OOD / OOP Etudes / Code exercises - oop

I've been searching the web for some time now. I am looking for small sample exercises for OOD practice (& for some internal TDD workshops).
If there is one single place, where this need is being served, please point me to it.. and close this question
Constraints:
Language-agnostic real world problem
Small : Something that takes an hour to two at max to solve (or has sub-parts that can fit this constraint).
Not Algorithm centred : Not be focussed on just solving a computational task. (There are multiple sites that serve this category.) Involve > 2 interacting entities.
Solved by multiple people, preferably yourself : Goodness verified. Links preferred. Please do not post something that may be a good exercise... subjective
Similar SO question 60109, but the answers dont meet my need here. I found that I've lost my touch (was thrashing ideas) with OOD after prolonged exposure to a day-job. Need to get it back..
Update: Are we collectively out of short OOP exercises ? I was hoping that I'd have a bunch to pick from. However my web-searches (this is a diff exercise in formulating the right search string) and the lack of responses here seem to indicate otherwise. Maybe I posted to SO at a bad time.. in which case bumping this thread for more responses.

http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata

http://schuchert.wikispaces.com/Monopoly%28r%29

Jeff Bay's Object Calisthenics. Following these will improve your OO skills.

Bill Wake's spreadsheet TDD challenge

Dave Thomas' CodeKata
Kindness,
Dan

From the AGPPnP book by Robert Martin aka UncleBob
CoffeeMaker Mark IV - Page 2 has the problem statement

Questionnaire Practice Problem
A problem I've worked on in a couple of different jobs is that of writing some generic, data-driven survey/questionnaire functionality. It's not majorly complex, but has enough interesting avenues to be a good OOD practice problem I think. It's definitely real-world and crops up in a lot of places.
You can start off thinking about how to structure a Survey. It is obviously made up of Questions, but do you also want Categories? Can a Question have subquestions? Can a subquestion have subquestions? How deep can you go?
A question probably needs to have potential Scores. What types of scores can you have? What types of questions can you have (multiple choice, multiple answer, freetext, etc.)?
Once you've got the basic business logic, you can also think about how you display a survey . Maybe you have a SurveyRenderer and a QuestionRenderer? How do you decide how to render different types of questions? (Maybe you use a Strategy pattern... as in this SO question.) How do you render a read-only version of the survey?
You can also think about persistence. How do you record responses to a blank questionnaire? How does your object graph of a survey get mapped into a database (or some other backing store), and vice versa?

Related

How can I practice better object-oriented programming? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I have been programming in object-oriented languages for years now but secretly I look at some of the things my colleagues do with envy. A lot of them seem to have some inner OO instinct that I don't have - no matter how hard I try. I've read all the good books on OO but still can't seem to crack it. I feel like the guy who gave 110% to be a professional footballer but just didn't have the natural talent to make it. I'm at a loss and thinking of switching careers - what should do I?
I would say focus less on the OO programming and focus more on the OO design. Grab a paper and a pencil (or maybe a UML modelling tool), and get away from the screen.
By practicing how to design a system, you'll start to get a natural feel for object relationships. Code is just a by-product of design. Draw diagrams and model your application in a purely non-code form. What are the relationships? How do your models interact? Don't even think about the code.
Once you've spent time designing... then translate it to code. You'll be surprised at just how quickly the code can be written from a good OO design.
After a lot of design practice, you'll start seeing common areas that can be modularized or abstracted out, and you'll see an improvement in both your designs and your code.
The easiest way is to learn concepts such as SOLID, DRY, FIT, DDD, TDD, MVC, etc. As you look up these acronyms it will lead you down many other rabbit holes and once you are done with your reading you should have a good understanding of what better object-oriented programming is!
SOLID podcasts: http://www.hanselminutes.com/default.aspx?showID=168, http://www.hanselminutes.com/default.aspx?showID=163
SOLID breakdown: http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
DRY: http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
FIT: http://www.netwellness.org/question.cfm/38221.htm
DDD: http://dddcommunity.org/
DDD required reading: http://www.infoq.com/minibooks/domain-driven-design-quickly
TDD: http://en.wikipedia.org/wiki/Test-driven_development
MVC: http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
And yes, rolling up your sleeves and coding is always a good idea. Make a small project to the best of your current abilities. Then read an article from above. Then refactor your code to meet the needs of what you just read. Repeat until you have refactored the hell out of your code. At the end you should not only know what OO is all about but you should be able to explain why it is important and how to get their the first time. Learning how to refactor is a key to good code too. What is right now is not right tomorrow.
Too many people think of coding first, objects, last.
You can read all the books you want but that's not going to teach you how to think in an object-oriented fashion--that takes practice and a certain methodology.
Here are a few methods that have
helped me: When you're away from
work and open-minded you can
practice by looking at everything as an object. Don't look at these
objects and wonder how you're going
to program them, look at them as
properties and functions only and
how they relate or inherit from each
other. For example, when you see a
person, they are an object and
therefore would represent a class.
They have properties like hair
color, skin tone, height, etc. They
do certain functions as well. They
walk, talk, sleep, etc. Some of the
functions these people do returns
results. For example, their working
function returns a dollar amount.
You can do this with everything you
see because everything is an object.
Bicycle, car, star, etc.
Before coding a project, design it by
using post-it notes and a dry-erase
board. This will make good practice
until you get the hang of this.
Think of your specific
object/function/property. Each of
those items will have its own
post-it note. Place them as a
hierarchy on the dry-erase board. In
this regard, function/properties
will be placed under the object. If
you have another object, do the same
for that one. Then ask yourself, do
any of these post it notes
(objects/functions/properties)
relate to each other. If two objects
use the same function, create a
parent object (post-it note) and put
it above the others with the
reusable function under the new
note. Draw a line using the
dry-erase marker from the two child
objects to the parent.
When all this is done, then worry
about the internals of how the class
works.
My suggestion would be to learn something different.
Learn functional programming, and apply what you learn from that to OOP. If you know C++, play around with generic programming.
Learn non-object-oriented languages.
Not just because you should use all these things as well (you should), or because they should completely replace OOP (they probably shouldn't), but because you can apply lessons from these to OOP as well.
The secret to OOP is that it doesn't always make sense to use it. Not everything is a class. Not every relationship or piece of behavior should be modeled as a class.
Blindly trying to apply OOP, or striving to write the best OOP code possible tends to lead to huge overengineered messes with far too many levels of abstraction and indirection and very little flexibility.
Don't try to write good OOP code. Try to write good code. And use OOP when it contributes to that goal.
In many fields there's a "eureka" moment where everything kind of comes together.
I remember feeling frustrated in high school geometry. I didn't know which theorem to apply on each step of the proof. But I kept at it. I learned each theorem in detail, and studied how they were applied in different example proofs. As I understood not only the definition of each theorem, but how to use it, I built up a "toolbox" of familiar techniques that I could pull out as needed.
I think it's the same in programming. That's why algorithms, data structures, and design patterns are studied and analyzed. It's not enough to read a book and get the abstract definition of a technique. You have to see it in action too.
So try reading more code, in addition to practicing writing it yourself. That's one beauty of open source, you can download lots of code to study. Not all of that code is good, but studying bad code can be just as educational as studying good code.
Learn a different language! Most developers using only Java (just as an example) have only a limited understanding of OO because they cannot separate language features and concepts. If you don't know it yet, have a look at python. If you know python, learn Ruby. Or choose one of the functional languages.
The aswer is in your question ;)
Practice, practice, practice.
Review your own code and learn from the mistakes.
TDD has helped me most in improving my overall skillset including OOP.
The more code you write, the more you will notice the pitfalls of certain programming practices. After enough time, and enough code, you will be able to identify the warning signs of these pitfalls and be able to avoid them. Sometimes when I write code, I will get this itch in the back of my mind telling me that there may be a better way to do this, even though it does what I need it to. One of my greatest programming weaknesses is "over-analyzing" things so much that it starts to dramatically slow down development time. I am trying to prevent these "itches" by spending a little more time on design, which usually results in a lot less time writing code.
...secretly I look at some of the things my colleagues do with envy. A lot of them seem to have some inner OO instinct that I don't have - no matter how hard I try...
I think you have answered your own question here. Reading good code is a good start, and understanding good code is even better, but understanding the steps to get to that good code is the best. When you see some code that you are envious of, perhaps you could ask the author how he/she arrived at that solution. This is entirely dependent on your work environment as well as the relationships with your colleagues. In any event, if anyone asks me the thought process behind any code I write, I don't hesitate to tell them because I know I would want them to do the same for me.
Language designers have interpreted "Object Oriented Programming" in different ways. For instance, see how Alan Kay, the man who first used the term OOP, defined it:
OOP to me means only messaging, local
retention and protection and hiding of
state-process, and extreme
late-binding of all things. It can be
done in Smalltalk and in LISP. There
are possibly other systems in which
this is possible, but I'm not aware of
them.
(Quoted from http://userpage.fu-berlin.de/~ram/pub/pub_jf47ht81Ht/doc_kay_oop_en).
It might seem strange that he don't consider Java and C++ OOP languages! But as the designer of one of the first and best OOP languages (Smalltalk) he has his own valid reasons for that. Why did Alan Kay consider Lisp an Object Oriented language but not Java? That question demands serious consideration by anyone who claims to understand OOP.
Erlang has an altogether different implemntation of OOP, Scheme has another.
It is worth considering all these alternative views. If possible learn all these languages! That will give you a broader outlook, put some new and powerful tools in your hand and make you a better programmer.
I have summarized my experiments with implementing an OOP language, based on ideas borrowed from Smalltalk, Scheme and Erlang in this article.
public void MasteryOfOOP()
{
while(true)
/* My suggestion is: */
DO: find a lot of well-written object oriented code and read it. Then
try to use the insights from it on your own coding. Then do it again. Then
have a colleague who is a good OOP look at it and comment. Maybe post a chunk
of your code on SO and ask for how it could be improved.
Then read some more of those books. Maybe they make a little more
sense now...?
Now go back to the top of this post, and do it again.
Repeat Forever.
}
}
If you're lost as to how to design object-oriented systems, start with the data. Figure out what stuff you need to keep track of and what information naturally goes together (for example, all of the specs of a model of car group together nicely).
Each of these kinds of thing you decide to track becomes a class.
Then when you need to be able to execute particular actions (for example, marking a model of car as decommissioned) or ask particular questions (for example, asking how many of a given model of car were sold in a given year), you load that functionality onto the class it interacts with most heavily.
In general, there should always be a pretty natural place for a given bit of code to live in your class structure. If there isn't, that signals that there's a place where the structure needs to be built out.
There's too much information about objects. The most important thing is to master the basics and everything falls into place more easily.
Here's a way to think about objects. Think about data structures in procedural languages. They are a group of fields without behaviour. Think about functions that receive pointers to those data structures and manipulate the latter. Now, instead of having them separate, define the functions inside the definition of the the structures and assume the functions usually receive a pointer to the data structure to manipulate. That pointer is called this. In sum, think about objects as the combination of status (data) and behaviour (methods - the fancy name for functions in OOP).
This is the absolute basic. There are three more concepts you must absolutely master:
Inheritance - This is all about code reuse.
Encapsulation - This is all about hiding the implementation from the interface. Simply put, everything ought to be private until proven otherwise.
Polymorphism - It doesn't matter the type of the reference variable, but the type of the actual instance to know which behaviour (method) is called. Java doesn't make it easy to have this concept very visible because by definition everything is polymorphic. .Net makes it easier to understand as you decide what is polymorphic and what is not, hence noticing the difference in behaviour. This is achieved by the combination of virtual and override.
If these concepts are very well understood, you'll be fine.
One last final tip: You mention the best books. Have you read "Thinking in Java" by Bruce Eckel? I recommend this book even to people who are beginning in .Net, as the OOP concepts are clearly laid out.
Become more agile, learn junit testing and study about Domain Driven Design. I suggest the book Domain-Driven Design: Tackling Complexity in the Heart of Software although it's a bit tough at some points.
OOP skills comes over time. Reading 1, 2 ...10 books doesn't cut it. Practice writing some code. If you are working in a programming enviornment...that can be helpful. If not try getting into one. Offer to develop some application(s) for free. You have to get your hands dirty. Remember...no application is perfect from the ground up.That's why there is re-factoring.
Also...don't get carried away with the OOP too much...it somes over time. Worry about developing fully functional applications.
Try some programming in Self, one of the most pure OO languages around. So pure, in fact, that it doesn't even have classes, only objects. It also doesn't have variables, fields, statics, attributes, only methods. Also interesting is the fact that every object in the system is also an object on the screen and vice-versa.
Some of the interesting papers on Self are Prototype-Based Application Construction Using SELF 4.0 (the Self tutorial), Self: The Power of Simplicity and Organizing Programs Without Classes. Also, Self: The Video (Randall B. Smith; Dave Ungar) is terrific, having two of the language's designers explain Self's ideas.
This works for pretty much any concept, actually, at least for me: find the language which most purely embodies the concept you want to learn about and just use it.
OO finally clicked for me after I tried to program a bank-like program that handled transactions, calculated interest, and kept track of it all. I did it while I was learning Java. I would suggest just trying it, completing it, and then when you're done go look at a GOOD solution and see what you could've done better.
I also think OOP skills strenghten mostly with practice. Consider changing your company, if you've been there for more than 3 years. Certainly, this is not valid for all jobs, but often a man gets used to the projects and practices at a company and stops advancing as time passes.
Roll up your sleeves and code!
You said the answer yourself: practice. Best solution for this is to develop a game. Use the concepts you learnt in the books there.
Have you read the chapter on OO from the first edition of Scott Meyers "Effective C++" book? It didn't make it to later editions, but it was a great explanation. The title was basically "say what you mean, mean what you say" about suitable conventions.
Actually, you might like to see my answer to a similar question over here.
HTH
cheers,
OOP is not a thing you can master by reading thousands of books. Rather you have to feel the inner concepts. Read anything but try to feel what you read. Build a concept in the back of your mind and try to match those concepts when you face a new scenario. Verify and Update your concepts as you explore new things.
Good luck!
Plan things out. Ask yourself how you want your objects to relate to eachother and seek out how things can be changed and modularized.
Code things in such a way that if you wanted to change 1 piece of the code, you only have to change that 1 piece of code and not 50 instances of it.
beer helps. seriously. lie out on a couch with an A3 sized scribble pad, a pen and a beer. Lock the dog, cat and wife outside. And think about the problem while relaxed. Don't even dare draw an API on it!
Flowcharts, Responsibity cards (CRC) and beer (but not too much) go a long way.
Easiest way to refactor code is to not have to in the first place.
http://misko.hevery.com/code-reviewers-guide/
Those small simple rules will make you a better OO programmer. Follow the rules religiously as you code and you will find your code is better than it would otherwise be.
You'll also want to learn the Solid Principles: http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
As much as these principles and ways of programming cause debate, they are the only way to truly write excellent code.
You may already write code this way and not know it-- if so, great. But if you need a goal to strive towards, these are the gold standard.
Give up! Why do you need that that OOP? Just write some usable app. Doesnt metter using OOP, procedual or functional approach.
Whataver approach you choose Python language should be sutable to practice it.
You're my target audience. Look at Building Skills in OO Design
Perhaps this can help.

do you rely on your memory or consult references and use a lot of intellisense? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
I have noticed I do not code as much as I use to. Today I dedicate more time to analysis and design, then I communicate that design to programmers. Then they do the coding. This has affected my coding productivity, because I must consult references and rely on intellisense. Things are becoming more complex everyday
Now, here is the irony. If I were to hire a programmer and ask him/her to sit in front of a computer, I may ask to do some coding and I would check abilities. I would evaluate them based on their use of memory vs. consulting references. Maybe I will prefer that programmer who did not consult too much, but who knows what they are doing.
What is your opinion and experience?
I would say that a developer who knows how to find the answers is better than one who has an overall good knowledge already. I find that intellisense is a good tool for finding answers, besides it is too much to remember all method names, arguments, overloads, etc.
I use memory to get me into the right general area (e.g. knowing which classes to use or at least which namespace they'll be in) and then often Intellisense/MSDN for the exact method name or arguments to use.
Having said that, Stack Overflow is improving my ability to code without any references (or even compilation) - I'm sure code will just work out of the box for me more often now than it used to. (I tend to post and then check the code works, add links to MSDN etc - assuming I'm reasonably confident in the approach.)
Someone knowing what resources are available, and how to find the answers, and how to effectively debug - these are qualities I look for now in prospective employees.
I used to consult my memory only, but two things have happened:
Class libraries have gotten larger, so has the number of languages available
The ratio of programming-related memory to personal-life-related memory has shifted away from code
Programming today is also eight times harder than it was when I started. I used to work on 8-bit machines, now I'm working on 64-bit ones. :)
I once was at a job interviewed with the CTO of a company. He asked a question based on a real life problem the company had a while back and solved. It was a multi step problem.
I was standing in front of a whiteboard working through my solution and struggling through a particular part, a part I would use google for before even attempting it, had I been tasked with solving this problem for real instead of for an interview. He asked me at that point, "would you do anything different if this wasn't an interview question." I responded, "Yes. I would exhaust all possibilities of using a third party component for this part of the task and look up the solution, because it is a well defined problem thats been solved several times." There was a bit more discussion where I justified my answer, explained exactly what I would research, and I solved some other parts of the question. In the end I was offered and accepted the job, partly because of knowing how to find out what I didn't know.
Being able to use references is as important as being able to code from memory. Obviously, if you are a one language shop, and want people proficient in that language,the person should be able to write a complete hello world app in notepad. Interview problems should focus on small problems, and one should not worry about small syntax errors. This is why a whiteboard is the best IDE for interview questions.
Unless you demand all your coders use notepad and don't give them internet access, don't be as concerned by the syntax. If you do sit them down in front of a computer, worry about the finished product as well as the technique used to get there.
I'm a PHP programmer in my early 30's. I rely on PHP's excellent documentation, for several reasons:
Programming concepts don't change. If I know what my object models are and how I want to manipulate data, then there's dozens of ways to implement the details. The details are important, but a better grasp of the design and structure is more important
PHP has notoriously inconsistent functions. One string function might use ($needle,$haystack) as parameters, and another might use ($haystack,$needle). Trying to keep them straight isn't worth the hassle when you can just type php.net/function_name and get the reference.
I don't rely on intellisense, simply because I haven't found a decent IDE for PHP that does it well. Eclipse is ok, but it's not fantastic. Netbeans gives me 'PHPDoc not found' for all the built-in PHP functions whenever I install it. There's nothing that I've found so far that beats out the documentation.
The bottom line is that the ability to memorize functions isn't indicative of coding ability. Obviously there's a key set of basic functions that a good programmer will know just from extensive usage over time, but I wouldn't base a hiring decision on whether someone knows substr_replace vs. str_replace from memory.
Because I've read either the documentation, or articles, or a book on a subject, the things I learn on a topic are organized. The result is that, if I can't bring something up from memory, I can probably find it quickly through IntelliSense or the Object Browser.
Worse come to worst, I can pick up the book again; something these youngsters are not being taught to do.
John Saunders
Age 51
Pretty much Google + Old Projects + my memory (of course)
References will not solve your problems though, its only for the nuts and bolts, the higher level of problem solving is the actual "programming" part IMHO.
I tend to use Intellisense and Resharper much more than I used to before, but this has helped my overall productivity. If I can get the idea of how I want to solve something and then use tools to get the more boring parts like class names and function signatures, why shouldn't I use the tools I have? I feel relieved that Jon Skeet has a similar approach it seems.
I rely on my bookmarks and books... and my ability to use them effectively. I have multiple books above my desk, including a copy of the ISO C90 standard. Moreover, I use Xmarks to have access to my bookmarks wherever I go. Sometimes, I make a pdf out of a particular page and upload it to my web-site if it is important enough.
Sometimes the information provided by the resources I use makes its way into my terrible memory... maybe.

How do I explain loose coupling and information hiding to a new programmer? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
How do I explain loose coupling and information hiding to a new programmer? I have a programmer who I write designs for, but who can't seem to grasp the concepts of loose coupling and information hiding.
I write designs with everything nicely broken down into classes by function (data access is separate, a class for requests, a controller, about 5 classes total). They come back with a modified design where half the classes inherit from the other half (and there is no "is-a" relationship), and many public variables.
How can I get across the idea that keeping things separate makes it easier to maintain?
Ask him if it's a good idea to let you borrow $10 by giving his wallet to you for a moment and taking the money yourself.
The problem is your expectations, not the developers lack of skill. You talk about loose coupling and information hiding as if these are simple facts or mechanical techniques - they are not. Software development is a craft and the only way to get better at a craft is to practice it and slowly and incrementally improve.
You are looking for a shortcut. You want the developer to experience an "ahah!" moment and suddenly see the wisdom in your design. I say, don't hold your breath.
Adopt the mindset of a mentor. If you want him to improve his design skills, don't "hand" him a design, let him to design it! Then review the design with him. This will give him experience, a deeper sense of ownership and more willingness to listen to your suggestions before he is knee deep in implementation.
An aside - I notice that people look for these shortcuts all the time with abstract skills but not with more "physical" skills. Take tennis for example. If you were a tennis coach and a new player kept hitting his forehands long, you wouldn't just show him a YouTube video of a Roger Federer forehand and expect him to "get it". A great forehand takes YEARS of experience as you learn the feeling and use it in different scenarios - its not your muscles learning, its your brain. It is no different with software design. You get good at it by doing it over and over again. You slowly learn from your mistakes and get better at appreciating the consequences of each individual design decision.
The best way to explain these kinds of concepts is to use analogies. Pick something non-programming related and use that to explain the abstract design concepts.
The following image is pretty good at explaining the need for loose coupling:
Try to come up with stuff like this that will amuse and pertain to your new programmer.
Theory will only get you so far.
Make him try to add new features to code he's written a while ago. Then rework the old code with him so it's loosely coupled and ask him to add the same features.
He will certainly understand the avantages of writing good code.
There's nothing like a physical analogy. Walk out to your car and point out how everything complicated, hot and dangerous is pretty well isolated from the fragile human. Sit in the driver's seat and point out some of the important gauges; for example, the coolant temperature, tachometer and speedometer. Note how the gauges are remarkably similar: they all take a scalar value (from somewhere) and represent it by moving a needle to a position between min and max.
However, if you think about what's being measured, the strong motivation to maintain that isolation (aka loose coupling or information hiding) becomes a lot more obvious.
"How would you like to measure the coolant temperature? By looking at a gauge or by sticking your finger into near-boiling liquid?"
"How would you like to measure the engine rotational speed? By looking at a gauge or by letting a multi-thousand RPM crankshaft rip the flesh from your bones as you try to estimate it by hand?"
"How would you like to measure the car's speed? By looking at a gauge or by dragging your foot on the ground as you're roaring down the highway?"
From there, you can build on the concepts of "your coolant temperature gauge is-a gauge. It isn't-a boiling liquid" and so forth to more complicated concepts.
Loose coupling: The parts of a watch may be replaced by others with out breaking the whole watch. For instance you can remove one hand and it will still work.
Information hiding: The clock hands doesn't know that behind them there's a machinery.
Additional concept
High cohesion: All the elements in the watch "module" are strongly related. In this specific scenario, a battery would belong to another module or namespace.
Show him this presentation. Though it's mainly about DI, it's downright brilliant and up to the point.
I would try sitting down with him and working through a couple of peieces of code with him looking over your sholder and you explaining why you are doing what you are doing as you go along. I've found this is normally the best way to explain things.
Ask him to make a change you know it will be hard because of his design and show him how that would happen using yours.
If he complains, tell him the truth: business will ask more bizarre changes, it's a matter of time he will see that.
Just don't talk to him. That should teach him about information hiding. ;-)
I like a credit card for an example.
You have a credit card.
A credit card represents your credit history. It has a balance and a APR. It has permissions and an entire financial state. It has a id, an expiration date, and a security code. The magnetic strip summarizes all of this.
When you go to your local credit-card-accepting establishment, they don't need to know that. They don't want to know that, and it is often very dangerous if they do know that. What they need to "know" is that there is a magnetic strip which will take care of all of this, and (sometimes) that the person holding the card has id to match the name printed on the card.
Giving them more information is either (in the best case) useless, or (in the worst case) dangerous. Requiring them to know which bank to check with, making sure they know how to calculate your particular APR, or allowing them to check your balance is simply silly at that point.
If he's misinterpreting your designs, perhaps a couple pair-programming sessions will be enough to get them on track. I do have to agree with #ThomasD and will expand upon it -- the encapsulation going on here could be you. It could be a simple case of misinterpretation instead of them not understanding the concepts.
I think that OO concepts really need to be learnt practically. One really needs to do these things to understand. I go to school (engineering) and most of my peers don't really get the concept. They know in general that loose coupling is 'good' but not why. They also don't know how to achieve loose coupling. I am working on my final year project now and I got through to them by making them part of the design process. (It helped that they really did understand how and why and had an inkling of its importance)
Given your situation, here is what I would suggest:
1. Make them follow your design exactly (at least for a couple of weeks). If they want to deviate, have them discuss what and why with you. [Time constraints may not permit this].
2. Sit with them on whichever part of the design you are doing next and explain some o0f your design choices to them, with examples. Somethings that are obvious to you may need to be pointed out to them.
3. Be on the lookout for examples, both of good design and bad design and show them how that works better.
The most important task here is of delegation. You have to show them what good code looks like, maybe train them for a couple of hours. Then you agree on when to review and how you can help them (whithin your limited free time (?)) do the task well. The main thing is to get them to identify with and understand good design. Doing these things will help them 'buy-in' to the design. Once they feel it is their design, I am sure they will do better work.
Overall, I think you need to put your foot down and get them to code it right, without stifling their creativity.
I don't really have too much experience in the area. I am just giving my opinion on the subject, based on what worked for me. I hope this helps.
Note
I'd like to add that OO concepts can be learnt from books, while their application can be learnt only by practice. I have added this note in response to a comment by Christopher W. Allen-Poole.
Well if you have to explain it to them then I'm forced to ask: are they really a programmer?
Tell them they need a "college do over"?
That's a hard one because it's such a basic concept. Personally I wouldn't want to handle it because it's like someone is getting paid to learn stuff they should already know but life isn't always ideal.
I'd approach it by finding a problem that's simple enough to solved relatively simple. Public variables are usually handled best by trying to find the source of a problem when you can't see what's changin gthe variables. You can design a scenario for that.
The over-inheritance may not be their fault. They may have learnt in a course designed in the 90s that's trapped in the idea that "everything must inherit". I remember the old examples of Manager extends Employee. It's just BAD. Thing is people get taught this nonsense. Still.
For C++ the Scott Meyer Effective C++ series is probably worth poniting them to (assuming they can be bothered to read something). For Java, Josh Bloch's Effective Java ("favor composition") is along the same lines. Not sure about C#.
These sorts of books give a better approach to inheritance vs composition and also give some good examples of why inheritance is (as Josh Bloch puts it) an "implementation detail". I've also heard it described as "inheritance breaks encapsulation".
I saw a good example once of inheritance vs composition with extending the capabilities of a List in Java and how inheritance required you to know implementation details of the parent to do correct whereas composition didn't. I'll see if I can find it.
If you do Unit Testing, explain it in terms of test-writing. Alternatively, Abstract Classes and Interfaces both use loose coupling and information hiding to great effect. If you explain it to him in terms of other concepts he may already have a handle on, he'll be more likely to appreciate the concept quickly.
Programs are systems of interacting parts.
For a system of interacting parts to work together requires connections between these parts.
The more connections, the more costly the program.
For a fixed number of parts, a system whose parts are unnecessarily connected is more costly than a system whose parts are necessarily connected.
Unneccessary connections can only be formed in a system whose parts are unnecessarily exposed to connections from other parts.
Minimising unneccessary exposure of parts to connection from other parts is fundamental to cost-effective program development.
Loose coupling and information hiding are the fundamentals of connection-exposure minimisation.
This is not optional knowledge for a programmer.
This is fundamental.
You cannot be a cost-conscious programmer without this knowledge.
Asking how to explain loose coupling and information hiding to a new programmer is like asking how to explain surgery to a new surgeon? Or to explain architecture to a new architect? Or how to explain flying to a pilot.
If your, 'New programmers,' don't know loose coupling and information hiding, then they are not, 'New programmers;' they are potential programmers.
Curiously, it probably won't help to tell them to read the original two papers:
i)Loose coupling: 'Structured design,' by W.P. Stevens, G.J. Myers and L.L. Constantine.
ii)Information hiding: http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf
Just like the move from 16 bit to 32 bit windows applications where processes were given their own address space. This stopped any other process from being able to kill your application when it "accidently" walked over your data.
Moving processes to different address spaces was like treating each process as a class, and hiding the memory internally and decoupling the processes by forcing interprocess communication to only happen via an expected interface ( eg Windows Messages ).
loose coupling means the external code should use the object of derived non abstract class through abstract base class. if any change occur in set of class on which it depend then not neccessory to change in external code i.e. external code really exhibit loose coupling.

Does anyone else have the feeling that solutions for simple projects are often overengineered? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
Somehow I've got the feeling that many projects become heavily overengineered so every possible change-request can be tackled with the effect that the change-requests that occured are very hard to implement.
Somehow I get that feeling in nearly every project I'm currently working on. It is like everyone is thinking "which cool api, framework, etc. can we add to the project to tackle this and that aspect" without evaluating if it is practical or needed.
Does anyone else feel the same or what's the opinion of the community here?
Yes.
-- MarkusQ
I find that, while some older companies with 'senior' senior management tend to be extremely rigid with how their business code is created, newer companies completely lack a backbone of what software they use to get the job done.
The problem you describe sounds like people are viewing problems at too high a level and want to find a way to solve it in one go. Creating a working toolbox (think standard libraries) would help them out in the long run.
I particularly enjoy the UNIX way of things: Several tiny utilities that do one thing and do it really well.
Definitely - I think people get 'robust and modular' and 'overengineered' mixed up far too often.
I think Dave Winer captured the cyclical nature of this phenomenon well:
The trick in each cycle is to fight
complexity, so the growth can keep
going. But you can't keep it out,
engineers like complexity, not just
because it provides them job security,
also because they really just like it.
But once the stack gets too arcane,
the next generation throws their hands
up and says "We're not going to deal
with that mess."
Guilty as charged. Three levels of abstraction and six config files is just more fun to implement than a simple flow control branch.
Overengineering is a danger in any project, large or small. When writing for code extensibility, there's always a trade-off between writing code that is sufficiently generic and extensible to allow for future development and code that is specific enough to make the task at hand easy.
Every "future hook" has a cost and should be evaluated in the light of that cost, the probability that it will ever be used, and the cost of refactoring later in the game. "More generic" is not always better.
As for using a hot, new framework or API, I think project managers should take a gentle hand in this. With development being such a fast-moving field, hands-on self-training is part of the price of doing business (but obviously should be kept reasonable.)
I've only encountered that with Java people: "Lets use spring!" And hibernate! I found this cool validation package as well! And this one will create XSLT to create XML forms to create the javascript!"
By the time I find all the jars and get them to play nice, there are dozens of classes I have to be familiar with. And then they want to abstract away all those pieces! "We might switch spring out. Or not use hibernate, so we should abstract those away". Add another dozen hacky wrapper classes.
By the time its all done, 50 lines of psuedo code has turned into several thousand lines of making the "cool stuff" work, and about 100 lines of business logic trapped within its hairy, hacky, bug-ridden hell.
I'm guilty of it myself, too, but thats only because I'm bored and have time to kill.
The key thing to keep in mind here is time. A "simple" project that is knocked out of the park on day one by an Excel spreadsheet or a web page can quickly expand in both its audience and scope to become an unsustainable monster.
Under-engineering is a danger, too. The world is full of "practical" people who will mock any efforts that are contrary to their opinion. Nobody remembers the person who disagreed a year later when the "simple" solution can't be sustained.
The trick is to balance the right degree of engineering and be able to adjust when things change.
I've been bitten a few too many times by applications that I've thrown together quickly which have subsequently become "critical" apps. Then I have to almost rewrite the darned thing. I just assume now that it will become critical and so I "write it right" the first time. Saves me time and effort in the long term. So oddly, it's about laziness.
Today's xkcd is the absolute truth:
I find that overengineering is a byproduct of boredom. I believe Jeff and Joel covered this in a podcast, but the idea is that coders who often overengineer may just be in a rut and need a change of pace (Jeff and Joel suggested that they be allowed to do different jobs like QA).
Yes. I think people nowadays think more about how something should be done, and whether "it's the right way ..." and so on, than just picking the simple solution which will equally get the job done. If you're not asked to expand it, then don't think about expanding it.
I think this is a problem, but not as big as it seems and that there are good reasons for it.
The problem is that most projects that are underengineered will die a quick death while the overengineered ones can survive. Thus, when you look at still living project, there is survivorship bias.
And, even if you are a good architect that aims for "just good enough", if in doubt you will use the more flexibe, scalable, ... (i.e., overengineered) solution. Because the failure mode if you do not meet the requirements (whatever they may be) is usually much worse than what happens if you exceed them.
I'm yet to work on any real world problem but I've read enough people blogging about this to assume there is a problem.
Absolutely. But it's not just developers, it's users too. "I want this and that and the other in order to improve communication and increase productivity!".
I'm amazed at how many of these types of projects we've solved by just putting a shared folder on a file server.
As others have said, I've had too many 'small' projects become big ones and the short cuts taken become paint.
There is a place for a quick-and-dirty solution and in trying to follow the YAGNI mantra, I've created simple apps with no engineering.
With that though, you are not going to be able to jump into a million line system and develop the 'well engineered' system without practice on smaller systems.
I've taken to always following the developed architecture of our company in all projects because it helps me to work out solutions in line with the engineering principles we are trying to follow.
What you practice, you perform, so always do your best.

OOP Problems to use for Coding Tests during interviews

As a second interview I get people to sit down and write code...I try to make the problem really technology independent.
My programming problems that I have don't really exercise peoples OO abilities. I tend to try and keep the coding problem solvable within 2 hours ish. So, I've struggled to find a problem small enough and involved enough that it exposes peoples OO design skills.
Any suggestions?
This is a problem that I use with some trainings, looks simple but is tricky OOP-wise:
Create model classes that will properly represent the following constructs:
Define a Shape object, where the object is any two dimensional figure, and has the following characteristics: a name, a perimeter, and a surface area.
Define a Circle, retaining and accurately outputting the values of the aforementioned characteristics of a Shape.
Define a Triangle. This time, the name of the triangle should take into account if it is equilateral (all 3 sides are the same length), isoceles (only 2 sides are the same length), or scalene (no 2 sides are the same).
You can go on and on with quadrelaterals (which include squares, rectangles, rhombi, etc) and other polygons.
The way that they would solve the above problems would reveal the people who understand OOP apart from those who don't.
ideally, you want to present a problem that appears difficult, but has a simple, elegant, obvious solution if you think in OO terms
perhaps:
we need to control access to a customer web site
each customer may have one or more people to access the site
different people from different customers may be able to view different parts of the site
the same person may work for more than one customer
customers want to manage permissions based on the person, department, team, or project
design a solution for this using object-oriented techniques
one OO solution is to have a Person, a Customer, an Account, and AccountPermissions, where the Account specifies a Person and a Customer and an optional Parent Account. the use of a recursive Account object collapses the otherwise cumbersome person/team/department/project structure a direct ERD solution might yield
I have used the FizzBuzz Programming Test. And shockingly can corroborate the claims made by the article. As a second follow up I have asked candidates to compute the angle(s) between the hands on an analog clock. We set up a laptop with VS 2008 installed and the stub in place. all they have to do is fill in the implementation.
I am always stunned at how poorly candidates do on these two questions. I really am.
Designing Social Security Application is something which I ask a lot of people during interviews.
The nice thing about this is everyone is aware of how it works and what things to keep track of.
They also have to justify their design and this really helps me get inside their head :)
(As there is lots of flexibility here)
Kind regards,
Whether or not people do some coding in the interview, I make it a point to ask this:
Tell me about a problem you solved recently using object oriented programming. You'd be surprised how often people cannot answer that simple question. A lot of times I get a blank stare, or they say something like "what do you mean? I program in .NET, which is all object oriented."
These aren't specifically OO Questions, but check out the other questions tagged interview-questions
Edit: What about implementing some design patterns? I don't have the best knowledge in the area but it seems as if you would be getting two questions for the price of one. You can test for both OO and Design pattens in the one question.
How about some sort of simple GUI. It's got inheritance, overriding, possibly events. If you mean for them to actually implement as part of the test then you could hand them a blank windows-form with an OnPaint() and tell them to get to it.
You could do worse than ask them to design a MapReduce library with a single-process implementation. Will the interface still work for a distributed implementation? What's the exception-handling policy? Should there be special support for chaining MapReduce jobs in a pipeline? What's the interface to the inputs and outputs? How are inputs chunked up? Can different inputs in one job go to different mappers? What defaults are reasonable?
A good solution in Python takes about a page of code.
I've got a super simple set. The idea is mainly to use them to filter out people who really don't know their stuff rather than filtering in the rock stars.
These are all 5 minute white-board type questions, so they are really not that hard. But the act of writing up code, and talking through it reveals a lot about a candidate - and is brilliant for exposing those that can otherwise BS through the talk.
Write a method that takes a radius of a circle as an argument, and returns the area of the circle (You would be amazed how many people struggle on this one!)
Write a program that accepts a series of numbers as arguments from the command line. Add them up, and print the sum
Write a class that acts as a keyed counter (basically a map that keeps track of how many times each key is "counted")