they are initially created for performance purposes) into the heap.
Methods that take in object parameters and don't return a result immediately are (always? I can't think of any that don't) either copying or retaining (strong referencing) the parameters that you pass to ensure that the method can do what it needs to with them. For instance, NSURLConnection even retains it's delegate because it's passed in via a method, whereas when setting the delegate property of other objects will not retain, as that is the convention.
It's suggested that you follow these same conventions in your own classes as well for consistency.
Also, don't forget that the headers of all classes are available to you, so you can easily see whether a property is retain or assign (or strong or weak). You can't check what methods do with their parameters, but there's no need because of the convention that parameters are owned by the receiver.
In general, you should look in the "most global" spot for information about anything in the Cocoa APIs. Since memory management is pervasive across the system APIs and the APIs are consistent in their implementation of the Cocoa memory management policy, you simply need to read and understand the Cocoa memory management guide.
Once understood, you can safely assume that all system APIs implement to that memory management policy unless explicitly documented otherwise.
Thus, for NSMutableArray's addObject: method, it would have to retain the object added to the array or else it would be in violation of that standard policy.
You'll see this throughout the documentation. This prevents every method's documentation from being a page or more long and it makes it obvious when the rare method or class implements something that is, for whatever reason (sometimes not so good), an exception to the rule.
In the "Basic Memory Management Rules" section of the memory management guide:
You can take ownership of an object using retain.
A received object is normally guaranteed to remain valid within the
method it was received in, and that method may also safely return the
object to its invoker. You use retain in two situations: (1) In the
implementation of an accessor method or an init method, to take
ownership of an object you want to store as a property value; and (2)
To prevent an object from being invalidated as a side-effect of some
other operation (as explained in “Avoid Causing Deallocation of
Objects You’re Using”).
(2) is the key; an NS{Mutable}Array must retain any added object(s) exactly because it needs to prevent the added object(s) from being invalidated due to some side-effect. To not do so would be divergent from the above rule and, thus, would be explicitly documented.
As is common knowledge, calls to alloc/copy/retain in Objective-C imply ownership and need to be balanced by a call to autorelease/release. How do you succinctly describe where this should happen? The word "succinct" is key. I can usually use intuition to guide me, but would like an explicit principle in case intuition fails and that can be use in discussions.
Properties simplify the matter (the rule is auto-/release happens in -dealloc and setters), but sometimes properties aren't a viable option (e.g. not everyone uses ObjC 2.0).
Sometimes the release should be in the same block. Other times the alloc/copy/retain happens in one method, which has a corresponding method where the release should occur (e.g. -init and -dealloc). It's this pairing of methods (where a method may be paired with itself) that seems to be key, but how can that be put into words? Also, what cases does the method-pairing notion miss? It doesn't seem to cover where you release properties, as setters are self-paired and -dealloc releases objects that aren't alloc/copy/retained in -init.
It feels like the object model is involved with my difficulty. There doesn't seem to be an element of the model that I can attach retain/release pairing to. Methods transform objects from valid state to valid state and send messages to other objects. The only natural pairings I see are object creation/destruction and method enter/exit.
Background:
This question was inspired by: "NSMutableDictionary does not get added into NSMutableArray". The asker of that question was releasing objects, but in such a way that might cause memory leaks. The alloc/copy/retain calls were generally balanced by releases, but in such a way that could cause memory leaks. The class was a delegate; some members were created in a delegate method (-parser:didStartElement:...) and released in -dealloc rather than in the corresponding (-parser:didEndElement:...) method. In this instance, properties seemed a good solution, but the question still remained of how to handle releasing when properties weren't involved.
Properties simplify the matter (the rule is auto-/release happens in -dealloc and setters), but sometimes properties aren't a viable option (e.g. not everyone uses ObjC 2.0).
This is a misunderstanding of the history of properties. While properties are new, accessors have always been a key part of ObjC. Properties just made it easier to write accessors. If you always use accessors, and you should, than most of these questions go away.
Before we had properties, we used Xcode's built-in accessor-writer (in the Script>Code menu), or with useful tools like Accessorizer to simplify the job (Accessorizer still simplifies property code). Or we just typed a lot of getters and setters by hand.
The question isn't where it should happen, it's when.
Release or autorelease an object if you have created it with +alloc, +new or -copy, or if you have sent it a -retain message.
Send -release when you don't care if the object continues to exist. Send -autorelease if you want to return it from the method you're in, but you don't care what happens to it after that.
I wouldn't say that dealloc is where you would call autorelease. And unless your object, whatever it may be, is linked to the life of a class, it doesn't necessarily need to be kept around for a retain in dealloc.
Here are my rules of thumb. You may do things in other ways.
I use release if the life of the
object I am using is limited to the
routine I am in now. Thus the object
gets created and released in that
routine. This is also the preferred
way if I am creating a lot of objects
in a routine, such as in a loop, and
I might want to release each object
before the next one is created in the
loop.
If the object I created in a method
needs to be passed back to the
caller, but I assume that the use of
the object will be transient and
limited to this run of the runloop, I
use autorelease. Here, I am trying to mimic many of Apple's convenience routines. (Want a quick string to use for a short period? Here you go, don't worry about owning it and it will get disposed appropriately.)
If I believe the object is to be kept
on a semi-permanent basis (like
longer than this run of the runloop),
I use create/new/copy in my method
name so the caller knows that they
are the owner of the object and will
have to release the object.
Any objects that are created by a
class and kept as a property with
retain (whether through the property
declaration or not), I release those
in dealloc (or in viewDidUnload as
appropriate).
Try not to let all this memory management overwhelm you. It is a lot easier than it sounds, and looking at a bunch of Apple's samples, and writing your own (and suffering bugs) will make you understand it better.
Are there any good rules to learn when I should use retain, and when assign?
Assign is for primitive values like BOOL, NSInteger or double. For objects use retain or copy, depending on if you want to keep a reference to the original object or make a copy of it.
The only common exception is weak references, where you want to keep a pointer to an object but can't retain it because of reference cycles. An example of this is the delegate pattern, where an object (for example a table view) keeps a pointer to its delegate. Since the delegate object retains the table view, having the table view retain the delegate would mean neither one will ever be released. A weak reference is used in this case instead. In this situation you would use assign when you create your property.
I would think that when working with objects you would almost always use retain instead of assign and when working with primitive types, structs, etc, you would use assign (since you can't retain non-objects). That's because you want the object with the property deciding when it is done with the object, not something else. Apple's Memory Management Guide states this:
There are times when you don’t want a
received object to be disposed of; for
example, you may need to cache the
object in an instance variable. In
this case, only you know when the
object is no longer needed, so you
need the power to ensure that the
object is not disposed of while you
are still using it. You do this with a
retain message, which stays the effect
of a pending autorelease (or preempts
a later release or autorelease
message). By retaining an object you
ensure that it won’t be deallocated
until you are done with it.
For discussion around using copy vs retain, see this SO question.
I know this was an old question, but I found these guidelines from the uber guru Matt Gallagher, super useful: http://cocoawithlove.com/2009/07/rules-to-avoid-retain-cycles.html. In my case, I had a "retain hell" of my own making for having a hard reference to a parent object.
If you intend to keep the object and use it, use retain. Otherwise, it may be released and you'll end up with errors with your code.
Plenty of Objective-C classes return objects. Statements like [[instanceOfNSWhatever objectForKey:aKey] stringValue], for instance, appear all over my (and hopefully everyone else's code).
How am I supposed to memory manage these "intermediate" objects?
Were they just created or did they always exist?
Can I retain them, and if I release the object that created them, will they be released as well?
Are they autoreleased?
What if I run [instanceOfNSWhatever stringValue] a million times in a loop? Can I dispose of all those NSStrings as needed?
I'm still learning ObjC, and while I've been good at balancing my retain counts overall, I'm definitely lacking some understanding about how these methods work. Can anyone fill me in?
You've probably already read this section of Apple's docs about memory management, but I'll point you to the section about the Object Ownership Policy just in case. You are only responsible for managing the memory of objects you "own". To quote the docs:
You own any object you create.
You "create" an object using a method whose name begins with “alloc” or “new” or contains “copy” (for example, alloc, newObject, or mutableCopy).
If you own an object, you are responsible for relinquishing ownership when you have finished with it. [ie: release]
If you do not own an object, you must not release it.
The "Simple Examples" section of those docs provide good elaboration, but to put the points above in the context of your specific questions:
How am I supposed to memory manage these "intermediate" objects?
The good news is: you don't. Ignore the the memory management aspect of the "intermediate" objects in your example.
Were they just created or did they always exist?
They may have always existed, or they may have just been created. The beauty of objective-c is that you, as a consumer of those objects, don't have to care.
Can I retain them, and if I release the object that created them, will they be released as well?
You don't need to retain them if you're just passing them on to some other function, or using them as intermediate values yourself in your own calculations within the function. Say, for example, that you're returning the stringValue from your example function to someone else. There's no point in retaining it just to return it.
If you DO happen to retain it, then yes, you are responsible for issuing a corresponding release message as some point. You might, for example, retain the stringValue from your example if you want to hold on to that value as a property in your own instance. Objective-C uses reference counting. If you need that object to stick around for a long time, you must retain it so that someone else's release message doesn't cause it to vanish if the retain count falls to 0.
Are they autoreleased?
Depends. Let's say you ask for a string from instanceOfNSWhatever. If instanceOfNSWhatever has to create that string just special for you (in order to service your request), but doesn't otherwise care about that string, then yes... instanceOfNSWhatever probably put that string into the autorelease pool. If the string was already a property of instanceOfNSWhatever and it was just sending it to you in response to your request, then no, it probably wasn't autoreleased.
Again, the beauty is: you don't know and don't need to care. Since instanceOfNSWhatever created the string, it is responsible for managing it. You can ignore the memory management unless you add to the string by sending it a retain message.
What if I run [instanceOfNSWhatever stringValue] a million times in a loop? Can I dispose of all those NSStrings as needed?
No need. Again... stringValue isn't yours to manage because you didn't create it. As a technical note, if instanceOfNSWhatever really did have to create 1 million copies of stringValue to service your 1 million calls, it probably put them all in an autorelease pool, which would be drained at the end of the current cocoa event loop. Fortunately, unless you send each of those stringValue objects a retain message, you can gleefully ignore the memory management question here.
You basically manage all your memory according to the Memory Management Programming Guide for Cocoa. In short, however, you basically only need to worry about objects that you "own". You own an object if you create it (in Cocoa, you create an object by specifically allocating it using alloc or copying it using copy or one of their derivatives). If you own an object, you are responsible for releasing it when you are finished with it.
Any other object is, therefore, not owned by you. If you need to use such an object for any extended period (for example, outside the scope in which you received it), you need to specifically take ownership of the object by either sending it a retain message or copying it.
To answer your last question, if you are creating a lot of temporary objects in a loop or some other way, you can create your own autorelease pools. See the documentation for NSAutoreleasePool for more information about using them. Please note, however, that you should really only do this after you've profiled your application and found that it is using too much memory and would benefit from this kind of optimization.
Finally, if you are creating and releasing a lot of heavy objects and don't want to rely on autorelease pools, you can specifically allocate and initialize them and then make sure to release them on your own as soon as you're finished with them. Most objects that have convenience creators have similar initializers for creating the object specifically.
When working on the iPhone/iPod Touch, the autorelease objects are released when your application exits. This may be what you don't want. Especially when working with images or large chunks of data. To insure large pools of memory that are tagged autorelease get released sooner, create local autorelease pools. Like this:
NSAutoreleasePool *localPool = [[NSAutoreleasePool alloc] init];
-- do something that creates large autorelease memory blocks --
[localPool drain];
If you don't do this, you will find your application exiting unexpectedly.
I'll tell you a simple rules I wish I'd known when I first started Objective-C :)
If an method contains the words "alloc" or "copy" then you must [release] the object when finished.
If a method does not contain these words, you must [retain] it for it to remain valid outside of your function.
If you call [retain] you must later call [release] when finished.
This covers practically all you need to know about the basics of memory management.
ObjC makes heavy use of what are known as "auto release" pools. Objects returned from non alloc/copy functions are placed into these pools and automatically freed after your function exists.
That is why you do not need to release the results of something like [obj stringValue].