I'm creating a new database and plan to use temporal tables to log all changes. The data stored will be updated daily but will not be more than 5000 records per table
Is there any reason I shouldn't just make all tables temporal?
Ps. I am aware of the space usage of temporal tables, this is not as far as I understand a problem
I am aware of the space usage of temporal tables, this is not as far as I understand a problem
On the contrary - it's pretty big problem - and there are many other downsides too.
When you use Temporal Tables (at least in SQL Server), every UPDATE operation (even if the data is unchanged) results in a copy being made in the History table (granted, under-the-hood this may be a COW-optimized copy, but it's still another conceptual entity instance).
Secondly - from my personal experience working with LoB applications: most changes to databases are not important enough to justify creating an entire copy of a row, for example, imagine a table with 4 columns ( CREATE TABLE People ( FirstName nvarchar(50), LastName nvarchar(50), Address nvarchar(200), Biography nvarchar(max): whenever a typo in FirstName is fixed then all of the data in the other columns is copied-over, even if Biography contains a 4GB worth of text data - even if this is COW-optimized it's still creating copies for every user action that results in a change.
Is there any reason I shouldn't just make all tables temporal?
The main reason, in my experience, is that it makes changing your table schema much harder because the schemas (aka "table design") of the Active and History tables must be identical: so if you have a table with a NULL column that you want to change to a NOT NULL column and you have NULL values in your History table then you're stuck - at least until you write a data transformation step that will supply the History table with valid data - it's basically creating more work for yourself with little to gain.
Also, don't confuse Temporal Tables with Immutable, Append-only data-stores (like the Bitcoin Blockchain) - while they share similar design objectives (except true immutability) they exist to solve different problems - and if you consider the size requirements and scaling issues of the Ethereum block-chain (over a terabyte by now) then that should give you another idea why it's probably not a good idea.
Finally, even if Temporal Tables didn't have these issues - you still need to go through the effort to write your main software such that it can natively handle temporal data - and things like Entity Framework still don't have built-in support for querying Temporal Data.
...and even with all the historical records you've managed to save in the History table, what do you want it for? Do you really need to track every corrected typo and small, inconsequential change? How will your users react to needing to manually audit the changes to determine what's meaningful or not?
In short:
If your table design probably won't change much in the future...
AND small updates happen infrequently...
OR large updates happen regularly AND you need an audit record
...then go ahead and use Temporal Tables wherever you can.
if not, then you're just creating more future work for yourself with little to gain.
"log all changes" is not a good use case for the temporal features in SQL.
The use case for the SYSTEM TIME temporal feature is when there is a pressing requirement obligating you/the user to be able to easily and quickly reconstruct (should be in scare quotes actually) the state that your database was in at a given moment in time. That is difficult and error-prone and expensive if all you have is a true log of past changes. But if you can suffice with keeping just a log of the changes, then do that (it will be difficult and error-prone and expensive to recreate past database states from the current state and your log, but that's not a pressing problem if there's no pressing need).
Also note that the SQL temporal features encompass also the notion of BUSINESS TIME, which is a different time dimension than the SYSTEM TIME one. Business time is targeted to keeping a history of the world situation, system time is targeted at keeping a history of your database itself, that is, a history of your records of the world situation.
In SQL Server 2008+, we'd like to enable tracking of historical changes to a "Customers" table in an operational database.
It's a new table and our app controls all writing to the database, so we don't need evil hacks like triggers. Instead we will build the change tracking into our business object layer, but we need to figure out the right database schema to use.
The number of rows will be under 100,000 and number of changes per record will average 1.5 per year.
There are at least two ways we've been looking at modelling this:
As a Type 2 Slowly Changing Dimension table called CustomersHistory, with columns for EffectiveStartDate, EffectiveEndDate (set to NULL for the current version of the customer), and auditing columns like ChangeReason and ChangedByUsername. Then we'd build a Customers view over that table which is filtered to EffectiveEndDate=NULL. Most parts of our app would query using that view, and only parts that need to be history-aware would query the underlying table. For performance, we could materialize the view and/or add a filtered index on EffectiveEndDate=NULL.
With a separate audit table. Every change to a Customer record writes once to the Customer table and again to a CustomerHistory audit table.
From a quick review of StackOverflow questions, #2 seems to be much more popular. But is this because most DB apps have to deal with legacy and rogue writers?
Given that we're starting from a blank slate, what are pros and cons of either approach? Which would you recommend?
In general, the issue with SCD Type- II is, if the average number of changes in the values of the attributes are very high, you end-up having a very fat dimension table. This growing dimension table joined with a huge fact table slows down the query performance gradually. It's like slow-poisoning.. Initially you don't see the impact. When you realize it, it's too late!
Now I understand that you will create a separate materialized view with EffectiveEndDate = NULL and that will be used in most of your joins. Additionally for you, the data volume is comparatively low (100,000). With average changes of only 1.5 per year, I don't think data volume / query performance etc. are going to be your problem in the near future.
In other words, your table is truly a slowly changing dimension (as opposed to a rapidly changing dimension - where your option #2 is a better fit). In your case, I will prefer option #1.
I have a couple of databases containing simple data which needs to be imported into a new format schema. I've come up with a flexible schema, but it relies on the critical data of the to older DBs to be stored in one table. This table has only a primary key, a foreign key (both int's), a datetime and a decimal field, but adding the count of rows from the two older DBs indicates that the total row count for this new table would be about 200,000,000 rows.
How do I go about dealing with this amount of data? It is data stretching back about 10 years and does need to be available. Fortunately, we don't need to pull out even 1% of it when making queries in the future, but it does all need to be accessible.
I've got ideas based around having multiple tables for year, supplier (of the source data) etc - or even having one database for each year, with the most recent 2 years in one DB (which would also contain the stored procs for managing all this.)
Any and all help, ideas, suggestions very, deeply, much appreciated,
Matt.
Most importantly. consider profiling your queries and measuring where your actual bottlenecks are (try identifying the missing indexes), you might see that you can store everything in a single table, or that buying a few extra hard disks will be enough to get sufficient performance.
Now, for suggestions, have you considered partitioning? You could create partitions per time range, or one partition with the 1% commonly accessed and another with the 99% of the data.
This is roughly equivalent to splitting the tables manually by year or supplier or whatnot, but internally handled by the server.
On the other hand, it might make more sense to actually splitting the tables in 'current' and 'historical'.
Another possible size improvement is using an int (like an epoch) instead of a datetime and provide functions to convert from datetime to int, thus having queries like
SELECT * FROM megaTable WHERE datetime > dateTimeToEpoch('2010-01-23')
This size savings will probably have a cost performance wise if you need to do complex datetime queries. Although on cubes there is the standard technique of storing, instead of an epoch, an int in YYYYMMDD format.
What's the problem with storing this data in a single table? An enterprise-level SQL server like Microsoft SQL 2005 can handle it without much pain.
By the way, do not do tables per year, tables per supplier or other things like this. If you have to store similar set of items, you need one and one only table. Setting multiple tables to store the same type of things will cause problems, like:
Queries would be extremely difficult to write, and performance will be decreased if you have to query from multiple tables.
The database design will be very difficult to understand (especially since it's not something natural to store the same type of items in different places).
You will not be able to easily modify your database (maybe it's not a problem in your case), because instead of changing one table, you would have to change every table.
It would require to automate a bunch of tasks. Let's see you have a table per year. If a new record is inserted on 2011-01-01 00:00:00.001, will a new table be created? Will you check at each insert if you must create a new table? How it would affect performance? Can you test it easily?
If there is a real, visible separation between "recent" and "old" data (for example you have to use daily the data saved the last month only, and you have to keep everything older, but you do not use it), you can build a system with two SQL servers (installed on different machines). The first, highly available server, will serve to handle recent data. The second, less available and optimized for writing, will store everything else. Then, on schedule, a program will move old data from the first one to the second.
With such a small tuple size (2 ints, 1 datetime, 1 decimal) I think you will be fine having a single table with all the results in it. SQL server 2005 does not limit the number of rows in a table.
If you go down this road and run in to performance problems, then it is time to look at alternatives. Until then, I would plow ahead.
EDIT: Assuming you are using DECIMAL(9) or smaller, your total tuple size is 21 bytes which means that you can store the entire table in less than 4 GB of memory. If you have a decent server(8+ GB of memory) and this is the primary memory user, then the table and a secondary index could be stored in memory. This should ensure super fast queries after a slower warm-up time before the cache is populated.
I recently asked this question:
MS SQL share identity seed amongst tables
(Many people wondered why)
I have the following layout of a table:
Table: Stars
starId bigint
categoryId bigint
starname varchar(200)
But my problem is that I have millions and millions of rows. So when I want to delete stars from the table Stars it is too intense on SQL Server.
I cannot use built in partitioning for 2005+ because I do not have an enterprise license.
When I do delete though, I always delete a whole category Id at a time.
I thought of doing a design like this:
Table: Star_1
starId bigint
CategoryId bigint constaint rock=1
starname varchar(200)
Table: Star_2
starId bigint
CategoryId bigint constaint rock=2
starname varchar(200)
In this way I can delete a whole category and hence millions of rows in O(1) by doing a simple drop table.
My question is, is it a problem to have hundreds of thousands of tables in your SQL Server? The drop in O(1) is extremely desirable to me. Maybe there's a completely different solution I'm not thinking of?
Edit:
Is a star ever modified once it is inserted? No.
Do you ever have to query across star categories? I never have to query across star categories.
If you are looking for data on a particular star, would you know which table to query? Yes
When entering data, how will the application decide which table to put the data into? The insertion of star data is done all at once at the start when the categoryId is created.
How many categories will there be? You can assume there will be infinite star categories. Let's say up to 100 star categories per day and up to 30 star categories not needed per day.
Truly do you need to delete the whole category or only the star that the data changed for? Yes the whole star category.
Have you tried deleting in batches? Yes we do that today, but it is not good enough.
od enough.
Another technique is mark the record for deletion? There is no need to mark a star as deleted because we know the whole star category is eligible to be deleted.
What proportion of them never get used? Typically we keep each star category data for a couple weeks but sometimes need to keep more.
When you decide one is useful is that good for ever or might it still need to be deleted later?
Not forever, but until a manual request to delete the category is issued.
If so what % of the time does that happen? Not that often.
What kind of disc arrangement are you using? Single filegroup storage and no partitioning currently.
Can you use sql enterprise ? No. There are many people that run this software and they only have sql standard. It is outside of their budget to get ms sql enterprise.
My question is, is it a problem to have hundreds of thousands of tables in your SQL Server?
Yes. It is a huge problem to have this many tables in your SQL Server. Every object has to be tracked by SQL Server as metadata, and once you include indexes, referential constraints, primary keys, defaults, and so on, then you are talking about millions of database objects.
While SQL Server may theoretically be able to handle 232 objects, rest assured that it will start buckling under the load much sooner than that.
And if the database doesn't collapse, your developers and IT staff almost certainly will. I get nervous when I see more than a thousand tables or so; show me a database with hundreds of thousands and I will run away screaming.
Creating hundreds of thousands of tables as a poor-man's partitioning strategy will eliminate your ability to do any of the following:
Write efficient queries (how do you SELECT multiple categories?)
Maintain unique identities (as you've already discovered)
Maintain referential integrity (unless you like managing 300,000 foreign keys)
Perform ranged updates
Write clean application code
Maintain any sort of history
Enforce proper security (it seems evident that users would have to be able to initiate these create/drops - very dangerous)
Cache properly - 100,000 tables means 100,000 different execution plans all competing for the same memory, which you likely don't have enough of;
Hire a DBA (because rest assured, they will quit as soon as they see your database).
On the other hand, it's not a problem at all to have hundreds of thousands of rows, or even millions of rows, in a single table - that's the way SQL Server and other SQL RDBMSes were designed to be used and they are very well-optimized for this case.
The drop in O(1) is extremely desirable to me. Maybe there's a completely different solution I'm not thinking of?
The typical solution to performance problems in databases is, in order of preference:
Run a profiler to determine what the slowest parts of the query are;
Improve the query, if possible (i.e. by eliminating non-sargable predicates);
Normalize or add indexes to eliminate those bottlenecks;
Denormalize when necessary (not generally applicable to deletes);
If cascade constraints or triggers are involved, disable those for the duration of the transaction and blow out the cascades manually.
But the reality here is that you don't need a "solution."
"Millions and millions of rows" is not a lot in a SQL Server database. It is very quick to delete a few thousand rows from a table of millions by simply indexing on the column you wish to delete from - in this case CategoryID. SQL Server can do this without breaking a sweat.
In fact, deletions normally have an O(M log N) complexity (N = number of rows, M = number of rows to delete). In order to achieve an O(1) deletion time, you'd be sacrificing almost every benefit that SQL Server provides in the first place.
O(M log N) may not be as fast as O(1), but the kind of slowdowns you're talking about (several minutes to delete) must have a secondary cause. The numbers do not add up, and to demonstrate this, I've gone ahead and produced a benchmark:
Table Schema:
CREATE TABLE Stars
(
StarID int NOT NULL IDENTITY(1, 1)
CONSTRAINT PK_Stars PRIMARY KEY CLUSTERED,
CategoryID smallint NOT NULL,
StarName varchar(200)
)
CREATE INDEX IX_Stars_Category
ON Stars (CategoryID)
Note that this schema is not even really optimized for DELETE operations, it's a fairly run-of-the-mill table schema you might see in SQL server. If this table has no relationships, then we don't need the surrogate key or clustered index (or we could put the clustered index on the category). I'll come back to that later.
Sample Data:
This will populate the table with 10 million rows, using 500 categories (i.e. a cardinality of 1:20,000 per category). You can tweak the parameters to change the amount of data and/or cardinality.
SET NOCOUNT ON
DECLARE
#BatchSize int,
#BatchNum int,
#BatchCount int,
#StatusMsg nvarchar(100)
SET #BatchSize = 1000
SET #BatchCount = 10000
SET #BatchNum = 1
WHILE (#BatchNum <= #BatchCount)
BEGIN
SET #StatusMsg =
N'Inserting rows - batch #' + CAST(#BatchNum AS nvarchar(5))
RAISERROR(#StatusMsg, 0, 1) WITH NOWAIT
INSERT Stars2 (CategoryID, StarName)
SELECT
v.number % 500,
CAST(RAND() * v.number AS varchar(200))
FROM master.dbo.spt_values v
WHERE v.type = 'P'
AND v.number >= 1
AND v.number <= #BatchSize
SET #BatchNum = #BatchNum + 1
END
Profile Script
The simplest of them all...
DELETE FROM Stars
WHERE CategoryID = 50
Results:
This was tested on an 5-year old workstation machine running, IIRC, a 32-bit dual-core AMD Athlon and a cheap 7200 RPM SATA drive.
I ran the test 10 times using different CategoryIDs. The slowest time (cold cache) was about 5 seconds. The fastest time was 1 second.
Perhaps not as fast as simply dropping the table, but nowhere near the multi-minute deletion times you mentioned. And remember, this isn't even on a decent machine!
But we can do better...
Everything about your question implies that this data isn't related. If you don't have relations, you don't need the surrogate key, and can get rid of one of the indexes, moving the clustered index to the CategoryID column.
Now, as a rule, clustered indexes on non-unique/non-sequential columns are not a good practice. But we're just benchmarking here, so we'll do it anyway:
CREATE TABLE Stars
(
CategoryID smallint NOT NULL,
StarName varchar(200)
)
CREATE CLUSTERED INDEX IX_Stars_Category
ON Stars (CategoryID)
Run the same test data generator on this (incurring a mind-boggling number of page splits) and the same deletion took an average of just 62 milliseconds, and 190 from a cold cache (outlier). And for reference, if the index is made nonclustered (no clustered index at all) then the delete time only goes up to an average of 606 ms.
Conclusion:
If you're seeing delete times of several minutes - or even several seconds then something is very, very wrong.
Possible factors are:
Statistics aren't up to date (shouldn't be an issue here, but if it is, just run sp_updatestats);
Lack of indexing (although, curiously, removing the IX_Stars_Category index in the first example actually leads to a faster overall delete, because the clustered index scan is faster than the nonclustered index delete);
Improperly-chosen data types. If you only have millions of rows, as opposed to billions, then you do not need a bigint on the StarID. You definitely don't need it on the CategoryID - if you have fewer than 32,768 categories then you can even do with a smallint. Every byte of unnecessary data in each row adds an I/O cost.
Lock contention. Maybe the problem isn't actually delete speed at all; maybe some other script or process is holding locks on Star rows and the DELETE just sits around waiting for them to let go.
Extremely poor hardware. I was able to run this without any problems on a pretty lousy machine, but if you're running this database on a '90s-era Presario or some similar machine that's preposterously unsuitable for hosting an instance of SQL Server, and it's heavily-loaded, then you're obviously going to run into problems.
Very expensive foreign keys, triggers, constraints, or other database objects which you haven't included in your example, which might be adding a high cost. Your execution plan should clearly show this (in the optimized example above, it's just a single Clustered Index Delete).
I honestly cannot think of any other possibilities. Deletes in SQL Server just aren't that slow.
If you're able to run these benchmarks and see roughly the same performance I saw (or better), then it means the problem is with your database design and optimization strategy, not with SQL Server or the asymptotic complexity of deletions. I would suggest, as a starting point, to read a little about optimization:
SQL Server Optimization Tips (Database Journal)
SQL Server Optimization (MSDN)
Improving SQL Server Performance (MSDN)
SQL Server Query Processing Team Blog
SQL Server Performance (particularly their tips on indexes)
If this still doesn't help you, then I can offer the following additional suggestions:
Upgrade to SQL Server 2008, which gives you a myriad of compression options that can vastly improve I/O performance;
Consider pre-compressing the per-category Star data into a compact serialized list (using the BinaryWriter class in .NET), and store it in a varbinary column. This way you can have one row per category. This violates 1NF rules, but since you don't seem to be doing anything with individual Star data from within the database anyway anyway, I doubt you'd be losing much.
Consider using a non-relational database or storage format, such as db4o or Cassandra. Instead of implementing a known database anti-pattern (the infamous "data dump"), use a tool that is actually designed for that kind of storage and access pattern.
Must you delete them? Often it is better to just set an IsDeleted bit column to 1, and then do the actual deletion asynchronously during off hours.
Edit:
This is a shot in the dark, but adding a clustered index on CategoryId may speed up deletes. It may also impact other queries adversely. Is this something you can test?
This was the old technique in SQL 2000 , partitioned views and remains a valid option for SQL 2005. The problem does come in from having large quantity of tables and the maintenance overheads associated with them.
As you say, partitioning is an enterprise feature, but is designed for this large scale data removal / rolling window effect.
One other option would be running batched deletes to avoid creating 1 very large transaction, creating hundreds of far smaller transactions, to avoid lock escalations and keep each transaction small.
Having separate tables is partitioning - you are just managing it manually and do not get any management assistance or unified access (without a view or partitioned view).
Is the cost of Enterprise Edition more expensive than the cost of separately building and maintaining a partitioning scheme?
Alternatives to the long-running delete also include populating a replacement table with identical schema and simply excluding the rows to be deleted and then swapping the table out with sp_rename.
I'm not understanding why whole categories of stars are being deleted on a regular basis? Presumably you are having new categories created all the time, which means your number of categories must be huge and partitioning on (manually or not) that would be very intensive.
Maybe on the Stars table set the PK to non-clustered and add a clustered index on categoryid.
Other than that, is the server setup well done regarding best practices for performance? That is using separate physical disks for data and logs, not using RAID5, etc.
When you say deleting millions of rows is "too intense for SQL server", what do you mean? Do you mean that the log file grows too much during the delete?
All you should have to do is execute the delete in batches of a fixed size:
DECLARE #i INT
SET #i = 1
WHILE #i > 0
BEGIN
DELETE TOP 10000 FROM dbo.SuperBigTable
WHERE CategoryID = 743
SELECT #i = ##ROWCOUNT
END
If your database is in full recovery mode, you will have to run frequent transaction log backups during this process so that it can reuse the space in the log. If the database is in simple mode, you shouldn't have to do anything.
My only other recommendation is to make sure that you have an appropriate index in CategoryId. I might even recommend that this be the clustered index.
If you want to optimize on a category delete clustered composite index with category at the first place might do more good than damage.
Also you could describe the relationships on the table.
It sounds like the transaction log is struggling with the size of the delete. The transaction log grows in units, and this takes time whilst it allocates more disk space.
It is not possible to delete rows from a table without enlisting a transaction, although it is possible to truncate a table using the TRUNCATE command. However this will remove all rows in the table without condition.
I can offer the following suggestions:
Switch to a non-transactional database or possibly flat files. It doesn't sound like you need atomicity of a transactional database.
Attempt the following. After every x deletes (depending on size) issue the following statement
BACKUP LOG WITH TRUNCATE_ONLY;
This simply truncates the transaction log, the space remains for the log to refill. However Im not sure howmuch time this will add to the operation.
What do you do with the star data? If you only look at data for one category at any given time this might work, but it is hard to maintain. Every time you have a new category, you will have to build a new table. If you want to query across categories, it becomes more complex and possibly more expensive in terms of time. If you do this and do want to query across categories a view is probably best (but do not pile views on top of views). If you are looking for data on a particular star, would you know which table to query? If not then how are you going to determine which table or are you goign to query them all? When entering data, how will the application decide which table to put the data into? How many categories will there be? And incidentally relating to each having a separate id, use the bigint identities and combine the identity with the category type for your unique identifier.
Truly do you need to delete the whole category or only the star that the data changed for?
And do you need to delete at all, maybe you only need to update information.
Have you tried deleting in batches (1000 records or so at a time in a loop). This is often much faster than deleting a million records in one delete statement. It often keeps the table from getting locked during the delete as well.
Another technique is mark the record for deletion. Then you can run a batch process when usage is low to delete those records and your queries can run on a view that excludes the records marked for deletion.
Given your answers, I think your proposal may be reasonable.
I know this is a bit of a tangent, but is SQL Server (or any relational database) really a good tool for this job? What relation database features are you actually using?
If you are dropping whole categories at a time, you can't have much referential integrity depending on it. The data is read only, so you don't need ACID for data updates.
Sounds to me like you are using basic SELECT query features?
Just taking your idea of many tables - how can you realise that...
What about using dynamic queries.
create the table of categories that have identity category_id column.
create the trigger on insert for this tale - in it create table for stars with the name dynamically made from category_id.
create the trigger on delete - in it drop the corresponding stars table also with the help of dynamically created sql.
to select stars of concrete category you can use function that returns table. It will take category_id as a parameter and return result also through dynamic query.
to insert stars of new category you firstly insert new row in categories table and then insert stars to appropriate table.
Another direction in which I would make some researches is using xml typed column for storing stars data. The main idea here is if you need to operate stars only by categories than why not to store all stars of concrete category in one cell of the table in xml format. Unfortunately I absolutely cannot imaging what will be the performance of such decision.
Both this variants are just like ideas in brainstorm.
As Cade pointed out, adding a table for each category is manually partitioning the data, without the benefits of the unified access.
There will never be any deletions for millions of rows that happen as fast as dropping a table, without the use of partitions.
Therefore, it seems like using a separate table for each category may be a valid solution. However, since you've stated that some of these categories are kept, and some are deleted, here is a solution:
Create a new stars table for each new
category.
Wait for the time period to expire where you decide whether the stars for the category are kept or not.
Roll the records into the main stars table if you plan on keeping them.
Drop the table.
This way, you will have a finite number of tables, depending on the rate you add categories and the time period where you decide if you want them or not.
Ultimately, for the categories that you keep, you're doubling the work, but the extra work is distributed over time. Inserts to the end of the clustered index may be experienced less by the users than deletes from the middle. However, for those categories that you're not keeping, you're saving tons of time.
Even if you're not technically saving work, perception is often the bigger issue.
I didn't get an answer to my comment on the original post, so I am going under some assumptions...
Here's my idea: use multiple databases, one for each category.
You can use the managed ESE database that ships with every version of Windows, for free.
Use the PersistentDictionary object, and keep track of the starid, starname pairs that way. If you need to delete a category, just delete the PersistentDictionary object for that category.
PersistentDictionary<int, string> starsForCategory = new PersistentDictionary<int, string>("Category1");
This will create a database called "Category1", on which you can use standard .NET dictionary methods (add, exists, foreach, etc).