How important is size in an application? - size

When creating applications (Java, run on a normal computer). How important is program size for users? For example, would it be necessary to replace .png's with .jpg's, convert .wav's to .midi's, or strip down libraries to save space, or do users generally not care if my program is 5mb when it could be 50kb if stripped down?
Thanks.

That depends on the delivery mechanism.
Size is generally only relevant in terms of the bandwidth required to download it. If you download it often, then it matters a lot. If its only once, it matters less and you have to weigh up the time involved in reducing that vs how much space you save.
After that, nobody cares until you get into gigabytes. Well, mobile applications will probably start caring at about 10MB+.

Users definitely care (after all, not only does space cost money, but affects program load time). However, the question becomes how much do you optimize. I suggest the 80/20 rule. 80% of your benefit comes from the first 20% of the effort.
If you use a utility like TreePie you might be able to see what parts of a large application are consuming most of your resources. If you find it's just a few large images, or one big DLL with a bunch of embedded resources, it's probably worth taking a look at reducing the size, if it's easy.
But there's a cost/benefit tradeoff. I just saw a terrabyte drive for $100 the other day. Saving the user 1 gig is about 10 cents in terms of storage space, and perhaps some hard to quantify amount of time spent loading every time they load. If you have 100,000 users, it probably worth your time to optimize a bit, but if you're writing custom software for one user it's probably not worth it unless they're complaining.

As mentioned by Graham Lee, a great deal of this is very dependant on your users. If you are writing something that needs to be optimized to fit on the chip of a 68000 processor, then you'd better believe that program size matters. Assuming you're not programming 30 years ago, you probably won't run across that particular issue.
But in general, you should be making your application as small as possible while still achieving the quality you want. That is to say, if your application is likely to be viewed on an 640x480 screen, then you don't need hi-res 6mg pngs for all your images. On the other hand, if your application is designed to be blown up on a big screen at conferences, then you probably want to upsize your images.
Another option that is very common is creating installers with separate options ranging from full to minimal. That way you can allow your users to decide whether size matters to them. It allows you to create the pretty pretty version of your app, and a scaled back version that doesn't include tutorials or mp3 files of a soothing woman's voice telling you that you've push the wrong button.
Know your users. And if you don't, then let them decide for themselves.

Consider yourself, what would you use? Would you rather save space with 5KB programs or waste it with 5MB programs?
I think that smaller is better, especially if the program doesn't use/need much graphics and can be optimized.

I would say not important at all, unless it's obscenely large.

I would argue that startup time is far more important to users that application size.
However if you include a lot of media files with your system it is logical to optimise this data as much as possible. But don't compromise the quality - switching to jpeg might be okay for photos, but it sucks for technical diagrams. A .wav could be an .aac or .mp3, but not if you're writing a professional audio application.

Related

How to deal with thousands of small audio files?

Need to implement an app that has a feature to play sounds. Each sound will be some word sound, number of expected sounds is about one thousand. So, the most simple solution would be to store those sounds as sound files, each word sound in separate sound file, and to play them on demand. Would there be any potential problems with such a large number of files?
No problem with that many files, but they will take up more space than just the total of their sizes. Each file will fill up a whole # of space blocks on the device. On average you will then waste half a block (as a rule of thumb) unless all your files are significantly smaller than one block, in which case you will always use 1.000 blocks (one pr. file) and waste 1000 * (blocksize - average file size).
Things you could do:
Concatenate the files into one big file, store the start and length of each subfile, either read the chunk into memory or copy to a temporary file.
Drop the files in a database as BLOB fields for easier retrieval. This won't save space, but may make your code simpler or more reliable.
I don't think you need to make your own caching mechanism. Most likely iOS has a system-wide cache that does a far better job. That should only be relevant if you experience performance issues and need to get much shorter load times. In that case prhaps consider using bolcks for loading and dispatching the playing, as that's an easier way to hide the load latency and avoid UI freezes.
If your audio is uncompressed, the App Store will report the compressed size. If that differs a lot from the unpacked size, some (nitpicking) customers will definitely notice ald complain, as they think the advertised size is the install size. I know from personal experience. They wil generally not take a technical answer for an answer, any may even bypass talking to you, and just downvote you based on this. I s#it you not.
You should be fine storing 1000 audio clip files within the IPA but it is important to take note about the space requirements and organisation.
Also to take into consideration is the fact that accessing the disk is slower than memory and it also takes up battery space so it my be ideal to load up the most frequently used audio clips into memory.
If you can afford it, use FMOD which I believe can extract audio from various compressed schemes. If you just want to handle all those files yourself create a .zip file and extract them on the fly using libz (iOS library libs.dylib).

Is there any performance difference between creating an NSFileHandle for a large versus a small file?

This question strikes me as almost silly, but I just want to sanity check myself. For a variety of reasons, I'm welding together a bunch of files into a single megafile before packing this as a resource in my iOS app. I'm then using NSFileHandle to open the file, seek to the right place, and read out just the bytes I want.
Is there any performance difference between doing it this way and reading loose files? Or, supposing I could choose to use just one monolithic megafile, versus, say, 10 medium-sized (but still joined) files, is there any performance difference between "opening" the large versus a smaller file?
Since I know exactly where to seek to, and I'm reading just the bytes I want, I don't see how there could be a difference. But, hey -- Stranger things have proved to be. Thanks in advance!
There could be a difference if it was an extremely large number of files. Every open file uses up resources in memory (file handles, and the like), and on some storage devices, a file will take up an entire block even if it doesn't fill it. That can lead to wasted space in extreme cases. But in practice, it probably won't be a problem. To know for sure, you can profile your code and see if it's faster one way vs. the other, and see what sort of space it takes up on a typical device.

How can I estimate if a feature is going to take up too many resources on an FPGA?

I'm starting on my first commercial sized application, and I often find myself making a design, but stopping myself from coding and implementing it, because it seems like a huge use of resources. This is especially true when it's on a piece that is peripheral (for example an enable for the output taps of a shift register). It gets even worse when I think about how large the generic implementation can get (4k bits for the taps example). The cleanest implementation would have these, but in my head it adds a great amount of overhead.
Is there any kind of rule I can use to make a quick decision on whether a design option is worth coding and evaluation? In general I worry less about the number of flip-flops, and more when it comes to width of signals. This may just be coming from a CS background where all application boundarys should be as small as possibly feasable to prevent overhead.
Point 1. We learn by playing, so play! Try a couple of things. See what the tools do. Get a feel for the problem. You won't get past this is you don't try something. Often the problems aren't where you think they're going to be.
Point 2. You need to get some context for these decisions. How big is adding an enable to a shift register compared to the capacity of the FPGA / your design?
Point 3. There's two major types of 'resource' to consider :- Cells and Time.
Cells is relatively easy in broad terms. How many flops? How much logic in identifiable blocks (e.g. in an ALU: multipliers, adders, etc)? Often this is defined by the design you're trying to do. You can't build an ALU without registers, a multiplier, an adder, etc.
Time is more subtle, and is invariably traded off against cells. You'll be trying to hit some performance target and recognising the structures that will make that hard are where to experience from point 1 comes in.
Things to look out for include:
A single net driving a large number of things. Large fan-outs cause a heavy load on a single driver which slows it down. The tool will then have to use cells to buffer that signal. Classic time vs cells trade off.
Deep clumps of logic between register stages. Again the tool will have to spend more cells to make logic meet timing if it's close to the edge. Simple logic is fast and small. Sometimes introducing a pipeline stage can decrease the size of a design is it makes the logic either side far easier.
Don't worry so much about large buses, if each bit is low fanout and you've budgeted for the registers. Large buses are often inherent in fast designs because you need high bandwidth. It can be easier to go wide than to go to a higher clock speed. On the other hand, think about the control logic for a wide bus, because it's likely to have a large fan-out.
Different tools and target devices have different characteristics, so you have to play and learn the rules for your set-up. There's always a size vs speed (and these days 'vs power') compromise. You need to understand what moves you along that curve in each direction. That comes with experience.
Is there any kind of rule I can use to make a quick decision on whether a design option is worth coding and evaluation?
Only rule I can come up with is 'Have I got time? or not?'
If I have, I'll explore. If not I better just make something work.
Ahhh, the life of doing design to a deadline!
It's something that comes with experience. Here's some pointers:
adding numbers is fairly cheap
choosing between them (multiplexing) gets big quite quickly if you have a lot of inputs to the multiplexer (the width of each input is a secondary issue also).
Multiplications are free if you have spare multipliers in your chip, they suddenly become expensive when you run out of hard DSP blocks.
memory is also cheap, until you run out. For example, your 4Kbit shift register easily fits within a single Xilinx block RAM, which is fine if you have one to spare. If not it'll take a large number of LUTs (depending on the device - an older Spartan 3 can fit 17 bits into a LUT (including the in-CLB register), so will require ~235 LUTS). And not all LUTs can be shift registers. If you are only worried about the enable for the register, don't. Unless you are pushing the performance of the device, routing that sort of signal to a few hundred LUTs is unlikely to cause major timing issues.

tips for efficient and optimized Cocoa applications

I am developing a cocoa application (Mac) and wanted to know what are your tips, best practices, ... for an efficient Cocoa application, which starts in less than 1 second and which is very responsive.
I've installed twitter for Mac and was amazed by its speed. Is it using special tricks?
Thanks in advance for your ideas :)
Three things that can help reduce startup time and improve overall performance are:
Defer loading resources until they're actually needed.
Profile your app to identify the parts that have the highest cost (whether you measure that in execution time, memory, or something else). Then work to reduce the cost of those operations or figure out a way to do them less or at a different time.
Take advantage of the hardware. Most machines these days have at least two processing cores and advanced graphics processors; use GCD, Quartz, Core Animation, and other technologies to take advantage of the available power.
I don't think there are really any "tricks" per se. You just profile your code with Instruments, and eliminate the slow areas. It's the same as optimising any code; don't block the main thread with disk reads/writes, use lazy loading where appropriate, etc.
A lot of it may be simply tightly written, good quality code. These sort of apps don't tend to rely on clunky frameworks etc.
Do only what you need to do and only when you need to do it.

Optimizing for low bandwidth

I am charged with designing a web application that displays very large geographical data. And one of the requirements is that it should be optimized so the PC still on dial-ups common in the suburbs of my country could use it as well.
Now I am permitted to use Flash and/or Silverlight if that will help with the limited development time and user experience.
The heavy part of the geographical data are chunked into tiles and loaded like map tiles in Google Maps but that means I need a lot of HTTP requests.
Should I go with just javascript + HTML? Would I end up with a faster application regarding Flash/Silverlight? Since I can do some complex algorithm on those 2 tech (like DeepZoom). Deploying desktop app though, is out of the question since we don't have that much maintenance funds.
It just needs to be fast... really fast..
p.s. faster is in the sense of "download faster"
I would suggest you look into Silverlight and DeepZoom
Is something like Gears acceptable? This will let you store data locally to limit re-requests.
I would also stay away from flash and Silverlight and go straight to javascript/AJAX. jQuery is a ton-O-fun.
I don't think you'll find Flash or Silverlight is going to help too much for this application. Either way you're going to be utilizing tiled images and the images are going to be the same size in both scenarios. Using Flash or Silverlight may allow you to add some neat animations to the application but anything you gain here will be additional overhead for your clients on dialup connections. I'd stick with plain Javascript/HTML.
You may also want to look at asynchronously downloading your tiles via one of the Ajax libraries available. Let's say your user can view 9 tiles at a time and scroll/zoom. Download those 9 tiles they can see plus whatever is needed to handle the zoom for those tiles on the first load; then you'll need to play around with caching strategies for prefetching other information asynchronously.
At one place I worked a rules engine was taking a bit too long to return a result so they opted to present the user with a "confirm this" screen. The few seconds it took the users to review and click next was more than enough time to return the results. It made the app look lightening fast to the user when in reality it took a bit longer. You have to remember, user perception of performance is just as important in some cases as the actual performance.
I believe Microsoft's Seadragon is your answer. However, I am not sure if that is available to developers.
It looks like some of it has found its way into Silverlight