Setting multiple scalar variables from a single row in SQL Server 2008? - sql

In a trigger, I have code like:
SET #var1 = (SELECT col1 FROM Inserted);
SET #var2 = (SELECT col2 FROM Inserted);
Is it possible to write the above in a single line? Something conceptually like:
SET (#var1,#var2) = (SELECT col1,col2 FROM Inserted);
Obviously I tried the above, without success; am I just stuck with the first method?
Even if possible, is that a good idea?
Thanks!

yes, use first method.
Or...
SELECT
#var1 = col1
,#var2 = col2
FROM
Inserted;

However, it is a major red flag if you are expecting to set variable values like that in a trigger. It generally means the trigger is poorly designed and needs revision. This code expects there will be only one record in inserted and this is something that is not going to be true in all cases. A multiple record insert or update will have multiple records in inserted and the trigger must account for that (please without using a trigger!!!). Triggers should under no circumstances be written to handle only one-record inserts/updates or deletes. They must be written to handle sets of data.
Example to insert the values from inserted to another table where the trigger is on table1:
CREATE TRIGGER mytrigger on table1
AFTER INSERT
AS
INSERT table2 (field1, field2, field3)
SELECT field1, 'test', CASE WHEN field3 >10 THEN field3 ELSE 0 END
FROM inserted

No, it is not possible. SET accepts a single target and value. AFAIK.

Related

How to do these three things in a SQL Server transaction - 1. create table, 2.create trigger on table, 3. select from another table

I am trying to accomplish the following 3 simple tasks as a transaction (i.e. I need to lock old_table and new_table until the process completes).
Create a new table (new_table)
Add a trigger to old_table, which queues updates to new_table.
Select all the data from old_table and return it.
Note that I want these handled in a single transaction. I cannot allow inserts into old_table (and therefore triggered inserts into new_table) in between the trigger creation and the select on old_table.
My current closest attempt is this, but truthfully I feel that I am very far off from accomplishing my goal with this code. I have added the code just for reference of what I am trying, but I am mostly interested in non-specific answers that layout how to accomplish the above three comands in a transaction.
DROP PROCEDURE IF EXISTS dbo.BuildAll;
CREATE PROCEDURE dbo.BuildAll
AS
BEGIN
BEGIN TRANSACTION
DECLARE #TriggerCode VARCHAR(MAX)
CREATE TABLE dbo.new_table
(
status nvarchar(5),
type char(1),
col1 nvarchar(50),
col2 smallint
)
SELECT #TriggerCode = 'CREATE TRIGGER myTrigger
ON dbo.old_table FOR INSERT
AS
DECLARE #col1_new nvarchar(50)
DECLARE #col2_new smallint
SELECT #col1_new = col1 FROM inserted
SELECT #col2_new = col2 FROM inserted
IF #col1_new IS NOT NULL
BEGIN
INSERT INTO new_table (status, type, col1, col2)
SELECt "Q", "A", #col1, #col2 FROM inserted
END'
EXEC(#TriggerCode)
SELECT * FROM old_table
COMMIT
END
Going to suggest this an a possible solution you can try. This doesn't address the correctness of your actual trigger, you have two separate questions here really.
You don't need to encapsulate this entire process in a transaction.
Create your new table.
Create your trigger on old table, but disabled.
set transaction isolation level serializable
begin tran
go
create trigger <Name> on <Table> etc
go
disable trigger <Name> on <Table>
go
commit
Now in a transaction you can lock the old table against other activity while you work
begin tran
update oldtable with(tablockx) set column=column where id=0 /* block other processes from updating table, id=0 row doesn't exist */
query your data and process as required
enable trigger <Name> on <Table>
commit
This trigger code of yours is kinda odd .... you have a trigger on all three operations - yet it appears as if you're never using the values you fetch from the deleted pseudo table, and if the value from the inserted table is NULL, you're not doing anything inside your trigger - so you can really spare yourself the DELETE case - that'll never do anything....
Also, as mentioned in my comment - you Inserted pseudo table can easily contain multiple rows - but you're selecting from it as if you only ever expect it to contain a single row.
You should really rewrite your trigger code to handle the case of multiple rows in Inserted and make the whole thing properly set-based - something like this:
CREATE TRIGGER myTrigger
ON dbo.old_table
FOR INSERT, UPDATE
AS
INSERT INTO new_table (status, type, col1, col2)
SELECT 'Q', 'A', i.col1, i.col2
FROM Inserted i
Whether you need this on the UPDATE case at all - I cannot tell, you need to decide this. But basically: just select from the Inserted table, take the Col1 and Col2 values, and add the constant values 'Q' and 'A' to your insert to handle multiple rows properly. That should do it.

SQL Server Instead Of Insert trigger on View causes Cannot Insert Null

We have an Instead-Of-Insert trigger on a view which copies all values from the INSERTED virtual-table to another table.
One of the fields in the list is non-nullable for the target table, and has a default value specified.
What we are experiencing, is, some application code is sending an insert command, and not specifying the non-nullable field - which (if the insert were executed against the actual table) would normally result in SQL Server inserting the column's default value. But, the trigger is explicit for all fields, so the trigger tries to insert null for that field... resulting in an error.
What I DONT want, is code like this...
INSERT INTO XXXX (col1, col2, col3)
SELECT
ISNULL(col1, 0), ISNULL(COL2, 0), ISNULL(COL3, 0)
FROM INSERTED
I don't want the trigger to need to know what the actual default values of each column should be (from a maintainability perspective)...
Does anyone have a better solution?
Thanks
when your application is sending NULL values to a not nullable column, there are not to many options. specialy when you dont want to use input validation with isnull.
we are using default values in this case. if it is possible you can alter your table:
ALTER TABLE xxxx ADD CONSTRAINT DF_col1 DEFAULT N'default' FOR col1;
I can think of an ugly and inefficient way of doing this. The idea is to insert a default row and then update the columns one at a time, using try/catch to ignore errors.
declare #Id int;
insert int XXX DEFAULT VALUES;
set #id = ##IDENTITY;
begin try
update XXX set col1 = val1 where id = #id;
end try
begin catch
end catch;
begin try
update XXX set col2 = val2 where id = #id;
end try
begin catch
end catch;
. . .
If you have to do this on 100 columns, then that could be a bad idea. If you only have two or three columns causing the problems, then this might solve your problem.

Update if a key, or combination of keys, exists, otherwise INSERT [duplicate]

Assume a table structure of MyTable(KEY, datafield1, datafield2...).
Often I want to either update an existing record, or insert a new record if it doesn't exist.
Essentially:
IF (key exists)
run update command
ELSE
run insert command
What's the best performing way to write this?
don't forget about transactions. Performance is good, but simple (IF EXISTS..) approach is very dangerous.
When multiple threads will try to perform Insert-or-update you can easily
get primary key violation.
Solutions provided by #Beau Crawford & #Esteban show general idea but error-prone.
To avoid deadlocks and PK violations you can use something like this:
begin tran
if exists (select * from table with (updlock,serializable) where key = #key)
begin
update table set ...
where key = #key
end
else
begin
insert into table (key, ...)
values (#key, ...)
end
commit tran
or
begin tran
update table with (serializable) set ...
where key = #key
if ##rowcount = 0
begin
insert into table (key, ...) values (#key,..)
end
commit tran
See my detailed answer to a very similar previous question
#Beau Crawford's is a good way in SQL 2005 and below, though if you're granting rep it should go to the first guy to SO it. The only problem is that for inserts it's still two IO operations.
MS Sql2008 introduces merge from the SQL:2003 standard:
merge tablename with(HOLDLOCK) as target
using (values ('new value', 'different value'))
as source (field1, field2)
on target.idfield = 7
when matched then
update
set field1 = source.field1,
field2 = source.field2,
...
when not matched then
insert ( idfield, field1, field2, ... )
values ( 7, source.field1, source.field2, ... )
Now it's really just one IO operation, but awful code :-(
Do an UPSERT:
UPDATE MyTable SET FieldA=#FieldA WHERE Key=#Key
IF ##ROWCOUNT = 0
INSERT INTO MyTable (FieldA) VALUES (#FieldA)
http://en.wikipedia.org/wiki/Upsert
Many people will suggest you use MERGE, but I caution you against it. By default, it doesn't protect you from concurrency and race conditions any more than multiple statements, and it introduces other dangers:
Use Caution with SQL Server's MERGE Statement
So, you want to use MERGE, eh?
Even with this "simpler" syntax available, I still prefer this approach (error handling omitted for brevity):
BEGIN TRANSACTION;
UPDATE dbo.table WITH (UPDLOCK, SERIALIZABLE)
SET ... WHERE PK = #PK;
IF ##ROWCOUNT = 0
BEGIN
INSERT dbo.table(PK, ...) SELECT #PK, ...;
END
COMMIT TRANSACTION;
Please stop using this UPSERT anti-pattern
A lot of folks will suggest this way:
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN TRANSACTION;
IF EXISTS (SELECT 1 FROM dbo.table WHERE PK = #PK)
BEGIN
UPDATE ...
END
ELSE
BEGIN
INSERT ...
END
COMMIT TRANSACTION;
But all this accomplishes is ensuring you may need to read the table twice to locate the row(s) to be updated. In the first sample, you will only ever need to locate the row(s) once. (In both cases, if no rows are found from the initial read, an insert occurs.)
Others will suggest this way:
BEGIN TRY
INSERT ...
END TRY
BEGIN CATCH
IF ERROR_NUMBER() = 2627
UPDATE ...
END CATCH
However, this is problematic if for no other reason than letting SQL Server catch exceptions that you could have prevented in the first place is much more expensive, except in the rare scenario where almost every insert fails. I prove as much here:
Checking for potential constraint violations before entering TRY/CATCH
Performance impact of different error handling techniques
IF EXISTS (SELECT * FROM [Table] WHERE ID = rowID)
UPDATE [Table] SET propertyOne = propOne, property2 . . .
ELSE
INSERT INTO [Table] (propOne, propTwo . . .)
Edit:
Alas, even to my own detriment, I must admit the solutions that do this without a select seem to be better since they accomplish the task with one less step.
If you want to UPSERT more than one record at a time you can use the ANSI SQL:2003 DML statement MERGE.
MERGE INTO table_name WITH (HOLDLOCK) USING table_name ON (condition)
WHEN MATCHED THEN UPDATE SET column1 = value1 [, column2 = value2 ...]
WHEN NOT MATCHED THEN INSERT (column1 [, column2 ...]) VALUES (value1 [, value2 ...])
Check out Mimicking MERGE Statement in SQL Server 2005.
Although its pretty late to comment on this I want to add a more complete example using MERGE.
Such Insert+Update statements are usually called "Upsert" statements and can be implemented using MERGE in SQL Server.
A very good example is given here:
http://weblogs.sqlteam.com/dang/archive/2009/01/31/UPSERT-Race-Condition-With-MERGE.aspx
The above explains locking and concurrency scenarios as well.
I will be quoting the same for reference:
ALTER PROCEDURE dbo.Merge_Foo2
#ID int
AS
SET NOCOUNT, XACT_ABORT ON;
MERGE dbo.Foo2 WITH (HOLDLOCK) AS f
USING (SELECT #ID AS ID) AS new_foo
ON f.ID = new_foo.ID
WHEN MATCHED THEN
UPDATE
SET f.UpdateSpid = ##SPID,
UpdateTime = SYSDATETIME()
WHEN NOT MATCHED THEN
INSERT
(
ID,
InsertSpid,
InsertTime
)
VALUES
(
new_foo.ID,
##SPID,
SYSDATETIME()
);
RETURN ##ERROR;
/*
CREATE TABLE ApplicationsDesSocietes (
id INT IDENTITY(0,1) NOT NULL,
applicationId INT NOT NULL,
societeId INT NOT NULL,
suppression BIT NULL,
CONSTRAINT PK_APPLICATIONSDESSOCIETES PRIMARY KEY (id)
)
GO
--*/
DECLARE #applicationId INT = 81, #societeId INT = 43, #suppression BIT = 0
MERGE dbo.ApplicationsDesSocietes WITH (HOLDLOCK) AS target
--set the SOURCE table one row
USING (VALUES (#applicationId, #societeId, #suppression))
AS source (applicationId, societeId, suppression)
--here goes the ON join condition
ON target.applicationId = source.applicationId and target.societeId = source.societeId
WHEN MATCHED THEN
UPDATE
--place your list of SET here
SET target.suppression = source.suppression
WHEN NOT MATCHED THEN
--insert a new line with the SOURCE table one row
INSERT (applicationId, societeId, suppression)
VALUES (source.applicationId, source.societeId, source.suppression);
GO
Replace table and field names by whatever you need.
Take care of the using ON condition.
Then set the appropriate value (and type) for the variables on the DECLARE line.
Cheers.
That depends on the usage pattern. One has to look at the usage big picture without getting lost in the details. For example, if the usage pattern is 99% updates after the record has been created, then the 'UPSERT' is the best solution.
After the first insert (hit), it will be all single statement updates, no ifs or buts. The 'where' condition on the insert is necessary otherwise it will insert duplicates, and you don't want to deal with locking.
UPDATE <tableName> SET <field>=#field WHERE key=#key;
IF ##ROWCOUNT = 0
BEGIN
INSERT INTO <tableName> (field)
SELECT #field
WHERE NOT EXISTS (select * from tableName where key = #key);
END
You can use MERGE Statement, This statement is used to insert data if not exist or update if does exist.
MERGE INTO Employee AS e
using EmployeeUpdate AS eu
ON e.EmployeeID = eu.EmployeeID`
If going the UPDATE if-no-rows-updated then INSERT route, consider doing the INSERT first to prevent a race condition (assuming no intervening DELETE)
INSERT INTO MyTable (Key, FieldA)
SELECT #Key, #FieldA
WHERE NOT EXISTS
(
SELECT *
FROM MyTable
WHERE Key = #Key
)
IF ##ROWCOUNT = 0
BEGIN
UPDATE MyTable
SET FieldA=#FieldA
WHERE Key=#Key
IF ##ROWCOUNT = 0
... record was deleted, consider looping to re-run the INSERT, or RAISERROR ...
END
Apart from avoiding a race condition, if in most cases the record will already exist then this will cause the INSERT to fail, wasting CPU.
Using MERGE probably preferable for SQL2008 onwards.
MS SQL Server 2008 introduces the MERGE statement, which I believe is part of the SQL:2003 standard. As many have shown it is not a big deal to handle one row cases, but when dealing with large datasets, one needs a cursor, with all the performance problems that come along. The MERGE statement will be much welcomed addition when dealing with large datasets.
Before everyone jumps to HOLDLOCK-s out of fear from these nafarious users running your sprocs directly :-) let me point out that you have to guarantee uniqueness of new PK-s by design (identity keys, sequence generators in Oracle, unique indexes for external ID-s, queries covered by indexes). That's the alpha and omega of the issue. If you don't have that, no HOLDLOCK-s of the universe are going to save you and if you do have that then you don't need anything beyond UPDLOCK on the first select (or to use update first).
Sprocs normally run under very controlled conditions and with the assumption of a trusted caller (mid tier). Meaning that if a simple upsert pattern (update+insert or merge) ever sees duplicate PK that means a bug in your mid-tier or table design and it's good that SQL will yell a fault in such case and reject the record. Placing a HOLDLOCK in this case equals eating exceptions and taking in potentially faulty data, besides reducing your perf.
Having said that, Using MERGE, or UPDATE then INSERT is easier on your server and less error prone since you don't have to remember to add (UPDLOCK) to first select. Also, if you are doing inserts/updates in small batches you need to know your data in order to decide whether a transaction is appropriate or not. It it's just a collection of unrelated records then additional "enveloping" transaction will be detrimental.
Does the race conditions really matter if you first try an update followed by an insert?
Lets say you have two threads that want to set a value for key key:
Thread 1: value = 1
Thread 2: value = 2
Example race condition scenario
key is not defined
Thread 1 fails with update
Thread 2 fails with update
Exactly one of thread 1 or thread 2 succeeds with insert. E.g. thread 1
The other thread fails with insert (with error duplicate key) - thread 2.
Result: The "first" of the two treads to insert, decides value.
Wanted result: The last of the 2 threads to write data (update or insert) should decide value
But; in a multithreaded environment, the OS scheduler decides on the order of the thread execution - in the above scenario, where we have this race condition, it was the OS that decided on the sequence of execution. Ie: It is wrong to say that "thread 1" or "thread 2" was "first" from a system viewpoint.
When the time of execution is so close for thread 1 and thread 2, the outcome of the race condition doesn't matter. The only requirement should be that one of the threads should define the resulting value.
For the implementation: If update followed by insert results in error "duplicate key", this should be treated as success.
Also, one should of course never assume that value in the database is the same as the value you wrote last.
I had tried below solution and it works for me, when concurrent request for insert statement occurs.
begin tran
if exists (select * from table with (updlock,serializable) where key = #key)
begin
update table set ...
where key = #key
end
else
begin
insert table (key, ...)
values (#key, ...)
end
commit tran
You can use this query. Work in all SQL Server editions. It's simple, and clear. But you need use 2 queries. You can use if you can't use MERGE
BEGIN TRAN
UPDATE table
SET Id = #ID, Description = #Description
WHERE Id = #Id
INSERT INTO table(Id, Description)
SELECT #Id, #Description
WHERE NOT EXISTS (SELECT NULL FROM table WHERE Id = #Id)
COMMIT TRAN
NOTE: Please explain answer negatives
Assuming that you want to insert/update single row, most optimal approach is to use SQL Server's REPEATABLE READ transaction isolation level:
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN TRANSACTION
IF (EXISTS (SELECT * FROM myTable WHERE key=#key)
UPDATE myTable SET ...
WHERE key=#key
ELSE
INSERT INTO myTable (key, ...)
VALUES (#key, ...)
COMMIT TRANSACTION
This isolation level will prevent/block subsequent repeatable read transactions from accessing same row (WHERE key=#key) while currently running transaction is open.
On the other hand, operations on another row won't be blocked (WHERE key=#key2).
You can use:
INSERT INTO tableName (...) VALUES (...)
ON DUPLICATE KEY
UPDATE ...
Using this, if there is already an entry for the particular key, then it will UPDATE, else, it will INSERT.
In SQL Server 2008 you can use the MERGE statement
If you use ADO.NET, the DataAdapter handles this.
If you want to handle it yourself, this is the way:
Make sure there is a primary key constraint on your key column.
Then you:
Do the update
If the update fails because a record with the key already exists, do the insert. If the update does not fail, you are finished.
You can also do it the other way round, i.e. do the insert first, and do the update if the insert fails. Normally the first way is better, because updates are done more often than inserts.
Doing an if exists ... else ... involves doing two requests minimum (one to check, one to take action). The following approach requires only one where the record exists, two if an insert is required:
DECLARE #RowExists bit
SET #RowExists = 0
UPDATE MyTable SET DataField1 = 'xxx', #RowExists = 1 WHERE Key = 123
IF #RowExists = 0
INSERT INTO MyTable (Key, DataField1) VALUES (123, 'xxx')
I usually do what several of the other posters have said with regard to checking for it existing first and then doing whatever the correct path is. One thing you should remember when doing this is that the execution plan cached by sql could be nonoptimal for one path or the other. I believe the best way to do this is to call two different stored procedures.
FirstSP:
If Exists
Call SecondSP (UpdateProc)
Else
Call ThirdSP (InsertProc)
Now, I don't follow my own advice very often, so take it with a grain of salt.
Do a select, if you get a result, update it, if not, create it.

Solutions for INSERT OR UPDATE on SQL Server

Assume a table structure of MyTable(KEY, datafield1, datafield2...).
Often I want to either update an existing record, or insert a new record if it doesn't exist.
Essentially:
IF (key exists)
run update command
ELSE
run insert command
What's the best performing way to write this?
don't forget about transactions. Performance is good, but simple (IF EXISTS..) approach is very dangerous.
When multiple threads will try to perform Insert-or-update you can easily
get primary key violation.
Solutions provided by #Beau Crawford & #Esteban show general idea but error-prone.
To avoid deadlocks and PK violations you can use something like this:
begin tran
if exists (select * from table with (updlock,serializable) where key = #key)
begin
update table set ...
where key = #key
end
else
begin
insert into table (key, ...)
values (#key, ...)
end
commit tran
or
begin tran
update table with (serializable) set ...
where key = #key
if ##rowcount = 0
begin
insert into table (key, ...) values (#key,..)
end
commit tran
See my detailed answer to a very similar previous question
#Beau Crawford's is a good way in SQL 2005 and below, though if you're granting rep it should go to the first guy to SO it. The only problem is that for inserts it's still two IO operations.
MS Sql2008 introduces merge from the SQL:2003 standard:
merge tablename with(HOLDLOCK) as target
using (values ('new value', 'different value'))
as source (field1, field2)
on target.idfield = 7
when matched then
update
set field1 = source.field1,
field2 = source.field2,
...
when not matched then
insert ( idfield, field1, field2, ... )
values ( 7, source.field1, source.field2, ... )
Now it's really just one IO operation, but awful code :-(
Do an UPSERT:
UPDATE MyTable SET FieldA=#FieldA WHERE Key=#Key
IF ##ROWCOUNT = 0
INSERT INTO MyTable (FieldA) VALUES (#FieldA)
http://en.wikipedia.org/wiki/Upsert
Many people will suggest you use MERGE, but I caution you against it. By default, it doesn't protect you from concurrency and race conditions any more than multiple statements, and it introduces other dangers:
Use Caution with SQL Server's MERGE Statement
So, you want to use MERGE, eh?
Even with this "simpler" syntax available, I still prefer this approach (error handling omitted for brevity):
BEGIN TRANSACTION;
UPDATE dbo.table WITH (UPDLOCK, SERIALIZABLE)
SET ... WHERE PK = #PK;
IF ##ROWCOUNT = 0
BEGIN
INSERT dbo.table(PK, ...) SELECT #PK, ...;
END
COMMIT TRANSACTION;
Please stop using this UPSERT anti-pattern
A lot of folks will suggest this way:
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN TRANSACTION;
IF EXISTS (SELECT 1 FROM dbo.table WHERE PK = #PK)
BEGIN
UPDATE ...
END
ELSE
BEGIN
INSERT ...
END
COMMIT TRANSACTION;
But all this accomplishes is ensuring you may need to read the table twice to locate the row(s) to be updated. In the first sample, you will only ever need to locate the row(s) once. (In both cases, if no rows are found from the initial read, an insert occurs.)
Others will suggest this way:
BEGIN TRY
INSERT ...
END TRY
BEGIN CATCH
IF ERROR_NUMBER() = 2627
UPDATE ...
END CATCH
However, this is problematic if for no other reason than letting SQL Server catch exceptions that you could have prevented in the first place is much more expensive, except in the rare scenario where almost every insert fails. I prove as much here:
Checking for potential constraint violations before entering TRY/CATCH
Performance impact of different error handling techniques
IF EXISTS (SELECT * FROM [Table] WHERE ID = rowID)
UPDATE [Table] SET propertyOne = propOne, property2 . . .
ELSE
INSERT INTO [Table] (propOne, propTwo . . .)
Edit:
Alas, even to my own detriment, I must admit the solutions that do this without a select seem to be better since they accomplish the task with one less step.
If you want to UPSERT more than one record at a time you can use the ANSI SQL:2003 DML statement MERGE.
MERGE INTO table_name WITH (HOLDLOCK) USING table_name ON (condition)
WHEN MATCHED THEN UPDATE SET column1 = value1 [, column2 = value2 ...]
WHEN NOT MATCHED THEN INSERT (column1 [, column2 ...]) VALUES (value1 [, value2 ...])
Check out Mimicking MERGE Statement in SQL Server 2005.
Although its pretty late to comment on this I want to add a more complete example using MERGE.
Such Insert+Update statements are usually called "Upsert" statements and can be implemented using MERGE in SQL Server.
A very good example is given here:
http://weblogs.sqlteam.com/dang/archive/2009/01/31/UPSERT-Race-Condition-With-MERGE.aspx
The above explains locking and concurrency scenarios as well.
I will be quoting the same for reference:
ALTER PROCEDURE dbo.Merge_Foo2
#ID int
AS
SET NOCOUNT, XACT_ABORT ON;
MERGE dbo.Foo2 WITH (HOLDLOCK) AS f
USING (SELECT #ID AS ID) AS new_foo
ON f.ID = new_foo.ID
WHEN MATCHED THEN
UPDATE
SET f.UpdateSpid = ##SPID,
UpdateTime = SYSDATETIME()
WHEN NOT MATCHED THEN
INSERT
(
ID,
InsertSpid,
InsertTime
)
VALUES
(
new_foo.ID,
##SPID,
SYSDATETIME()
);
RETURN ##ERROR;
/*
CREATE TABLE ApplicationsDesSocietes (
id INT IDENTITY(0,1) NOT NULL,
applicationId INT NOT NULL,
societeId INT NOT NULL,
suppression BIT NULL,
CONSTRAINT PK_APPLICATIONSDESSOCIETES PRIMARY KEY (id)
)
GO
--*/
DECLARE #applicationId INT = 81, #societeId INT = 43, #suppression BIT = 0
MERGE dbo.ApplicationsDesSocietes WITH (HOLDLOCK) AS target
--set the SOURCE table one row
USING (VALUES (#applicationId, #societeId, #suppression))
AS source (applicationId, societeId, suppression)
--here goes the ON join condition
ON target.applicationId = source.applicationId and target.societeId = source.societeId
WHEN MATCHED THEN
UPDATE
--place your list of SET here
SET target.suppression = source.suppression
WHEN NOT MATCHED THEN
--insert a new line with the SOURCE table one row
INSERT (applicationId, societeId, suppression)
VALUES (source.applicationId, source.societeId, source.suppression);
GO
Replace table and field names by whatever you need.
Take care of the using ON condition.
Then set the appropriate value (and type) for the variables on the DECLARE line.
Cheers.
That depends on the usage pattern. One has to look at the usage big picture without getting lost in the details. For example, if the usage pattern is 99% updates after the record has been created, then the 'UPSERT' is the best solution.
After the first insert (hit), it will be all single statement updates, no ifs or buts. The 'where' condition on the insert is necessary otherwise it will insert duplicates, and you don't want to deal with locking.
UPDATE <tableName> SET <field>=#field WHERE key=#key;
IF ##ROWCOUNT = 0
BEGIN
INSERT INTO <tableName> (field)
SELECT #field
WHERE NOT EXISTS (select * from tableName where key = #key);
END
You can use MERGE Statement, This statement is used to insert data if not exist or update if does exist.
MERGE INTO Employee AS e
using EmployeeUpdate AS eu
ON e.EmployeeID = eu.EmployeeID`
If going the UPDATE if-no-rows-updated then INSERT route, consider doing the INSERT first to prevent a race condition (assuming no intervening DELETE)
INSERT INTO MyTable (Key, FieldA)
SELECT #Key, #FieldA
WHERE NOT EXISTS
(
SELECT *
FROM MyTable
WHERE Key = #Key
)
IF ##ROWCOUNT = 0
BEGIN
UPDATE MyTable
SET FieldA=#FieldA
WHERE Key=#Key
IF ##ROWCOUNT = 0
... record was deleted, consider looping to re-run the INSERT, or RAISERROR ...
END
Apart from avoiding a race condition, if in most cases the record will already exist then this will cause the INSERT to fail, wasting CPU.
Using MERGE probably preferable for SQL2008 onwards.
MS SQL Server 2008 introduces the MERGE statement, which I believe is part of the SQL:2003 standard. As many have shown it is not a big deal to handle one row cases, but when dealing with large datasets, one needs a cursor, with all the performance problems that come along. The MERGE statement will be much welcomed addition when dealing with large datasets.
Before everyone jumps to HOLDLOCK-s out of fear from these nafarious users running your sprocs directly :-) let me point out that you have to guarantee uniqueness of new PK-s by design (identity keys, sequence generators in Oracle, unique indexes for external ID-s, queries covered by indexes). That's the alpha and omega of the issue. If you don't have that, no HOLDLOCK-s of the universe are going to save you and if you do have that then you don't need anything beyond UPDLOCK on the first select (or to use update first).
Sprocs normally run under very controlled conditions and with the assumption of a trusted caller (mid tier). Meaning that if a simple upsert pattern (update+insert or merge) ever sees duplicate PK that means a bug in your mid-tier or table design and it's good that SQL will yell a fault in such case and reject the record. Placing a HOLDLOCK in this case equals eating exceptions and taking in potentially faulty data, besides reducing your perf.
Having said that, Using MERGE, or UPDATE then INSERT is easier on your server and less error prone since you don't have to remember to add (UPDLOCK) to first select. Also, if you are doing inserts/updates in small batches you need to know your data in order to decide whether a transaction is appropriate or not. It it's just a collection of unrelated records then additional "enveloping" transaction will be detrimental.
Does the race conditions really matter if you first try an update followed by an insert?
Lets say you have two threads that want to set a value for key key:
Thread 1: value = 1
Thread 2: value = 2
Example race condition scenario
key is not defined
Thread 1 fails with update
Thread 2 fails with update
Exactly one of thread 1 or thread 2 succeeds with insert. E.g. thread 1
The other thread fails with insert (with error duplicate key) - thread 2.
Result: The "first" of the two treads to insert, decides value.
Wanted result: The last of the 2 threads to write data (update or insert) should decide value
But; in a multithreaded environment, the OS scheduler decides on the order of the thread execution - in the above scenario, where we have this race condition, it was the OS that decided on the sequence of execution. Ie: It is wrong to say that "thread 1" or "thread 2" was "first" from a system viewpoint.
When the time of execution is so close for thread 1 and thread 2, the outcome of the race condition doesn't matter. The only requirement should be that one of the threads should define the resulting value.
For the implementation: If update followed by insert results in error "duplicate key", this should be treated as success.
Also, one should of course never assume that value in the database is the same as the value you wrote last.
I had tried below solution and it works for me, when concurrent request for insert statement occurs.
begin tran
if exists (select * from table with (updlock,serializable) where key = #key)
begin
update table set ...
where key = #key
end
else
begin
insert table (key, ...)
values (#key, ...)
end
commit tran
You can use this query. Work in all SQL Server editions. It's simple, and clear. But you need use 2 queries. You can use if you can't use MERGE
BEGIN TRAN
UPDATE table
SET Id = #ID, Description = #Description
WHERE Id = #Id
INSERT INTO table(Id, Description)
SELECT #Id, #Description
WHERE NOT EXISTS (SELECT NULL FROM table WHERE Id = #Id)
COMMIT TRAN
NOTE: Please explain answer negatives
Assuming that you want to insert/update single row, most optimal approach is to use SQL Server's REPEATABLE READ transaction isolation level:
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN TRANSACTION
IF (EXISTS (SELECT * FROM myTable WHERE key=#key)
UPDATE myTable SET ...
WHERE key=#key
ELSE
INSERT INTO myTable (key, ...)
VALUES (#key, ...)
COMMIT TRANSACTION
This isolation level will prevent/block subsequent repeatable read transactions from accessing same row (WHERE key=#key) while currently running transaction is open.
On the other hand, operations on another row won't be blocked (WHERE key=#key2).
You can use:
INSERT INTO tableName (...) VALUES (...)
ON DUPLICATE KEY
UPDATE ...
Using this, if there is already an entry for the particular key, then it will UPDATE, else, it will INSERT.
In SQL Server 2008 you can use the MERGE statement
If you use ADO.NET, the DataAdapter handles this.
If you want to handle it yourself, this is the way:
Make sure there is a primary key constraint on your key column.
Then you:
Do the update
If the update fails because a record with the key already exists, do the insert. If the update does not fail, you are finished.
You can also do it the other way round, i.e. do the insert first, and do the update if the insert fails. Normally the first way is better, because updates are done more often than inserts.
Doing an if exists ... else ... involves doing two requests minimum (one to check, one to take action). The following approach requires only one where the record exists, two if an insert is required:
DECLARE #RowExists bit
SET #RowExists = 0
UPDATE MyTable SET DataField1 = 'xxx', #RowExists = 1 WHERE Key = 123
IF #RowExists = 0
INSERT INTO MyTable (Key, DataField1) VALUES (123, 'xxx')
I usually do what several of the other posters have said with regard to checking for it existing first and then doing whatever the correct path is. One thing you should remember when doing this is that the execution plan cached by sql could be nonoptimal for one path or the other. I believe the best way to do this is to call two different stored procedures.
FirstSP:
If Exists
Call SecondSP (UpdateProc)
Else
Call ThirdSP (InsertProc)
Now, I don't follow my own advice very often, so take it with a grain of salt.
Do a select, if you get a result, update it, if not, create it.

Insert Update stored proc on SQL Server

I've written a stored proc that will do an update if a record exists, otherwise it will do an insert. It looks something like this:
update myTable set Col1=#col1, Col2=#col2 where ID=#ID
if ##rowcount = 0
insert into myTable (Col1, Col2) values (#col1, #col2)
My logic behind writing it in this way is that the update will perform an implicit select using the where clause and if that returns 0 then the insert will take place.
The alternative to doing it this way would be to do a select and then based on the number of rows returned either do an update or insert. This I considered inefficient because if you are to do an update it will cause 2 selects (the first explicit select call and the second implicit in the where of the update). If the proc were to do an insert then there'd be no difference in efficiency.
Is my logic sound here?
Is this how you would combine an insert and update into a stored proc?
Your assumption is right, this is the optimal way to do it and it's called upsert/merge.
Importance of UPSERT - from sqlservercentral.com:
For every update in the case mentioned above we are removing one
additional read from the table if we
use the UPSERT instead of EXISTS.
Unfortunately for an Insert, both the
UPSERT and IF EXISTS methods use the
same number of reads on the table.
Therefore the check for existence
should only be done when there is a
very valid reason to justify the
additional I/O. The optimized way to
do things is to make sure that you
have little reads as possible on the
DB.
The best strategy is to attempt the
update. If no rows are affected by the
update then insert. In most
circumstances, the row will already
exist and only one I/O will be
required.
Edit:
Please check out this answer and the linked blog post to learn about the problems with this pattern and how to make it work safe.
Please read the post on my blog for a good, safe pattern you can use. There are a lot of considerations, and the accepted answer on this question is far from safe.
For a quick answer try the following pattern. It will work fine on SQL 2000 and above. SQL 2005 gives you error handling which opens up other options and SQL 2008 gives you a MERGE command.
begin tran
update t with (serializable)
set hitCount = hitCount + 1
where pk = #id
if ##rowcount = 0
begin
insert t (pk, hitCount)
values (#id,1)
end
commit tran
If to be used with SQL Server 2000/2005 the original code needs to be enclosed in transaction to make sure that data remain consistent in concurrent scenario.
BEGIN TRANSACTION Upsert
update myTable set Col1=#col1, Col2=#col2 where ID=#ID
if ##rowcount = 0
insert into myTable (Col1, Col2) values (#col1, #col2)
COMMIT TRANSACTION Upsert
This will incur additional performance cost, but will ensure data integrity.
Add, as already suggested, MERGE should be used where available.
MERGE is one of the new features in SQL Server 2008, by the way.
You not only need to run it in transaction, it also needs high isolation level. I fact default isolation level is Read Commited and this code need Serializable.
SET transaction isolation level SERIALIZABLE
BEGIN TRANSACTION Upsert
UPDATE myTable set Col1=#col1, Col2=#col2 where ID=#ID
if ##rowcount = 0
begin
INSERT into myTable (ID, Col1, Col2) values (#ID #col1, #col2)
end
COMMIT TRANSACTION Upsert
Maybe adding also the ##error check and rollback could be good idea.
If you are not doing a merge in SQL 2008 you must change it to:
if ##rowcount = 0 and ##error=0
otherwise if the update fails for some reason then it will try and to an insert afterwards because the rowcount on a failed statement is 0
Big fan of the UPSERT, really cuts down on the code to manage. Here is another way I do it: One of the input parameters is ID, if the ID is NULL or 0, you know it's an INSERT, otherwise it's an update. Assumes the application knows if there is an ID, so wont work in all situations, but will cut the executes in half if you do.
Modified Dima Malenko post:
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
BEGIN TRANSACTION UPSERT
UPDATE MYTABLE
SET COL1 = #col1,
COL2 = #col2
WHERE ID = #ID
IF ##rowcount = 0
BEGIN
INSERT INTO MYTABLE
(ID,
COL1,
COL2)
VALUES (#ID,
#col1,
#col2)
END
IF ##Error > 0
BEGIN
INSERT INTO MYERRORTABLE
(ID,
COL1,
COL2)
VALUES (#ID,
#col1,
#col2)
END
COMMIT TRANSACTION UPSERT
You can trap the error and send the record to a failed insert table.
I needed to do this because we are taking whatever data is send via WSDL and if possible fixing it internally.
Your logic seems sound, but you might want to consider adding some code to prevent the insert if you had passed in a specific primary key.
Otherwise, if you're always doing an insert if the update didn't affect any records, what happens when someone deletes the record before you "UPSERT" runs? Now the record you were trying to update doesn't exist, so it'll create a record instead. That probably isn't the behavior you were looking for.