How do I work out the cost benefit of optimisation? - optimization

I want to figure out how much money I'd save if I optimise some part of my web app. If I save 100 cpu milliseconds over 50K calls to the app, how much electricity is that not using in a day? How about over a year?
I've tried to find some figures thru google, but my googling mojo is failing me at present.

You can't calculate something that specific. You can only conduct an experiment and see what happens.
But honestly I would rather spend time refactoring code for better maintainability and adding new features the customers will like and pay for, so that I won't have to think about electricity.

When "optimizing" it is always important to focus on what you want to "optimize" - in this case, your electricity bill. I would not even bother looking at changing code in an attempt to affect your electricity bill. I would look at the computer's power supply, cooling fans, heat sink, etc. and optimize those things for energy efficiency (buy new, more efficient components). More than likely it will cost less than several hours of a software engineer "optimizing" code for energy efficiency.

Related

What statistics concepts are useful for profiling?

I've been meaning to do a little bit of brushing up on my knowledge of statistics. One area where it seems like statistics would be helpful is in profiling code. I say this because it seems like profiling almost always involves me trying to pull some information from a large amount of data.
Are there any subjects in statistics that I could brush up on to get a better understanding of profiler output? Bonus points if you can point me to a book or other resource that will help me understand these subjects better.
I'm not sure books on statistics are that useful when it comes to profiling. Running a profiler should give you a list of functions and the percentage of time spent in each. You then look at the one that took the most percentage wise and see if you can optimise it in any way. Repeat until your code is fast enough. Not much scope for standard deviation or chi squared there, I feel.
All I know about profiling is what I just read in Wikipedia :-) but I do know a fair bit about statistics. The profiling article mentioned sampling and statistical analysis of sampled data. Clearly statistical analysis will be able to use those samples to develop some statistical statements on performance. Let's say you have some measure of performance, m, and you sample that measure 1000 times. Let's also say you know something about the underlying processes that created that value of m. For instance, if m is the SUM of a bunch of random variates, the distribution of m is probably normal. If m is the PRODUCT of a bunch of random variates, the distribution is probably lognormal. And so on...
If you don't know the underlying distribution and you want to make some statement about comparing performance, you may need what are called non-parametric statistics.
Overall, I'd suggest any standard text on statistical inference (DeGroot), a text that covers different probability distributions and where they're applicable (Hastings & Peacock), and a book on non-parametric statistics (Conover). Hope this helps.
Statistics is fun and interesting, but for performance tuning, you don't need it. Here's an explanation why, but a simple analogy might give the idea.
A performance problem is like an object (which may actually be multiple connected objects) buried under an acre of snow, and you are trying to find it by probing randomly with a stick. If your stick hits it a couple of times, you've found it - it's exact size is not so important. (If you really want a better estimate of how big it is, take more probes, but that won't change its size.) The number of times you have to probe the snow before you find it depends on how much of the area of the snow it is under.
Once you find it, you can pull it out. Now there is less snow, but there might be more objects under the snow that remains. So with more probing, you can find and remove those as well. In this way, you can keep going until you can't find anything more that you can remove.
In software, the snow is time, and probing is taking random-time samples of the call stack. In this way, it is possible to find and remove multiple problems, resulting in large speedup factors.
And statistics has nothing to do with it.
Zed Shaw, as usual, has some thoughts on the subject of statistics and programming, but he puts them much more eloquently than I could.
I think that the most important statistical concept to understand in this context is Amdahl's law. Although commonly referred to in contexts of parallelization, Amdahl's law has a more general interpretation. Here's an excerpt from the Wikipedia page:
More technically, the law is concerned
with the speedup achievable from an
improvement to a computation that
affects a proportion P of that
computation where the improvement has
a speedup of S. (For example, if an
improvement can speed up 30% of the
computation, P will be 0.3; if the
improvement makes the portion affected
twice as fast, S will be 2.) Amdahl's
law states that the overall speedup of
applying the improvement will be
I think one concept related to both statistics and profiling (your original question) that is very useful and used by some (you see the technique advised from time to time) is while doing "micro profiling": a lot of programmers will rally and yell "you can't micro profile, micro profiling simply doesn't work, too many things can influence your computation".
Yet simply run n times your profiling, and keep only x% of your observations, the ones around the median, because the median is a "robust statistic" (contrarily to the mean) that is not influenced by outliers (outliers being precisely the value you want to not take into account when doing such profiling).
This is definitely a very useful statistician technique for programmers who want to micro-profile their code.
If you apply the MVC programming method with PHP this would be what you need to profile:
Application:
Controller Setup time
Model Setup time
View Setup time
Database
Query - Time
Cookies
Name - Value
Sessions
Name - Value

Profiling a VxWorks system

We've got a fairly large application running on VxWorks 5.5.1 that's been developed and modified for around 10 years now. We have some simple home-grown tools to show that we are not using too much memory or too much processor, but we don't have a good feel for how much headroom we actually have. It's starting to make it difficult to do estimates for future enhancements.
Does anybody have any suggestions on how to profile such a system? We've never had much luck getting the Wind River tools to work.
For bonus points: the other complication is that our system has very different behaviors at different times; during start-up it does a lot of stuff, then it sits relatively idle except for brief bursts of activity. If there is a profiler with some programmatic way to have to record state information, I think that'd be very useful too.
FWIW, this is compiled with GCC and written entirely in C.
I've done a lot of performance tuning of various kinds of software, including embedded applications. I won't discuss memory profiling - I think that is a different issue.
I can only guess where the "well-known" idea originated that to find performance problems you need to measure performance of various parts. That is a top-down approach, similar to the way governments try to control budget waste, by subdividing. IMHO, it doesn't work very well.
Measurement is OK for seeing if what you did made a difference, but it is poor at telling you what to fix.
What is good at telling you what to fix is a bottom-up approach, in which you examine a representative sample of microscopic units of what is being spent, and finding out the full explanation of why each one is being spent. This works for a simple statistical reason. If there is a reason why some percent (for example 40%) of samples can be saved, on average 40% of samples will show it, and it doesn't require a huge number of samples. It does require that you examine each sample carefully, and not just sort of aggregate them into bigger bunches.
As a historical example, this is what Harry Truman did at the outbreak of the U.S. involvement in WW II. There was terrific waste in the defense industry. He just got in his car, drove out to the factories, and interviewed the people standing around. Then he went back to the U.S. Senate, explained what the problems were exactly, and got them fixed.
Maybe this is more of an answer than you wanted. Specifically, this is the method I use, and this is a blow-by-blow example of it.
ADDED: I guess the idea of finding-by-measuring is simply natural. Around '82 I was working on an embedded system, and I needed to do some performance tuning. The hardware engineer offered to put a timer on the board that I could read (providing from his plenty). IOW he assumed that finding performance problems required timing. I thanked him and declined, because by that time I knew and trusted the random-halt technique (done with an in-circuit-emulator).
If you have the Auxiliary Clock available, you could use the SPY utility (configurable via the config.h file) which does give you a very rough approximation of which tasks are using the CPU.
The nice thing about it is that it does not require being attached to the Tornado environment and you can use it from the Kernel shell.
Otherwise, btpierre's suggestion of using taskHookAdd has been used successfully in the past.
I've worked on systems that have had luck using locally-built monitoring utilities based on taskSwitchHookAdd and related functions (delete hook, etc).
"Simply" use this to track the number of ticks a given task runs. I realize that this is fairly gross scale information for profiling, but it can be useful depending on your needs.
To see how much cpu% each task is using, calculate the percentage of ticks assigned to each task.
To see how much headroom you have, add a lowest priority "idle" task that just does "while(1){}", and see how much cpu% it is assigned to it. Roughly speaking, that's your headroom.

What is a fair hourly charge for routine site updates?

What do you consider a fair, yet profitable hourly wage for routine updates/management (ie - information, maintenance, database management) for your average site?
What factors do you use to set that rate?
As a reference...I usually quote around $25/hour...am I getting ripped?
EDIT:
Initially I was hoping for this to be a good reference for people in general as well...but since it was asked - I am in the Tucson, AZ area.
It mainly depends on where/who your working for. If you have to update it often with lots of information then charge what you normally would. If it is a one time thing, charge a little bit more than what you normally would.
P.S. When in doubt about how much to charge... overcharge! $$$
;-)
Take the thousands part of what you would consider to be an acceptable annual salary and double or triple it; this becomes your hourly rate. I'd start with tripling it (or more), and going down from there. You're better off to come in with a high quote and work your way down, because (a) raising your rate is a lot harder than lowering it; and (b) the client will feel happier when they've worked you down a bit because they feel like they're getting a deal.
So, $25/hr works out to you being happy making $12k/year.
Start off by telling them that you usually quote $100/hr (or whatever you feel comfortable with), and if they balk at that, follow it up with something like, "But since I really like working for you and want your business, I'll drop down 10% right off the bat."
Don't feel bad like you're overcharging them -- as long as you do good work for what you get paid, both you and your customer will benefit. It's tough to walk into a conference room and ask for what you feel is a shocking amount of money, but this is because most geeks (myself included!) have a habit to think we're worth less than we really are.
And, who knows, you might actually get the higher rate that you quote.
This is kind of an open ended question with a lot of 'well, you could do', but generally speaking you will find a fairly typical formula (plenty of variation in amount of days and hours below, so choose based on your own guidelines):
Take 214 days (work days per year after holidays, vacation, sick time, etc.). Take 8 hours a day. Multiply the two. That's your total work hours per year. Take the amount of money you want to make/feel you are worth per year based on your skillset or market value. Divide that number by your total hours per year. That's your rate.
You can also adjust for profit/taxes, etc. or quantity of work (e.g. a maintenance contract vs. normal freelance hours).
Remember, time is time, regardless of what you are doing.
I think $25 / hr is a very low quote, although this also depends on your experience, what your actually doing, and where you live. I've been with companies that jump at finding a good person to outsource under $50.
What is fair, is the most ammount of money the client is willing to fork over without feeling like they've been ripped off. How do you find this number? Well I don't know. Something I've seen which works preety well is where a company buys a block of hours in bulk, then they can tap the resource at will until the hours are drained.
Edit
Keep in mind, if you have other work which you can make more money off of you need to drop them as a client or raise the rate. Don't raise an existing customers rate too much unless your willing to risk loosing them.
If you do drop them I'd recommend doing it as professionally as possible, you never know what the future will hold
IMO for maintenance I guess it depends a lot on your skills/experience and the responsibilities the client would trust you on. i.e. a wealthy client would probably prefer spending 10x money on something that would be done just perfectly as expected without even have to double check it was done whereas a little company would prefer saving money and spending more time supervising ...
If you want a precise answer you would need to say where you are located, rates are very different from place to place !

How to avoid the dangers of optimisation when designing for the unknown?

A two parter:
1) Say you're designing a new type of application and you're in the process of coming up with new algorithms to express the concepts and content -- does it make sense to attempt to actively not consider optimisation techniques at that stage, even if in the back of your mind you fear it might end up as O(N!) over millions of elements?
2) If so, say to avoid limiting cool functionality which you might be able to optimise once the proof-of-concept is running -- how do you stop yourself from this programmers habit of a lifetime? I've been trying mental exercises, paper notes, but I grew up essentially counting clock cycles in assembler and I continually find myself vetoing potential solutions for being too wasteful before fully considering the functional value.
Edit: This is about designing something which hasn't been done before (the unknown), when you're not even sure if it can be done in theory, never mind with unlimited computing power at hand. So answers along the line of "of course you have to optimise before you have a prototype because it's an established computing principle," aren't particularly useful.
I say all the following not because I think you don't already know it, but to provide moral support while you suppress your inner critic :-)
The key is to retain sanity.
If you find yourself writing a Theta(N!) algorithm which is expected to scale, then you're crazy. You'll have to throw it away, so you might as well start now finding a better algorithm that you might actually use.
If you find yourself worrying about whether a bit of Pentium code, that executes precisely once per user keypress, will take 10 cycles or 10K cycles, then you're crazy. The CPU is 95% idle. Give it ten thousand measly cycles. Raise an enhancement ticket if you must, but step slowly away from the assembler.
Once thing to decide is whether the project is "write a research prototype and then evolve it into a real product", or "write a research prototype". With obviously an expectation that if the research succeeds, there will be another related project down the line.
In the latter case (which from comments sounds like what you have), you can afford to write something that only works for N<=7 and even then causes brownouts from here to Cincinnati. That's still something you weren't sure you could do. Once you have a feel for the problem, then you'll have a better idea what the performance issues are.
What you're doing, is striking a balance between wasting time now (on considerations that your research proves irrelevant) with wasting time later (because you didn't consider something now that turns out to be important). The more risky your research is, the more you should be happy just to do something, and worry about what you've done later.
My big answer is Test Driven Development. By writing all your tests up front then you force yourself to only write enough code to implement the behavior you are looking for. If timing and clock cycles becomes a requirement then you can write tests to cover that scenario and then refactor your code to meet those requirements.
Like security and usability, performance is something that has to be considered from the beginning of the project. As such, you should definitely be designing with good performance in mind.
The old Knuth line is "We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil." O(N!) to O(poly(N)) is not a "small efficiency"!
The best way to handle type 1 is to start with the simplest thing that could possibly work (O(N!) cannot possibly work unless you're not scaling past a couple dozen elements!) and encapsulate it from the rest of the application so you could rewrite it to a better approach assuming that there is going to be a performance issue.
Optimization isn't exactly a danger; its good to think about speed to some extent when writing code, because it stops you from implementing slow and messy solutions when something simpler and faster would do. It also gives you a check in your mind on whether something is going to be practical or not.
The worst thing that can happen is you design a large program explicitly ignoring optimization, only to go back and find that your entire design is completely useless because it cannot be optimized without completely rewriting it. This never happens if you consider everything when writing it--and part of that "everything" is potential performance issues.
"Premature optimization is the root of all evil" is the root of all evil. I've seen projects crippled by overuse of this concept. At my company we have a software program that broadcasts transport streams from disk on the network. It was originally created for testing purposes (so we would just need a few streams at once), but it was always in the program's spec requirements that it work for larger numbers of streams so it could later be used for video on demand.
Because it was written completely ignoring speed, it was a mess; it had tons of memcpys despite the fact that they should never be necessary, its TS processing code was absurdly slow (it actually parsed every single TS packet multiple times), and so forth. It handled a mere 40 streams at a time instead of the thousands it was supposed to, and when it actually came time to use it for VOD, we had to go back and spend a huge amount of time cleaning it up and rewriting large parts of it.
"First, make it run. Then make it run fast."
or
"To finish first, first you have to finish."
Slow existing app is usually better than ultra-fast non-existing app.
First of all peopleclaim that finishign is only thing that matters (or almost).
But if you finish a product that has O(N!) complexity on its main algorithm, as a rule of thumb you did not finished it! You have an incomplete and unacceptable product for 99% of the cases.
A reasonable performance is part of a working product. A perfect performance might not be. If you finish a text editor that needs 6 GB of memory to write a short note, then you have not finished a product at all, you have only a waste of time at your hands.. You must remember always that is not only delivering code that makes a product complete, is making it achieve capability of supplying the costumer/users needs. If you fail at that it matters nothing that you have finished the code writing in the schedule.
So all optimizations that avoid a resulting useless product are due to be considered and applied as soon as they do not compromise the rest of design and implementation proccess.
"actively not consider optimisation" sounds really weird to me. Usually 80/20 rule works quite good. If you spend 80% of your time to optimize program for less than 20% of use cases, it might be better to not waste time unless those 20% of use-cases really matter.
As for perfectionism, there is nothing wrong with it unless it starts to slow you down and makes you miss time-frames. Art of computer programming is an act of balancing between beauty and functionality of your applications. To help yourself consider learning time-management. When you learn how to split and measure your work, it would be easy to decide whether to optimize it right now, or create working version.
I think it is quite reasonable to forget about O(N!) worst case for an algorithm. First you need to determine that a given process is possible at all. Keep in mind that Moore's law is still in effect, so even bad algorithms will take less time in 10 or 20 years!
First optimize for Design -- e.g. get it to work first :-) Then optimize for performance. This is the kind of tradeoff python programmers do inherently. By programming in a language that is typically slower at run-time, but is higher level (e.g. compared to C/C++) and thus faster to develop, python programmers are able to accomplish quite a bit. Then they focus on optimization.
One caveat, if the time it takes to finish is so long that you can't determine if your algorithm is right, then it is a very good time to worry about optimization earlier up stream. I've encountered this scenario only a few times -- but good to be aware of it.
Following on from onebyone's answer there's a big difference between optimising the code and optimising the algorithm.
Yes, at this stage optimising the code is going to be of questionable benefit. You don't know where the real bottlenecks are, you don't know if there is going to be a speed problem in the first place.
But being mindful of scaling issues even at this stage of the development of your algorithm/data structures etc. is not only reasonable but I suspect essential. After all there's not going to be a lot of point continuing if your back-of-the-envelope analysis says that you won't be able to run your shiny new application once to completion before the heat death of the universe happens. ;-)
I like this question, so I'm giving an answer, even though others have already answered it.
When I was in grad school, in the MIT AI Lab, we faced this situation all the time, where we were trying to write programs to gain understanding into language, vision, learning, reasoning, etc.
My impression was that those who made progress were more interested in writing programs that would do something interesting than do something fast. In fact, time spent worrying about performance was basically subtracted from time spent conceiving interesting behavior.
Now I work on more prosaic stuff, but the same principle applies. If I get something working I can always make it work faster.
I would caution however that the way software engineering is now taught strongly encourages making mountains out of molehills. Rather than just getting it done, folks are taught to create a class hierarchy, with as many layers of abstraction as they can make, with services, interface specifications, plugins, and everything under the sun. They are not taught to use these things as sparingly as possible.
The result is monstrously overcomplicated software that is much harder to optimize because it is much more complicated to change.
I think the only way to avoid this is to get a lot of experience doing performance tuning and in that way come to recognize the design approaches that lead to this overcomplication. (Such as: an over-emphasis on classes and data structure.)
Here is an example of tuning an application that has been written in the way that is generally taught.
I will give a little story about something that happened to me, but not really an answer.
I am developing a project for a client where one part of it is processing very large scans (images) on the server. When i wrote it i was looking for functionality, but i thought of several ways to optimize the code so it was faster and used less memory.
Now an issue has arisen. During Demos to potential clients for this software and beta testing, on the demo unit (self contained laptop) it fails due to too much memory being used. It also fails on the dev server with really large files.
So was it an optimization, or was it a known future bug. Do i fix it or oprtimize it now? well, that is to be determined as their are other priorities as well.
It just makes me wish I did spend the time to reoptimize the code earlier on.
Think about the operational scenarios. ( use cases)
Say that we're making a pizza-shop finder gizmo.
The user turns on the machine. It has to show him the nearest Pizza shop in meaningful time. It Turns out our users want to know fast: in under 15 seconds.
So now, any idea you have, you think: is this going to ever, realistically run in some time less than 15 seconds, less all other time spend doing important stuff..
Or you're a trading system: accurate sums. Less than a millisecond per trade if you can, please. (They'd probably accept 10ms), so , agian: you look at every idea from the relevant scenarios point of view.
Say it's a phone app: has to start in under (how many seconds)
Demonstrations to customers fomr laptops are ALWAYS a scenario. We've got to sell the product.
Maintenance, where some person upgrades the thing are ALWAYS a scenario.
So now, as an example: all the hard, AI heavy, lisp-customized approaches are not suitable.
Or for different strokes, the XML server configuration file is not user friendly enough.
See how that helps.
If I'm concerned about the codes ability to handle data growth, before I get too far along I try to set up sample data sets in large chunk increments to test it with like:
1000 records
10000 records
100000 records
1000000 records
and see where it breaks or becomes un-usable. Then you can decide based on real data if you need to optimize or re-design the core algorithms.

How do I calculate the "cost" of a crash? [closed]

Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 9 years ago.
Improve this question
Background:
Some time ago, I built a system for recording and categorizing application crashes for one of our internal programs. At the time, I used a combination of frequency and aggregated lost time (the time between the program launch and the crash) for prioritizing types of crashes. It worked reasonably well.
Now, The Powers That Be want solid numbers on the cost of each type of crash being worked on. Or at least, numbers that look solid. I suppose I could use the aggregate lost time, multiplied by some plausible figure, but it seems dodgy.
Question:
Are there any established methods of calculating the real-world cost of application crashes? Or failing that, published studies speculating on such costs?
Consensus
Accuracy is impossible, but an estimate based on uptime should suffice if it is applied consistently and its limitations clearly documented. Thanks, Matt, Orion, for taking time to answer this.
The Powers That Be want solid numbers on the cost of each type of crash being worked on
I want to fly in my hot air balloon to Mars, but it doesn't mean that such a thing is possible.
Seriously, I think you have a duty to tell them that there is no way to accurately measure this. Tell them you can rank the crashes, or whatever it is that you can actually do with your data, but that's all you've got.
Something like "We can't actually work out how much it costs. We DO have this data about how long things are running for, and so on, but the only way to attach costs is to pretend that X minutes equals X dollars even though this has no basis in reality"
If you just make some bullcrap costing algorithm and DON'T push back at all, you only have yourself to blame when management turns around and uses this arbitrary made up number to do something stupid like fire staff, or decide not to fix any crashes and instead focus on leveraging their synergy with sharepoint portal internet web sharing love server 2013
Update: To clarify, I'm not saying you should only rely on stats with 100% accuracy, and just give up on everything else.
What I think is important is that you know what it is you're measuring. You're not actually measuring cost, you're measuring uptime. As such, you should be upfront about it. If you want to estimate the cost that's fine, but I believe you need to make this clear..
If I were to produce such a report, I'd call it the 'crash uptime report' and maybe have a secondary field called "Estimated cost based on $5/minute." The managers get their cost estimate, but it's clear that the actual report is based on the uptime, and cost is only an estimate, and how the estimate works.
I've not seen any studies, but a reasonable heuristic would be something like :
( Time since last application save when crash occurred + Time to restart application ) * Average hourly rate of application operator.
The estimation gets more complex if the crashes have some impact on external customers such, or might delay other things (i.e. create a bottle neck such that another person winds up sitting around waiting because some else's application crashed).
That said, your 'powers that be' may well be happy with a very rough estimate so long as it's applied consistently and they can see how it is changing over time.
There is a missing factor here .. most applications have a 'buckling' factor where crashes suddenly start "costing" a lot more because people loose confidence in the service your app is providing. Once that happens then it can be very costly to get users back to trusting and using the system.
It depends...
In terms of cost, the only thing that matters is the business impact of the crash, so it rather depends on the type of application.
For may applications, it may not be possible to determine business impact. For others, there may be meaninful measures.
Demand-based measures may be meaningful - if sales are steady then down-time for a sales app may be useful. If sales fluctuate unpredictable, then such measures are less useful.
Cost of repair may also be useful.