Cfengine vs Chef - configuration-management

What are the differences in term of features between Cfengine and Chef?

Chef has much greater integration with "cloud" VM hosting providers, and a greater amount of recipe sharing than CFEngine.
CFEngine takes less resources when it runs, and runs on a much greater range of computing environments from embedded devices to supercomputers, and on a lot more operating systems -- it's just a few small C binaries and a couple of C libraries, so it is more portable.

From the Chef FAQ:
How is it different than Cfengine?
It bears very little in common with Cfengine, other than embracing Single Copy Nirvana.

I don't know much about Chef, just been reading their web site, and I'm quite familiar with Cfengine; so take my answer with a grain of salt.
From what I gathered, the main difference is that Cfengine runs on both Linux/Unixes and Windows, while Chef only support Linux/Unixes.

Related

Memory requirements when hosting R in the cloud

What is the minimal size server we need to run opencpu, if we expect 100,000 hits a month?
I think opencpu is an exciting project, but need to know about memory usage when opencpu is deployed, since a cloud hosting service such as rackspace charges about $40 per month for 1 GB of RAM.
I know that if I load R without doing anything or without loading any data or package in RAM, it uses almost 700m of RAM (virtual) and 50 megabytes of RAM (in residence).
I know that opencpu uses rApache, and rApache uses preforking, but want to know how this will scale as the number of concurrent users increases. Thanks.
Thanks for the responses
I talked with Jeroen Ooms when visiting LA, and am partly convinced that opencpu will work in high concurrency environments if used correctly, and that he is available to fix issues if they arrise. Opencpu related to his dissertation, after all! In particular, what I find useful about opencpu is its integration with ubuntu's AppArmor, which can restrict processes from using too much RAM and CPU. I think apache might also be able to do this, but RAppArmor can do this and much more. Brilliant! If AppArmor were the only advantage, I would just use that and json as a backend, but it seems like opencpu can also streamline the installation of all this stuff and provides a built in API system.
Given the cost of web-hosting, I imagine a workable real-time analytics system is the following:
create R statistical models on demand, on a specialized analytical server, as often as needed (e.g. every day or hour using cron)
transfer the results of the models to a directory on the opencpu servers using ftp, as native R objects
on the opencpu server, go to the directory and grab the R objects representing the statistical models, and then make predictions or do simulations using it. For example, use the 'predict' function to provide estimates based on user supplied variables.
Does anybody else see this as a viable way to make R a backend for real time analytics?
Dirk is right, it all depends on the R functions that you are calling; the overhead of the OpenCPU architecture should be quite minimal. OpenCPU itself will run on a small server, but as we all know some functionality in R requires much more memory/cpu than others.
If you really want to know how much resources are needed just to run opencpu you could do some benchmarking. As you noted, prefork is used to branch sessions of the main process, so in most cases the copy-on-write principle of forking should make it pretty cheap.
Also there is some other stuff that you can tweak; e.g. preloading of frequently used packages.

What is a good FAT file system for ARM7-TDMI

I'm using the ARM7TDMI-S (NXP processor) and I need a file system capable of reading/writing to an SD card. There are so many available, what have people used and been happy with? One that requires the least amount of setup is best - so the less I have to do to get it started (i.e. write device drivers to NXP's hardware) the better.
I am currently using CMX's RTOS as the OS for this project.
I suggest that you use either EFSL or Chan's FAT File System Module. I have used both on MMC/SC cards without problems. The choice between them may come down to the license terms and pre-existing ports to your target. Martin Thomas's ARM Projects site has examples for both libraries.
FAT is popular precisely because it's so simple. The main problems with FAT are performance (because of its simplicity, it's not very fast) and its limited size (2GB for FAT16, though 2TB for FAT32)

Which platform should i choose for scientific computing?

What are the pros and cons in choosing PS3 as a platform for scientific computing in detriment of GPU's? Is It the better choice ?
Stick with a PC, you will have a far easier life at the end of the day. I also wouldn't be surprised if you get more horsepower out of GPU's.
p.s., from what I know dispatching work to the cells is not an enjoyable task :D
I'd go for GPU, for three reasons:
(a) GPU code can be developed, tested, and run on pretty much any PC you may want to use, with the only dependency being a $150 video card, whereas CELL/PS3 is a much more custom development environment and won't run natively on your laptop, etc.;
(b) I'm willing to bet a lot that GPUs and Cuda will be alive and well in 5 years, but I wouldn't put money on PS3 being around that long -- what are you going to do if PS4 has a totally different architecture and CELL effectively dies?
(c) There's a more vibrant research and development community around GPU than there is around PS3/Cell (outside of strict game development), so you're likely to be in more good company, have example code and tools to work with, etc.
There is no broad "better" choice, it is all dependent on the situation and what you're doing. Probably the biggest PRO to a PS3 is they're cheap by comparison. A computer can more easily scale bigger though (for a price) when looking into things like CUDA.
CUDA is pretty slick. I was shown a presentation recently demonstrating how easy it is to get at the power of the GPU's many cores using a C++ based syntax. If I was starting a parallel computing project now, I would probably take the PC/GPU-based route.
A major objection to the PS3 (which is already quite a wacky choice unless you're under some pretty extreme price/performance constraints) has to be that Sony are dropping support for installation of other OS. In future, PS3s without the disabling firmware update may become harder and harder to get hold of.

Is it feasible to virtualize developer machines? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 3 months ago.
Improve this question
It's budgeting time and Corporate is balking at the cost of replacing a coworker's machine who is due for it, needs it, and deserves it.
Our group is a small ISV/SAAS that exists as a division of a larger media group. We are not a cost center, we make money, even this year. We are owned by a mid-size media group whose business model is quite different, and seems driven only by reducing costs.
Our software stack is Visual Studio 2008, SQL 2008, on Windows Server 2008 (so that multiple root websites can be hosted and debugged on each dev's machine). Our target hardware is 3GHz quad-core workstation, 4GB RAM, and RAID 1 mirrored hard drives so that we are protected against the productivity loss of losing a developer hard drive.
Corporate wants to give us a couple powerful, but hand-me-down, decommissioned servers, and then each developer would have a virtual workstation on that server. The computers sitting on our desktops would be dumb terminals at $400-500 each.
I'm trying to be neutral but I doubt it's hard to discern my bias. I'd like to see real developer reactions to this, and I figure this is the best place to get that.
Please include arguments for or against, evidence if you've seen this tried and how well (or not) it has gone.
This sounds like a well intentioned idea, but:
In my experience you need multiple cores, lots of memory, and fast disks to be productive in today's modern IDE's. I don't see that happening in a virtual environment with any economy. Individual boxes are still better.
It's also an issue of control. In a virtual environment I can imagine all kinds of restrictions. Will you still be able to install your own tools, for example?
Ultimately, it's misguided. If this idea increases build times by any substantial amount, any savings in hardware will quickly be erased by lost productivity. Conversely, money that is spent on decent individual machines for developers will quickly pay for itself over and over in reduced build times.
Good quality individual machines are an investment, not a cost.
Development is disk-bound, i.e. you spend your time waiting for builds which is a disk-bound process most of the time. If you're all sharing a machine build times will become much worse.
Aside from all of the givens (perfomance, disk space, etc...):
I would be OK with this as long as I still had multiple monitor support.
Without that, it is a no-go.
Basic failure to understand what a developer box is actually doing much of the time:
When building its chewing through processor and disk - especially disk.
When testing you're talking about having one or more instances of Visual Studio running (once you get past two things start to get interesting), database server, website/services plus all the other stuff (browsers with a lot of tabs open, notebook software, and heaven only knows what else) all spread across multiple monitors (at least two). Lots of cores, lots of memory please!
I can quite happily accept that there's an argument for virtualisation - a good dev box should be able to host multiple, concurrent VMs in order to isolate some of the above and to provide "clean" environments for testing. Note that that's the box for ONE developer hosting multiple VMs solely for the benefit of that one developer...
Our team is developing on remote server (no GUI stuff, plain old vim) for quite some time without problems. Granted it requires rather powerful server and sometimes is starts to be bit on a slow side if everyone start to compile at the same time.
But as a bonus you are very mobile in terms where you can develop from (we all are having laptops) be it in office, home, sunny beach (last one was probably overstatement).
Bute yeah, that might not all work well for graphics heavy apps of course.
It sounds like your group is not offering the solutions that you have considered in a well documented format, otherwise corporate would not be shoving decisions down your throat. If you have a documented process for development, corporate might want to discuss changing the process with you, but as soon as you say, "this change would break our process and we would have to retool our development workflow", they will see the pain of the $$ in reworking the process and most likely back off. That said, once your process is documented, you should internally be ruthless about trying to make it more efficient and cost effective, and have an open mind about corporate's suggestions.
I assume you have machines already for SVN / TRAC, your Continuous Integration server, product demos, testing, etc. and that the only possible use your team could make of these servers is for personal VMs.
I do many things that peg my processor at 100%. Compiles certainly achieve this. Now imagine having to share that processor with 10 other developers. The loss in productivity will become quite apparent. If you have a multi-core PC, this won't be as painful. Get an Intel i7 and you probably won't even notice it when 8 people are logged in. Most programs (including my compiler) can't use more than 1 processor anyway.
That said, it's a viable solution to reduce costs. I used to work at a company who has since switched to these dumb terminals. It works fine. My university had HP UNIX machines that were dumb terminals. They logged into a server that split up the processor ownership among however many people were logged in. What people would do is log into a server and check the number of people logged in. If there were too many, they'd search for the next one, because build times are noticeably slower. I'd never log into the easy to remember server names. =)
It definitely works, but also reduces productivity due to longer build times, especially when multiple people are building at the same time. Since productivity is such a difficult thing to quantify, it might be hard to argue your point.
Graphics acceleration might also be an issue if you need to do anything with animation, video, or image editing. You can't really test video playback through an RDP session since the framerate and/or color depth isn't high enough.
Regardless of performance, at my company we are moving to laptops as developer machines. The main advantage is that developers can bring their computers to meetings, conferences, etc. Also being able to sit next to a colleague when you're helping him with a problem, and having your own development environment available, is very valuable.

Working around development constraints in customer policy

As described before, I work in IT consultancy and move through various customer environments. It is natural to encounter a variety of security policies, and in most environments we have had to go through a security checklist before authorizating our laptops - our mobile development workstations - for connection into their network (most of the time just development network).
There is this customer who does not allow external computers to connect to their network, so our laptops are.... expensive communication computers with mobile GSM modems. We are forced to use their desktop PCs for development, and those workstations are pretty old models with low RAM and single-core Pentium 4 CPUs and cranky disks. Needless to say, development work is sub-optimal, especially when working with Visual Studio solutions that can range 100 - 400 projects.
For small cases that can be isolated, we develop and test on our own laptops. But for the bigger cases, given that certain development servers like SeeBeyond and mainframe DB2 databases are only on the network, and the prospect of copying hundreds of projects to and fro machines is just ghastly, it does not seem like a technically sound idea.
I am not asking for tricks that violate the customer's policies (e.g. plug laptop in masquerading desktop MAC address). I just like to know what others have tried to retain some of their advantage and efficiency with their own hardware when working in such environments. Whenever I can I try to duplicate the environment with virtual servers on my own laptop, but it only goes so far with Microsoft-only server solutions. Virtualizing non-Microsoft server and software is a challenge.
That's tough. The root cause here is management that doesn't understand that there are real cost implications to their choice of environments.
Your problem is that while you may be billing by the hour, you probably aren't getting paid that way, so your customers' wasted time goes into the pockets of your boss and not to you. A lot of times, this presents a mild conflict of interest. Your company has about zero incentive to speed up your work, and your client doesn't want to make an infrastructure investment in what they see as a temporary engagement.
All I can say is that you have to run this up the flagpole with management. You have to show them that this is taking real time from the projects which could put your deliverable dates at risk, or worse, the reliability of these machines is such that it puts the delivery of the end product at risk as well. The onus is on you to make your management into a believer.
A gig of RAM at Crucial is thirty bucks. If nobody is willing to shell out 90 big ones for 3GB of RAM for your box, you have management that's actively working against you or does not respect you. If it comes to that, you've got bigger problems and need to look for your next employer.
One of the things that I did when I upgrade my current development environment was find links to productivity studies that showed how much productivity increased when the development environment was enhanced. In my particular case it was going from 2 to 3 monitors on my desktop. I was able to find 3-4 articles that described how much was gained by having the extra monitor. It seems self-evident to me that you'd want a newer, well-configured system for developers, especially since the cost of the hardware relative to the cost of the people is so small these days, but the bean counters often think differently. If you can go in armed with some industry studies that show productivity gains, I think it will be harder to dismiss your concerns as just complaints about the environment.
FWIW, I was disappointed to have to do the research for an upgrade that cost less than what the department would spend on paper in a month, but sometimes you have to do things that make no sense to you because it makes sense to someone else.
Write a decent proposal to your manager, that's about all you can do to rectify the solution. If he is unwilling or unable to fix the problem, or unwilling/unable to pass the proposal up to someone who can, then I'd say the current situation is what they've decided to use.
In that case, either live with it, or don't, ie. move on.
The proposal should contain:
A proposal for what you want done
Why it should be done
The consequences of doing it
And most importantly, the consequences of not doing it
List things like longer development time, or less testing, or less time to write quality code. Basically, a minor upgrade that doesn't cost much will improve the quality of the product tremendously.
I just went through this and found a pretty good solution : get a different job
Just synchronize incrementally. You're not typing that much code/second a gsm connection cannot keep up with it? Make sure your projects are setup to use mocks/stubs whereever possible.
Setting this up probably is beyond the capability of the systems administrators of your customer.
The dependency on the big databases should be reduced so you only need to run daily regression tests.