Database vs. Front-End for Output Formatting - sql

I've read that (all things equal) PHP is typically faster than MySQL at arithmetic and string manipulation operations. This being the case, where does one draw the line between what one asks the database to do versus what is done by the web server(s)? We use stored procedures exclusively as our data-access layer. My unwritten rule has always been to leave output formatting (including string manipulation and arithmetic) to the web server. So our queries return:
unformatted dates
null values
no calculated values (i.e. return values for columns "foo" and "bar" and let the web server calculate foo*bar if it needs to display value foobar)
no substring-reduced fields (except when shortened field is so significantly shorter that we want to do it at database level to reduce result set size)
two separate columns to let front-end case the output as required
What I'm interested in is feedback about whether this is generally an appropriate approach or whether others know of compelling performance/maintainability considerations that justify pushing these activities to the database.
Note: I'm intentionally tagging this question to be dbms-agnostic, as I believe this is an architectural consideration that comes into play regardless of one's specific dbms.

I would draw the line on how certain layers could rotate out in place for other implementations. It's very likely that you will never use a different RDBMS or have a mobile version of your site, but you never know.
The more orthogonal a data point is, the closer it should be to being released from the database in that form. If on every theoretical version of your site your values A and B are rendered A * B, that should be returned by your database as A * B and never calculated client side.
Let's say you have something that's format heavy like a date. Sometimes you have short dates, long dates, English dates... One pure form should be returned from the database and then that should be formatted in PHP.
So the orthogonality point works in reverse as well. The more dynamic a data point is in its representation/display, the more it should be handled client side. If a string A is always taken as a substring of the first six characters, then have that be returned from the database as pre-substring'ed. If the length of the substring depends on some factor, like six for mobile and ten for your web app, then return the larger string from the database and format it at run time using PHP.

Usually, data formatting is better done on client side, especially culture-specific formatting.
Dynamic pivoting (i. e. variable columns) is also an example of what is better done on client side
When it comes to string manipulation and dynamic arrays, PHP is far more powerful than any RDBMS I'm aware of.
However, data formatting can use additional data which is also kept in the database. Like, the coloring info for each row can be stored in additional table.
You should then correspond the color to each row on database side, but wrap it into the tags on PHP side.
The rule of thumb is: retrieve everything you need for formatting in as few database round-trips as possible, then do the formatting itself on the client side.

I believe in returning the data pretty much as-is from the database and letting it be formatted on the front-end instead. I don't stick to it religously, but in general I think it's better as it provides greater flexibility - e.g. 1 sproc can service n different requirements for data, each of which can format the data as each individually needs. Otherwise, you end up either with multiple queries returning the same data with slightly different formatting from the DB (from a SQL Server point of view, thus reducing execution plan caching benefits - therefore negative impact on performance).

Leave output formatting to the web server

Related

How to speed up table-retrieval with MATLAB and JDBC?

I am accessing a PostGreSQL 8.4 database with JDBC called by MATLAB.
The tables I am interested in basically consist of various columns of different datatypes. They are selected through their time-stamps.
Since I want to retrieve big amounts of data I am looking for a way of making the request faster than it is right now.
What I am doing at the moment is the following:
First I establish a connection to the database and call it DBConn. Next step would be to prepare a Select-Statement and execute it:
QUERYSTRING = ['SELECT * FROM ' TABLENAME '...
WHERE ts BETWEEN ''' TIMESTART ''' AND ''' TIMEEND ''''];
QUERY = DBConn.prepareStatement(QUERYSTRING);
RESULTSET = QUERY.executeQuery();
Then I store the columntypes in variable COLTYPE (1 for FLOAT, -1 for BOOLEAN and 0 for the rest - nearly all columns contain FLOAT). Next step is to process every row, column by column, and retrieve the data by the corresponding methods. FNAMES contains the fieldnames of the table.
m=0; % Variable containing rownumber
while RESULTSET.next()
m = m+1;
for n = 1:length(FNAMES)
if COLTYPE(n)==1 % Columntype is a FLOAT
DATA{1}.(FNAMES{n})(m,1) = RESULTSET.getDouble(n);
elseif COLTYPE(n)==-1 % Columntype is a BOOLEAN
DATA{1}.(FNAMES{n})(m,1) = RESULTSET.getBoolean(n);
else
DATA{1}.(FNAMES{n}){m,1} = char(RESULTSET.getString(n));
end
end
end
When I am done with my request I close the statement and the connection.
I don´t have the MATLAB database toolbox so I am looking for solutions without it.
I understand that it is very ineffective to request the data of every single field. Still, I failed on finding a way to get more data at once - for example multiple rows of the same column. Is there any way to do so? Do you have other suggestions of speeding the request up?
Summary
To speed this up, push the loops, and then your column datatype conversion, down in to the Java layer, using the Database Toolbox or custom Java code. The Matlab-to-Java method call overhead is probably what's killing you, and there's no way of doing block fetches (multiple rows in one call) with plain JDBC. Make sure the knobs on the JDBC driver you're using are set appropriately. And then optimize the transfer of expensive column data types like strings and dates.
(NB: I haven't done this with Postgres, but have with other DBMSes, and this will apply to Postgres too because most of it is about the JDBC and Matlab layers above it.)
Details
Push loops down to Java to get block fetching
The most straightforward way to get this faster is to push the loops over the rows and columns down in to the Java layer, and have it return blocks of data (e.g. 100 or 1000 rows at a time) to the Matlab layer. There is substantial per-call overhead in invoking a Java method from Matlab, and looping over JDBC calls in M-code is going to incur (see Is MATLAB OOP slow or am I doing something wrong? - full disclosure: that's my answer). If you're calling JDBC from M-code like that, you're incurring that overhead on every single column of every row, and that's probably the majority of your execution time right now.
The JDBC API itself does not support "block cursors" like ODBC does, so you need to get that loop down in to the Java layer. Using the Database Toolbox like Oleg suggests is one way to do it, since they implement their lower-level cursor stuff in Java. (Probably for precisely this reason.) But if you can't have a database toolbox dependency, you can just write your own thin Java layer to do so, and call that from your M-code. (Probably through a Matlab class that is coupled to your custom Java code and knows how to interact with it.) Make the Java code and Matlab code share a block size, buffer up the whole block on the Java side, using primitive arrays instead of object arrays for column buffers wherever possible, and have your M-code fetch the result set in batches, buffering those blocks in cell arrays of primitive column arrays, and then concatenate them together.
Pseudocode for the Matlab layer:
colBufs = repmat( {{}}, [1 nCols] );
while (cursor.hasMore())
cursor.fetchBlock();
for iCol = 1:nCols
colBufs{iCol}{end+1} = cursor.getBlock(iCol); % should come back as primitive
end
end
for iCol = 1:nCols
colResults{iCol} = cat(2, colBufs{iCol}{:});
end
Twiddle JDBC DBMS driver knobs
Make sure your code exposes the DBMS-specific JDBC connection parameters to your M-code layer, and use them. Read the doco for your specific DBMS and fiddle with them appropriately. For example, Oracle's JDBC driver defaults to setting the default fetch buffer size (the one inside their JDBC driver, not the one you're building) to about 10 rows, which is way too small for typical data analysis set sizes. (It incurs a network round trip to the db every time the buffer fills.) Simply setting it to 1,000 or 10,000 rows is like turning on the "Go Fast" switch that had shipped set to "off". Benchmark your speed with sample data sets and graph the results to pick appropriate settings.
Optimize column datatype transfer
In addition to giving you block fetch functionality, writing custom Java code opens up the possibility of doing optimized type conversion for particular column types. After you've got the per-row and per-cell Java call overhead handled, your bottlenecks are probably going to be in date parsing and passing strings back from Java to Matlab. Push the date parsing down in to Java by having it convert SQL date types to Matlab datenums (as Java doubles, with a column type indicator) as they're being buffered, maybe using a cache to avoid recalculation of repeated dates in the same set. (Watch out for TimeZone issues. Consider Joda-Time.) Convert any BigDecimals to double on the Java side. And cellstrs are a big bottleneck - a single char column could swamp the cost of several float columns. Return narrow CHAR columns as 2-d chars instead of cellstrs if you can (by returning a big Java char[] and then using reshape()), converting to cellstr on the Matlab side if necessary. (Returning a Java String[]converts to cellstr less efficiently.) And you can optimize the retrieval of low-cardinality character columns by passing them back as "symbols" - on the Java side, build up a list of the unique string values and map them to numeric codes, and return the strings as an primitive array of numeric codes along with that map of number -> string; convert the distinct strings to cellstr on the Matlab side and then use indexing to expand it to the full array. This will be faster and save you a lot of memory, too, since the copy-on-write optimization will reuse the same primitive char data for repeated string values. Or convert them to categorical or ordinal objects instead of cellstrs, if appropriate. This symbol optimization could be a big win if you use a lot of character data and have large result sets, because then your string columns transfer at about primitive numeric speed, which is substantially faster, and it reduces cellstr's typical memory fragmentation. (Database Toolbox may support some of this stuff now, too. I haven't actually used it in a couple years.)
After that, depending on your DBMS, you could squeeze out a bit more speed by including mappings for all the numeric column type variants your DBMS supports to appropriate numeric types in Matlab, and experimenting with using them in your schema or doing conversions inside your SQL query. For example, Oracle's BINARY_DOUBLE can be a bit faster than their normal NUMERIC on a full trip through a db/Matlab stack like this. YMMV.
You could consider optimizing your schema for this use case by replacing string and date columns with cheaper numeric identifiers, possibly as foreign keys to separate lookup tables to resolve them to the original strings and dates. Lookups could be cached client-side with enough schema knowledge.
If you want to go crazy, you can use multithreading at the Java level to have it asynchronously prefetch and parse the next block of results on separate Java worker thread(s), possibly parallelizing per-column date and string processing if you have a large cursor block size, while you're doing the M-code level processing for the previous block. This really bumps up the difficulty though, and ideally is a small performance win because you've already pushed the expensive data processing down in to the Java layer. Save this for last. And check the JDBC driver doco; it may already effectively be doing this for you.
Miscellaneous
If you're not willing to write custom Java code, you can still get some speedup by changing the syntax of the Java method calls from obj.method(...) to method(obj, ...). E.g. getDouble(RESULTSET, n). It's just a weird Matlab OOP quirk. But this won't be much of a win because you're still paying for the Java/Matlab data conversion on each call.
Also, consider changing your code so you can use ? placeholders and bound parameters in your SQL queries, instead of interpolating strings as SQL literals. If you're doing a custom Java layer, defining your own #connection and #preparedstatement M-code classes is a decent way to do this. So it looks like this.
QUERYSTRING = ['SELECT * FROM ' TABLENAME ' WHERE ts BETWEEN ? AND ?'];
query = conn.prepare(QUERYSTRING);
rslt = query.exec(startTime, endTime);
This will give you better type safety and more readable code, and may also cut down on the server-side overhead of query parsing. This won't give you much speed-up in a scenario with just a few clients, but it'll make coding easier.
Profile and test your code regularly (at both the M-code and Java level) to make sure your bottlenecks are where you think they are, and to see if there are parameters that need to be adjusted based on your data set size, both in terms of row counts and column counts and types. I also like to build in some instrumentation and logging at both the Matlab and Java layer so you can easily get performance measurements (e.g. have it summarize how much time it spent parsing different column types, how much in the Java layer and how much in the Matlab layer, and how much waiting on the server's responses (probably not much due to pipelining, but you never know)). If your DBMS exposes its internal instrumentation, maybe pull that in too, so you can see where you're spending your server-side time.
It occurs to me that to speed up the query to the table, you have to remove if, for that in the JDBC ResulSetMetadata there that give you the information about the data type of the column and the same name, so you save time of if, else if
  ResultSetMetaData RsmD = (ResultSetMetaData) rs.getMetaData ();
        int cols=rsMd.getColumnCount();
        
  while (rs.next)
for i=1 to cols
row[i]=rs.getString(i);
My example is pseudocode becouse i´m not matlab programmer.
I hope you find it useful JDBC, anything let me know!

Large results set from Oracle SELECT

I have a simple, pasted below, statement called against an Oracle database. This result set contains names of businesses but it has 24,000 results and these are displayed in a drop down list.
I am looking for ideas on ways to reduce the result set to speed up the data returned to the user interface, maybe something like Google's search or a completely different idea. I am open to whatever thoughts and any direction is welcome.
SELECT BusinessName FROM MyTable ORDER BY BusinessName;
Idea:
SELECT BusinessName FROM MyTable WHERE BusinessName LIKE "A%;
I'm know all about how LIKE clauses are not wise to use but like I said this is a LARGE result set. Maybe something along the lines of a BINARY search?
The last query can perform horribly. String comparisons inside the database can be very slow, and depending on the number of "hits" it can be a huge drag on performance. If that doesn't concern you that's fine. This is especially true if the Company data isn't normalized into it's own db table.
As long as the user knows the company he's looking up, then I would identify an existing JavaScript component in some popular JavaScript library that provides a search text field with a dynamic dropdown that shows matching results would be an effective mechanism. But you might want to use '%A%', if they might look for part of a name. For example, If I'm looking for IBM Rational, LLC. do I want it to show up in results when I search for "Rational"?
Either way, watch your performance and if it makes sense cache that data in the company look up service that sits on the server in front of the DB. Also, make sure you don't respond to every keystroke, but have a timeout 500ms or so, to allow the user to type in multiple chars before going to the server and searching. Also, I would NOT recommend bringing all of the company names to the client. We're always looking to reduce the size and frequency of traversals to the server from the browser page. Waiting for 24k company names to come down to the client when the form loads (or even behind the scenes) when shorter quicker very specific queries will perform sufficiently well seems more efficient to me. Again, test it and identify the performance characteristics that fit your use case best.
These are techniques I've used on projects with large data, like searching for a user from a base of 100,000+ users. Our code was a custom Dojo widget (dijit), I 'm not seeing how to do it directly with the dijit code, but jQuery UI provides the autocomplete widget.
Also use limit on this query with a text field so that the drop down only provides a subset of all the matches, forcing the user to further refine the query.
SELECT BusinessName FROM MyTable ORDER BY BusinessName LIMIT 10

django objects...values() select only some fields

I'm optimizing the memory load (~2GB, offline accounting and analysis routine) of this line:
l2 = Photograph.objects.filter(**(movie.get_selectors())).values()
Is there a way to convince django to skip certain columns when fetching values()?
Specifically, the routine obtains all rows of the table matching certain criteria (db is optimized and performs it very quickly), but it is a bit too much for python to handle - there is a long string referenced in each row, storing the urls for thumbnails.
I only really need three fields from each row, but, if all the fields are included, it suddenly consumes about 5kB/row which sadly pushes the RAM to the limit.
The values(*fields) function allows you to specify which fields you want.
Check out the QuerySet method, only. When you declare that you only want certain fields to be loaded immediately, the QuerySet manager will not pull in the other fields in your object, till you try to access them.
If you have to deal with ForeignKeys, that must also be pre-fetched, then also check out select_related
The two links above to the Django documentation have good examples, that should clarify their use.
Take a look at Django Debug Toolbar it comes with a debugsqlshell management command that allows you to see the SQL queries being generated, along with the time taken, as you play around with your models on a django/python shell.

SQL server string manipulation in a view... Or in XSLT

I have been passed a piece of work that I can either do in my application or perhaps in SQL:
I have to get a date out of a string that may look like this:
1234567-DSP-01/01-VER-01/01
or like this:
1234567-VER-01/01-DSP-01/01
but may look like this:
00 12345 DISCH 01/01-VER-01/01 XXX X XXXXX
Yay. if it is a "DSP" then I want that date, if a "DISCH" then that date.
I am pulling the data out in a SQL Server view and would be happy to have the view transform the data for me. My application could do it but would add processor time. I could also see if the data could be manipulated before it is entered into the DB, I suppose.
Thank you for your time.
An option would be to check for the presence of DSP or DISCH then substring out the date as necessary.
For example (I don't have sqlserver today so I can verify syntax, sorry)
select
date = case date_attribute
when charindex('DSP',date_attribute) > 0 then substring(date_attribute,beg,end)
when charindex('DISCH',date_attribute) > 0 then substring(date_attribute,beg,end)
else 'unknown'
end
from myTable
don't store multiple items in the same column!
store the date in its own column when inserting the row!
add a new nullable column for the date
write an update that pulls the date out and sets the new column
alter the column to be not nullable
fix your save routine to pull the date out and insert it in for you
If you do it in the view your adding processing time on SQL which in general a more expensive resource then an app, web or some other type of client.
I'd recommend you try and format the data out when you insert the data, or you handle in the application tier. Scaling horizontally an app tier is so much easier then scalling your SQL.
Edit
I am talking the database server's physical resources are usually more expensive then a properly designed applications server's physical resources. This is because it is very easy to scale an application horizontally, it is in my opinion an order of magnitude more expensive to scale a DB server horizontally. Especially if your dealing with a transactional database and need to manage merging
I am not saying it is not possible just that scaling a database server horizontally is a much more difficult task, hence it's more expensive. The only reason I pointed this out is the OP raised a concern about using CPU cycles on the app server vs the database server. Most applications I have worked with have been data centric applications which processed through GB's of data to get a user an answer. We initially put everything on the database server because it was easier then doing it in classic asp and vb6 at the time. Over time the DB server was more and more loaded until scaling veritcally was no longer an option.
Database Servers are also designed at retrieving and joining data together. You should leave the formating of the data to the application and business rules (in general of course)

Using integers and requiring multiplication vs. using decimals as a data type - what are your thoughts?

What are your thoughts on this? I'm working on integrating some new data that's in a tab-delimited text format, and all of the decimal columns are kept as single integers; in order to determine the decimal amount you need to multiply the number by .01. It does this for things like percentages, weight and pricing information. For example, an item's price is expressed as 3259 in the data files, and when I want to display it I would need to multiply it in order to get the "real" amount of 32.59.
Do you think this is a good or bad idea? Should I be keeping my data structure identical to the one provided by the vendor, or should I make the database columns true decimals and use SSIS or some sort of ETL process to automatically multiply the integer columns into their decimal equivalent? At this point I haven't decided if I am going to use an ORM or Stored Procedures or what to retrieve the data, so I'm trying to think long term and decide which approach to use. I could also easily just handle this in code from a DTO or similar, something along the lines of:
public class Product
{
// ...
private int _price;
public decimal Price
{
get
{
return (this._price * .01);
}
set
{
this._price = (value / .01);
}
}
}
But that seems like extra and unnecessary work on the part of a class. How would you approach this, keeping in mind that the data is provided in the integer format by a vendor that you will regularly need to get updates from.
"Do you think this is a good or bad idea?"
Bad.
"Should I be keeping my data structure identical to the one provided by the vendor?"
No.
"Should I make the database columns true decimals?"
Yes.
It's so much simpler to do what's right. Currently, the data is transmitted with no "." to separate the whole numbers from the decimals; that doesn't any real significance.
The data is decimal. Decimal math works. Use the decimal math provided by your language and database. Don't invent your own version of Decimal arithmetic.
Personally I would much prefer to have the data stored correctly in my database and just do a simple conversion every time an update comes in.
Pedantically: they aren't kept as ints either. They are strings that require parsing.
Philisophically: you have information in the file and you should write data into the database. That means transforming the information in any ways necessary to make it meaningful/useful. If you don't do this transform up front, then you'll be doomed to repeat the transform across all consumers of the database.
There are some scenarios where you aren't allowed to transform the data, such as being able to answer the question: "What was in the file?". Those scenarios would require the data to be written as string - if the parse failed, you wouldn't have an accurate representation of the file.
In my mind the most important facet of using Decimal over Int in this scenario is maintainability.
Data stored in the tables should be clearly meaningful without need for arbitrary manipulation. If manipulation is required is should be clearly evident that it is (such as from the field name).
I recently dealt with data where days of the week were stored as values 2-8. You can not imagine the fall out this caused (testing didn't show the problem for a variety of reasons, but live use did cause political explosions).
If you do ever run in to such a situation, I would be absolutely certain to ensure data can not be written to or read from the table without use of stored procedures or views. This enables you to ensure the necessary manipulation is both enforced and documented. If you don't have both of these, some poor sod who follows you in the future will curse your very name.