So I write a Linq query and it takes 16 seconds to run. Decide to see what the query plan is, so I get that out of Linq to SQL Profiler and the query only takes 2 seconds to run. sigh
After spending most of the day poking at things and finally getting around to using SQL Server Profiler I see that Linq2SQL is using sp_executesql to run the query. I understand that it's supposed to improve performance because it's more likely to re-use the execution plan... but it seems to have chosen a horrible execution plan to use.
The weirder part is that it only gets slow if I join a specific table, and I have no idea why that specific table is causing a problem.
EDIT Just to clarify the actual issue here:
It's actually getting to different queries. One is, essentially,
SELECT col1, col2, ... FROM table1, table2 WHERE table1.val IN (1234, 2343, 2435)
The other is
EXEC sp_executesql 'SELECT col1, col2, ... FROM table1, table2 WHERE table1.val IN (#p1, #p2, #p3)',
N'#p0 int,#p1 int,#p2 int,#p3 int',
#p0=1234, #p1=2343, #p3=2435
Your problem doesn't stem from the use of sp_executesql, and so circumventing it (which you can't) will not solve your problems. I suggest you read Erland Sommarskog's excellent article:
Slow in the Application, Fast in SSMS?
Understanding Performance Mysteries
This will give you a deep understanding of why you're getting a performance difference, how to diagnose and consistently reproduce it, and finally, how to solve it.
If the exact same query is fast from one application or server, but slow from another, it's usually all about execution plans. An execution plan is the blueprint the server uses to run the query. The plan is supposed to be created once, and then reused for all queries which differ only in parameter values.
Different execution plans can lead to wildly difference performance, a factor of 100 is not at all unusual. As a first step, examine if the execution plans are different. The profiler event performance -> showplan xml logs the plan.
If the plan is different, one possible cause can be the session options, like ansi nulls:
SET ANSI_NULLS
Another possibility is a different login (the blueprint contains security information, so each security context has its own set of cached execution plans.)
The easiest way to clear the plan cache is to restart the SQL Server service. There's also an advanced command to clear the entire query plan cache:
DBCC FREEPROCCACHE
P.S. If you have a stored procedure that performs differently based on the value of parameters, it's worth to check out parameter sniffing. But since you're copying the exact same procedure from the profiler, I assume the parameters are identical for both the slow and the fast invocations.
To answer your question....
NO, you can't...
If yes, why are there still so many successful SQL injections? Just because some developers are too dumb to use parameterized statements?
When articles talk about parameterized queries stopping SQL attacks they don't really explain why, it's often a case of "It does, so don't ask why" -- possibly because they don't know themselves. A sure sign of a bad educator is one that can't admit they don't know something. But I digress.
When I say I found it totally understandable to be confused is simple. Imagine a dynamic SQL query
sqlQuery='SELECT * FROM custTable WHERE User=' + Username + ' AND Pass=' + password
so a simple sql injection would be just to put the Username in as ' OR 1=1--
This would effectively make the sql query:
sqlQuery='SELECT * FROM custTable WHERE User='' OR 1=1-- ' AND PASS=' + password
This says select all customers where they're username is blank ('') or 1=1, which is a boolean, equating to true. Then it uses -- to comment out the rest of the query. So this will just print out all the customer table, or do whatever you want with it, if logging in, it will log in with the first user's privileges, which can often be the administrator.
Now parameterized queries do it differently, with code like:
sqlQuery='SELECT * FROM custTable WHERE User=? AND Pass=?'
parameters.add("User", username)
parameters.add("Pass", password)
where username and password are variables pointing to the associated inputted username and password
Now at this point, you may be thinking, this doesn't change anything at all. Surely you could still just put into the username field something like Nobody OR 1=1'--, effectively making the query:
sqlQuery='SELECT * FROM custTable WHERE User=Nobody OR 1=1'-- AND Pass=?'
And this would seem like a valid argument. But, you would be wrong.
The way parameterized queries work, is that the sqlQuery is sent as a query, and the database knows exactly what this query will do, and only then will it insert the username and passwords merely as values. This means they cannot effect the query, because the database already knows what the query will do. So in this case it would look for a username of "Nobody OR 1=1'--" and a blank password, which should come up false.
This isn't a complete solution though, and input validation will still need to be done, since this won't effect other problems, such as XSS attacks, as you could still put javascript into the database. Then if this is read out onto a page, it would display it as normal javascript, depending on any output validation. So really the best thing to do is still use input validation, but using parameterized queries or stored procedures to stop any SQL attacks.
The links that I have posted in my comments to the question explain the problem very well. I've summarised my feelings on why the problem persists, below:
Those just starting out may have no awareness of SQL injection.
Some are aware of SQL injection, but think that escaping is the (only?) solution. If you do a quick Google search for php mysql query, the first page that appears is the mysql_query page, on which there is an example that shows interpolating escaped user input into a query. There's no mention (at least not that I can see) of using prepared statements instead. As others have said, there are so many tutorials out there that use parameter interpolation, that it's not really surprising how often it is still used.
A lack of understanding of how parameterized statements work. Some think that it is just a fancy means of escaping values.
Others are aware of parameterized statements, but don't use them because they have heard that they are too slow. I suspect that many people have heard how incredibly slow paramterized statements are, but have not actually done any testing of their own. As Bill Karwin pointed out in his talk, the difference in performance should rarely be used as a factor when considering the use of prepared statements. The benefits of prepare once, execute many, often appear to be forgotten, as do the improvements in security and code maintainability.
Some use parameterized statements everywhere, but with interpolation of unchecked values such as table and columns names, keywords and conditional operators. Dynamic searches, such as those that allow users to specify a number of different search fields, comparison conditions and sort order, are prime examples of this.
False sense of security when using an ORM. ORMs still allow interpolation of SQL statement parts - see 5.
Programming is a big and complex subject, database management is a big and complex subject, security is a big and complex subject. Developing a secure database application is not easy - even experienced developers can get caught out.
Many of the answers on stackoverflow don't help. When people write questions that use dynamic SQL and parameter interpolation, there is often a lack of responses that suggest using parameterized statements instead. On a few occasions, I've had people rebut my suggestion to use prepared statements - usually because of the perceived unacceptable performance overhead. I seriously doubt that those asking most of these questions are in a position where the extra few milliseconds taken to prepare a parameterized statement will have a catastrophic effect on their application.
Well good question.
The answer is more stochastic than deterministic and I will try to explain my view, using a small example.
There many references on the net that suggest us to use parameters in our queries or to use stored procedure with parameters in order to avoid SQL Injection (SQLi). I will show you that stored procedures (for instance) is not the magic stick against SQLi. The responsibility still remains on the programmer.
Consider the following SQL Server Stored Procedure that will get the user row from a table 'Users':
create procedure getUser
#name varchar(20)
,#pass varchar(20)
as
declare #sql as nvarchar(512)
set #sql = 'select usrID, usrUName, usrFullName, usrRoleID '+
'from Users '+
'where usrUName = '''+#name+''' and usrPass = '''+#pass+''''
execute(#sql)
You can get the results by passing as parameters the username and the password. Supposing the password is in free text (just for simplicity of this example) a normal call would be:
DECLARE #RC int
DECLARE #name varchar(20)
DECLARE #pass varchar(20)
EXECUTE #RC = [dbo].[getUser]
#name = 'admin'
,#pass = '!#Th1siSTheP#ssw0rd!!'
GO
But here we have a bad programming technique used by the programmer inside the stored procedure, so an attacker can execute the following:
DECLARE #RC int
DECLARE #name varchar(20)
DECLARE #pass varchar(20)
EXECUTE #RC = [TestDB].[dbo].[getUser]
#name = 'admin'
,#pass = 'any'' OR 1=1 --'
GO
The above parameters will be passed as arguments to the stored procedure and the SQL command that finally will be executed is:
select usrID, usrUName, usrFullName, usrRoleID
from Users
where usrUName = 'admin' and usrPass = 'any' OR 1=1 --'
..which will get all rows back from users
The problem here is that even we follow the principle "Create a stored procedure and pass the fields to search as parameters" the SQLi is still performed. This is because we just copy our bad programming practice inside the stored procedure. The solution to the problem is to rewrite our Stored Procedure as follows:
alter procedure getUser
#name varchar(20)
,#pass varchar(20)
as
select usrID, usrUName, usrFullName, usrRoleID
from Users
where usrUName = #name and usrPass = #pass
What I am trying to say is that the developers must learn first what an SQLi attack is and how can be performed and then to safeguard their code accordingly. Blindly following 'best practices' is not always the safer way... and maybe this is why we have so many 'best practices'- failures!
Yes, the use of prepared statements stops all SQL injections, at least in theory. In practice, parameterized statements may not be real prepared statements, e.g. PDO in PHP emulates them by default so it's open to an edge case attack.
If you're using real prepared statements, everything is safe. Well, at least as long as you don't concatenate unsafe SQL into your query as reaction to not being able to prepare table names for example.
If yes, why are there still so many successful SQL injections? Just because some developers are too dumb to use parameterized statements?
Yes, education is the main point here, and legacy code bases. Many tutorials use escaping and those can't be easily removed from the web, unfortunately.
I avoid absolutes in programming; there is always an exception. I highly recommend stored procedures and command objects. A majority of my back ground is with SQL Server, but I do play with MySql from time to time. There are many advantages to stored procedures including cached query plans; yes, this can be accomplished with parameters and inline SQL, but that opens up more possibilities for injection attacks and doesn't help with separation of concerns. For me it's also much easier to secure a database as my applications generally only have execute permission for said stored procedures. Without direct table/view access it's much more difficult to inject anything. If the applications user is compromised one only has permission to execute exactly what was pre-defined.
My two cents.
I wouldn't say "dumb".
I think the tutorials are the problem. Most SQL tutorials, books, whatever explain SQL with inlined values, not mentioning bind parameters at all. People learning from these tutorials don't have a chance to learn it right.
Because most code isn't written with security in mind, and management, given a choice between adding features (especially something visible that can be sold) and security/stability/reliability (which is a much harder sell) they will almost invariably choose the former. Security is only a concern when it becomes a problem.
Can parameterized statement stop all SQL injection?
Yes, as long as your database driver offers a placeholder for the every possible SQL literal. Most prepared statement drivers don't. Say, you'd never find a placeholder for a field name or for an array of values. Which will make a developer to fall back into tailoring a query by hand, using concatenation and manual formatting. With predicted outcome.
That's why I made my Mysql wrapper for PHP that supports most of literals that can be added to the query dynamically, including arrays and identifiers.
If yes, why are there still so many successful SQL injections? Just because some developers are too dumb to use parameterized statements?
As you can see, in reality it's just impossible to have all your queries parameterized, even if you're not dumb.
First my answer to your first question: Yes, as far as I know, by using parameterized queries, SQL injections will not be possible anymore. As to your following questions, I am not sure and can only give you my opinion on the reasons:
I think it's easier to "just" write the SQL query string by concatenate some different parts (maybe even dependent on some logical checks) together with the values to be inserted.
It's just creating the query and executing it.
Another advantage is that you can print (echo, output or whatever) the sql query string and then use this string for a manual query to the database engine.
When working with prepared statements, you always have at least one step more:
You have to build your query (including the parameters, of course)
You have to prepare the query on the server
You have to bind the parameters to the actual values you want to use for your query
You have to execute the query.
That's somewhat more work (and not so straightforward to program) especially for some "quick and dirty" jobs which often prove to be very long-lived...
Best regards,
Box
SQL injection is a subset of the larger problem of code injection, where data and code are provided over the same channel and data is mistaken for code. Parameterized queries prevent this from occurring by forming the query using context about what is data and what is code.
In some specific cases, this is not sufficient. In many DBMSes, it's possible to dynamically execute SQL with stored procedures, introducing a SQL injection flaw at the DBMS level. Calling such a stored procedure using parameterized queries will not prevent the SQL injection in the procedure from being exploited. Another example can be seen in this blog post.
More commonly, developers use the functionality incorrectly. Commonly the code looks something like this when done correctly:
db.parameterize_query("select foo from bar where baz = '?'", user_input)
Some developers will concatenate strings together and then use a parameterized query, which doesn't actually make the aforementioned data/code distinction that provides the security guarantees we're looking for:
db.parameterize_query("select foo from bar where baz = '" + user_input + "'")
Correct usage of parameterized queries provides very strong, but not impenetrable, protection against SQL injection attacks.
To protect your application from SQL injection, perform the following steps:
Step 1. Constrain input.
Step 2. Use parameters with stored procedures.
Step 3. Use parameters with dynamic SQL.
Refer to http://msdn.microsoft.com/en-us/library/ff648339.aspx
even if
prepared statements are properly used throughout the web application’s own
code, SQL injection flaws may still exist if database code components construct
queries from user input in an unsafe manner.
The following is an example of a stored procedure that is vulnerable to SQL
injection in the #name parameter:
CREATE PROCEDURE show_current_orders
(#name varchar(400) = NULL)
AS
DECLARE #sql nvarchar(4000)
SELECT #sql = ‘SELECT id_num, searchstring FROM searchorders WHERE ‘ +
‘searchstring = ‘’’ + #name + ‘’’’;
EXEC (#sql)
GO
Even if the application passes the user-supplied name value to the stored
procedure in a safe manner, the procedure itself concatenates this directly into
a dynamic query and therefore is vulnerable.
I have worked on SQL stored procedures and I have noticed that many people use two different approaches -
First, to use select queries i.e. something like
Select * from TableA where colA = 10 order by colA
Second, is to do the same by constructing a query i.e. like
Declare #sqlstring varchar(100)
Declare #sqlwhereclause varchar(100)
Declare #sqlorderby varchar(100)
Set #sqlstring = 'Select * from TableA '
Set #sqlwhereclause = 'where colA = 10 '
Set #sqlorderby = 'order by colA'
Set #sqlstring = #sqlstring + #sqlwhereclause + #sqlorderby
exec #sqlstring
Now, I know both work fine. But, the second method I mentioned is a little annoying to maintain.
I want to know which one is better? Is there any specific reason one would resort to one method over the other? Any benefits of one method over other?
Use the first one. This will allow a query plan to be cached properly, apart from being the way you are supposed to work with SQL.
The second one is open to SQL Injection attacks, apart from the other issues.
With the dynamic SQL you will not get compile time checking, so it may fail only when invoked (the sooner you know about incorrect syntax, the better).
And, you noted yourself, the maintenance burden is also higher.
The second method has the obvious drawback of not being syntax checked at compile time. It does however allow a dynamic order by clause, which the first does not. I recommend that you always use the first example unless you have a very good reason to make the query dynamic. And, as #Oded has already pointed out, be sure to guard yourself against sql injection if you do go for the second approach.
I don't have a full comprehensive answer for you, but I can tell you right now that the latter method is much more difficult to work with when importing the stored procedure as a function in an ORM. Since the SQL is constructed dynamically, you have to manually create any type-classes that are returned from the stored procedure that aren't directly correlated to entities in your model.
With that in mind, there are times where you simply can't avoid constructing a SQL statement, especially when where clauses and joins depend on the parameters passed in. In my experience, I have found that stored procs that are creating large, variably joined/whered statements for EXECs are trying to do too many things. In these situations, I would recommend you keep the Single Responsibility Principle in mind.
Executing dynamic SQL inside a stored procedure reduces the value of using stored procedures to just a saved query container. Stored procedures are mostly beneficial in that the query execution plan (a very costly operation) is compiled and stored in memory the first time the procedure is executed. This means that every subsequent execution of the procedure is bypassing the query plan calculations, and jumping right to the data retrieval portiion of the operation.
Also, allowing a stored procedure to take an executable query string as a parameter is dangerous. Anyone with execute permission on granted on the procedure could potentially cause havoc on the rest of the database.
I am using SQL Server 2008 Enterprise on Windows Server 2008 Enterprise. In a stored procedure, we can execute a SELECT statement directly. And it could also be executed in this new way, I am wondering which method is better, and why?
New method,
declare #teststatement varchar(500)
set #teststatement = 'SELECT * from sometable'
print #teststatement
exec (#teststatement)
Traditional method,
SELECT * from sometable
regards,
George
FYI: it’s not a new method, it is known as Dynamic SQL.
Dynamic SQL are preferred when we need to set or concatenate certain values into sql statements.
Traditional or normal way sql statements are recommended, because stored procedures are complied. Complied on first run "Stored Procedure are Compiled on First Run"
, execution plan of statements are being created at the time of compilation.
Dynamic sqls are ignored while creating execution plans, because it is taken as string (VARCHAR or NVARCHAR as declared).
Refer following articles for more details about dynamic query and stored procs
Introduction to Dynamic SQL Part 1
Introduction to Dynamic SQL Part 2
Everything you wanted to know about Stored Procedures
The traditional method is safer, because the query is parsed when you save it. The query in the 'exec' method is not parsed and can contain errors.
The "new" way, as mentioned, has nothing to do with SQL 2008. EXEC has been available for quite some time. It's also - in most cases - a Very Bad Idea.
You lose parameterization - meaning you are now vulnerable to SQL Injection. It's ugly and error-prone. It's less efficient. And it creates a new execution scope - meaning it can't share variables, temp tables, etc. - from it's calling stored proc.
sp_executesql is another (and preferred) method of executing dynamic SQL. It's what your client apps use, and it supports parameters - which fixes the most glaring problem of EXEC. However, it too has very limited use cases within a stored proc. About the only redeeming use is when you need a dynamic table or column name. T-SQL does not support a variable for that - so you need to use sp_executesql. The number of times you need or should be doing that are very low.
Bottom line - you'd be best off forgetting you ever heard of it.
I'm doing this system Stacked and I am creating the search function. And in that process it occurs to me that maybe AR/nHibernate Expression.Like (and siblings) might maybe not be 100% "safe" in that you can create stuff like;
"\r\ndrop database xxx;---" and similar things...?
I would expect them to be safe, but I am not sure...
NHibernate (and by extension ActiveRecord) generate parameterized SQL statements of the form sp_executesql 'select blah from table where column = #p1', '#p1 varchar(10)', #p1 = 'drop database xxx;---' for queries. These types of SQL statements are safe from SQL injection because the contents of the parameters are not executed (unlike they would be if simple concatenation was used).
So yes, both are "safe".
If you find a security bug, you should definitely file it. Many rely on such things.