How do I compare objects in Objective-C? - objective-c

How do I compare two objects of a custom class? My idea was to add an additional method to the class in which I can compare the current object with another object of the same kind.
So I can write my own code how each field of the class is compared.
This is how I would do it. Or are there some predefined methods to do that? Like "isEqualTo" of the NSString class?

The pointers to -isEqual: are good, but if you implement -isEqual:, you absolutely must also implement -hash in such a way that if two objects return YES for -isEqual: they will also return the same value for -hash. Implementing isEqual: without also implementing -hash leads to some very surprising bugs when you use Collections like NSArray.
For new developers, I tend to recommend against overloading -isEqual:. I recommend instead using the same technique as NSString, and create a custom -isEqualToFoo: (where Foo is your class) until you understand the impact of -isEqual: on collections and specifically want this behavior. Overloading -isEqual: powerful, but the bugs you can create are subtle. Creating your own custom comparator is safer and clearer in many cases.

The standard way is to override - (BOOL)isEqual:(id)anObject and - (NSUInteger)hash.
You should read the documentation for NSObject protocol and this SO question has some interesting answers on how to write your hash method.

Look at the isEqual: and the compare: method.

I have the following object:
#import <Foundation/Foundation.h>
typedef NS_ENUM(NSUInteger, SeasonType) {
kWinter,
kSpring,
kSummer,
kFall
};
#interface Season : NSObject
#property (nonatomic) SeasonType season;
#property (nonatomic) NSUInteger year;
+(id) seasonWithYear:(NSInteger)year season:(SeasonType)season;
-(id) initWithYear:(NSInteger)year season:(SeasonType)season;
#end
What I do is overwrite base NSObject comparison methods, there's no need of reinventing the wheel and code keeps cleaner as well:
#import "Season.h"
#interface Season()
#end
#implementation Season
+(id) seasonWithYear:(NSInteger)year season:(SeasonType)season{
return [[self alloc] initWithYear:year season:season];
}
-(id) initWithYear:(NSInteger)year season:(SeasonType)season{
self = [super init];
if (self)
{
_year = year;
_season=season;
_baseDate=nil;
}
return self;
}
#pragma mark - NSObject
- (BOOL)isEqual:(id)object {
if (self == object) {
return YES;
}
if (![object isKindOfClass:[Season class]]) {
return NO;
}
return [self _isEqualToSeason:(Season *)object];
}
- (NSUInteger)hash {
return self.season ^ self.year;
}
#pragma mark - Private/Internal
- (BOOL)_isEqualToSeason:(Season *)season {
if (!season) {
return NO;
}
return ((!self.season && !season.season) || self.season == season.season) &&
((!self.year && !season.year) || self.year == season.year) ;
}
#end
Usage:
Season *season2 = [Season seasonWithYear:2010 season:kFall];
Season *season3 = [Season seasonWithYear:2009 season:kFall];
[season2 isEqual:season3];

Related

Prevent class from being subclassed in Objective-c

How do I prevent a particular class from being subclassed?
I am not aware of such functionality (say final keyword for example) in the language. However Apple says it has done so for all classes in AddressBookUI.framework (in iOS)
For educational purposes, how can I achieve the same functionality, or how would they have done such thing?
From iOS7 Release Notes(Requires login) :
Here's one way: override allocWithZone: from within your "final" class (substituting MyFinalClassName for your actual class name) like this:
+ (id)allocWithZone:(struct _NSZone *)zone
{
if (self != [MyFinalClassName class]) {
NSAssert(nil, #"Subclassing MyFinalClassName not allowed.");
return nil;
}
return [super allocWithZone:zone];
}
This will prevent a subclass that is not a member of MyFinalClassName from being alloc'ed (and therefore init'ed as well), since NSObject's allocWithZone: must be called eventually, and by refusing to call super from your "final" class, you will prevent this.
There's a simpler way to prevent subclassing in Xcode 6 as a result of Swift interop. To prevent Swift classes from being subclassed in Objective-C the objc_subclassing_restricted is added to all class definitions in the {ProjectName}-Swift.h file.
You can use this in your projects:
#if defined(__has_attribute) && __has_attribute(objc_subclassing_restricted)
# define FOO_FINAL __attribute__((objc_subclassing_restricted))
#else
# define FOO_FINAL
#endif
FOO_FINAL
#interface Foo : NSObject
#end
#interface Bar : Foo
#end
The compiler will halt on the definition of Bar with Cannot subclass a class with objc_subclassing_restricted attribute
Here is possible solution:
#interface FinalClass : NSObject
#end
#implementation FinalClass
- (id)init
{
if (self.class != [FinalClass class]) {
return nil;
}
self = [super init];
if (self) {
// instance initialization
}
return self;
}
#end
#interface InvalidSubclass : FinalClass
#end
#implementation InvalidSubclass
- (id)init
{
self = [super init];
if (self) {
}
return self;
}
#end
I'm not sure this is 100% guaranteed because it's runtime-checking anyway, but it should be enough to block and warn people that they should not subclass this. Subclass might skip superclass's init, but then the instance will not be usable because it's not fully initialised by superclass.
Something like the following will ensure that every time an "impossible subclass" calls +alloc, an object will be allocated that is an instance of FinalClass, and not the subclass. This is essentially what NSObject's +alloc method does, but here we specify an explicit class to create. This is how NSObject allocates instances (in Obj-C 2), but there is no guarantee this will always be the case, so you may want to add an appropriate -dealloc which calls object_dispose. This method also means you don't get a nil object back if you try to instantiate a subclass - you do get an instance of FinalClass.
#interface FinalClass: NSObject
//...
+ (id)alloc; // Optional
#end
// ...
#import <objc/runtime.h>
#implementation FinalClass
+ (id)alloc {
if (![self isMemberOfClass:[FinalClass class]]) {
// Emit warning about invalid subclass being ignored.
}
self = class_createInstance([FinalClass class], 0);
if (self == nil) {
// Error handling
}
return self;
}
#end
#interface InvalidSubclass : FinalClass
// Anything not in FinalClass will not work as +alloc will
// create a FinalClass instance.
#end
Note: I'm not sure I'd use this myself - specifying that a class shouldn't be subclassed is more in the nature of a design-contract with the programmer rather than an enforced rule at compile- or runtime.

Avoid extra static variables for associated objects keys

When using associated objects, an Objective-C runtime feature available starting from iOS 4 and OSX 10.6, it's necessary to define a key for storing and retrieving the object at runtime.
The typical usage is defining the key like follows
static char const * const ObjectTagKey = "ObjectTag";
and then use is to store the object
objc_setAssociatedObject(self, ObjectTagKey, newObjectTag, OBJC_ASSOCIATION_RETAIN_NONATOMIC);
and retrieve it
objc_getAssociatedObject(self, ObjectTagKey);
(example taken by http://oleb.net/blog/2011/05/faking-ivars-in-objc-categories-with-associative-references/)
Is there a cleaner way to define the associated object key, that doesn't involve the declaration of extra variables?
According to this blog entry by Erica Sadun (whose credits go to Gwynne Raskind), there is.
objc_getAssociatedObject and objc_getAssociatedObject require a key to store the object. Such key is required to be a constant void pointer. So in the end we just need a fixed address that stays constant over time.
It turns out that the #selector implementation provides just about what we need, since it uses fixed addresses.
We can therefore just get rid of the key declaration and simply use our property's selector address.
So if you are associating at runtime a property like
#property (nonatomic, retain) id anAssociatedObject;
we can provide dynamic implementations for its getter/setter that look like
- (void)setAnAssociatedObject:(id)newAssociatedObject {
objc_setAssociatedObject(self, #selector(anAssociatedObject), newAssociatedObject, OBJC_ASSOCIATION_RETAIN_NONATOMIC);
}
- (id)anAssociatedObject {
return objc_getAssociatedObject(self, #selector(anAssociatedObject));
}
Very neat and definitely cleaner than defining an extra static variable key for every associated object.
Is this safe?
Since this is implementation-dependent, a legitimate question is: will it easily break?
Quoting the blog entry
Apple would probably have to implement a completely new ABI for that to happen
If we take those words to be true, it's then reasonably safe.
If you need access to the key from outside the scope of a single method, a nice pattern for this which leads to more readable code is to create a pointer which simply points to its own address in the stack. For example:
static void const *MyAssocKey = &MyAssocKey;
If you only need access from within the scope of a single method, you can actually just use _cmd, which is guaranteed to be unique. For example:
objc_setAssociatedObject(obj, _cmd, associatedObj, OBJC_ASSOCIATION_RETAIN_NONATOMIC);
A slight variation on the idea #Gabriele Petronella discussed is to associate a dictionary to every object:
//NSObject+ADDLAssociatedDictionary.h
#import <Foundation/Foundation.h>
#interface NSObject (ADDLAssociatedDictionary)
- (void)addl_setAssociatedObject:(id)object forKey:(id<NSCopying>)key;
- (id)addl_associatedObjectForKey:(id<NSCopying>)key;
#end
//NSObject+ADDLAssociatedDictionary.m
#import <objc/runtime.h>
#interface NSObject (ADDLAssociatedDictionaryInternal)
- (NSMutableDictionary *)addl_associatedDictionary;
#end
#implementation NSObject (ADDLAssociatedDictionary)
- (void)addl_setAssociatedObject:(id)object forKey:(id<NSCopying>)key
{
if (object) {
self.addl_associatedDictionary[key] = object;
} else {
[self.addl_associatedDictionary removeObjectForKey:key];
}
}
- (id)addl_associatedObjectForKey:(id<NSCopying>)key
{
return self.addl_associatedDictionary[key];
}
#end
#implementation NSObject (ADDLAssociatedDictionaryInternal)
const char addl_associatedDictionaryAssociatedObjectKey;
- (NSMutableDictionary *)addl_associatedDictionaryPrimitive
{
return objc_getAssociatedObject(self, &addl_associatedDictionaryAssociatedObjectKey);
}
- (void)addl_setAssociatedDictionaryPrimitive:(NSMutableDictionary *)associatedDictionary
{
objc_setAssociatedObject(self, &addl_associatedDictionaryAssociatedObjectKey, associatedDictionary, OBJC_ASSOCIATION_RETAIN_NONATOMIC);
}
- (NSMutableDictionary *)addl_generateAssociatedDictionary
{
NSMutableDictionary *associatedDictionary = [[NSMutableDictionary alloc] init];
[self addl_setAssociatedDictionaryPrimitive:associatedDictionary];
return associatedDictionary;
}
- (NSMutableDictionary *)addl_associatedDictionary
{
NSMutableDictionary *res = nil;
#synchronized(self) {
if (!(res = [self addl_associatedDictionaryPrimitive])) {
res = [self addl_generateAssociatedDictionary];
}
}
return res;
}
#end
Then in our category on some subclass Derived of NSObject
//Derived+Additions.h
#import "Derived.h"
#interface Derived (Additions)
#property (nonatomic) id anAssociatedObject;
#end
//Derived+Additions.m
#import "NSObject+ADDLAssociatedDictionary.h"
#implementation Derived (Additions)
- (void)setAnAssociatedObject:(id)anAssociatedObject
{
[self addl_setAssociatedObject:anAssociatedObject forKey:NSStringFromSelector(#selector(anAssociatedObject))];
}
- (id)anAssociatedObject
{
return [self addl_associatedObjectForKey:NSStringFromSelector(#selector(anAssociatedObject))];
}
#end
One benefit of the associated dictionary approach in general is the added flexibility that comes from being able to set objects for keys that are generated at runtime, not to mention the much nicer syntax.
A benefit particular to using
NSStringFromSelector(#selector(anAssociatedObject))
is that NSStringFromSelector is guaranteed to give an NSString representation of the selector which will always be an acceptable dictionary key. As a result, we don't have to worry at all (though I don't think it's a reasonable concern) about ABI changes.

NSMutableArray - force the array to hold specific object type only

Is there a way to force NSMutableArray to hold one specific object type only?
I have classes definitions as follow:
#interface Wheel:NSObject
{
int size;
float diameter;
}
#end
#interface Car:NSObject
{
NSString *model;
NSString *make;
NSMutableArray *wheels;
}
#end
How can I force wheels array to hold Wheel objects only with code? (and absolutely not other objects)
Update in 2015
This answer was first written in early 2011 and began:
What we really want is parametric polymorphism so you could declare, say, NSMutableArray<NSString>; but alas such is not available.
In 2015 Apple apparently changed this with the introduction of "lightweight generics" into Objective-C and now you can declare:
NSMutableArray<NSString *> *onlyStrings = [NSMutableArray new];
But all is not quite what it seems, notice the "lightweight"... Then notice that the initialisation part of the above declaration does not contain any generic notation. While Apple have introduced parametric collections, and adding a non-string directly to the above array, onlyStrings, as in say:
[onlyStrings addObject:#666]; // <- Warning: Incompatible pointer types...
will illicit the warning as indicated, the type security is barely skin deep. Consider the method:
- (void) push:(id)obj onto:(NSMutableArray *)array
{
[array addObject:obj];
}
and the code fragment in another method of the same class:
NSMutableArray<NSString *> *oops = [NSMutableArray new];
[self push:#"asda" onto:oops]; // add a string, fine
[self push:#42 onto:oops]; // add a number, no warnings...
What Apple have implemented is essentially a hinting system to assist with automatic inter-operation with Swift, which does have a flavour of type-safe generics. However on the Objective-C side, while the compiler provides some extra hints the system is "lightweight" and type-integrity is still ultimately down to the programmer - as is the Objective-C way.
So which should you use? The new lightweight/pseudo generics, or devise your own patterns for your code? There really is no right answer, figure out what makes sense in your scenario and use it.
For example: If you are targeting interoperation with Swift you should use the lightweight generics! However if the type integrity of a collection is important in your scenario then you could combine the lightweight generics with your own code on the Objective-C side which enforces the type integrity that Swift will on its side.
The Remainder of the 2011 Answer
As another option here is a quick general subclass of NSMutableArray which you init with the kind of object you want in your monomorphic array. This option does not give you static type-checking (in as much as you ever get it in Obj-C), you get runtime exceptions on inserting the wrong type, just as you get runtime exceptions for index out of bounds etc.
This is not thoroughly tested and assumes the documentation on overriding NSMutableArray is correct...
#interface MonomorphicArray : NSMutableArray
{
Class elementClass;
NSMutableArray *realArray;
}
- (id) initWithClass:(Class)element andCapacity:(NSUInteger)numItems;
- (id) initWithClass:(Class)element;
#end
And the implementation:
#implementation MonomorphicArray
- (id) initWithClass:(Class)element andCapacity:(NSUInteger)numItems
{
elementClass = element;
realArray = [NSMutableArray arrayWithCapacity:numItems];
return self;
}
- (id) initWithClass:(Class)element
{
elementClass = element;
realArray = [NSMutableArray new];
return self;
}
// override primitive NSMutableArray methods and enforce monomorphism
- (void) insertObject:(id)anObject atIndex:(NSUInteger)index
{
if ([anObject isKindOfClass:elementClass]) // allows subclasses, use isMemeberOfClass for exact match
{
[realArray insertObject:anObject atIndex:index];
}
else
{
NSException* myException = [NSException
exceptionWithName:#"InvalidAddObject"
reason:#"Added object has wrong type"
userInfo:nil];
#throw myException;
}
}
- (void) removeObjectAtIndex:(NSUInteger)index
{
[realArray removeObjectAtIndex:index];
}
// override primitive NSArray methods
- (NSUInteger) count
{
return [realArray count];
}
- (id) objectAtIndex:(NSUInteger)index
{
return [realArray objectAtIndex:index];
}
// block all the other init's (some could be supported)
static id NotSupported()
{
NSException* myException = [NSException
exceptionWithName:#"InvalidInitializer"
reason:#"Only initWithClass: and initWithClass:andCapacity: supported"
userInfo:nil];
#throw myException;
}
- (id)initWithArray:(NSArray *)anArray { return NotSupported(); }
- (id)initWithArray:(NSArray *)array copyItems:(BOOL)flag { return NotSupported(); }
- (id)initWithContentsOfFile:(NSString *)aPath { return NotSupported(); }
- (id)initWithContentsOfURL:(NSURL *)aURL { return NotSupported(); }
- (id)initWithObjects:(id)firstObj, ... { return NotSupported(); }
- (id)initWithObjects:(const id *)objects count:(NSUInteger)count { return NotSupported(); }
#end
Use as:
MonomorphicArray *monoString = [[MonomorphicArray alloc] initWithClass:[NSString class] andCapacity:3];
[monoString addObject:#"A string"];
[monoString addObject:[NSNumber numberWithInt:42]]; // will throw
[monoString addObject:#"Another string"];
Since Xcode 7, generics are available in Objective-C.
You can declare a NSMutableArray as:
NSMutableArray <Wheel*> *wheels = [[NSMutableArray alloc] initWithArray:#[[Wheel new],[Wheel new]];
The compiler will give you a warning if you try to put non-Wheel objects in the array.
I could be wrong (I'm a noob), but I think, if you create a custom protocol and make sure the objects you are adding to the array follow the same protocol, then when you declare the array you use
NSArray<Protocol Name>
That should prevent objects being added that do not follow the said protocol.
as per i know.. before you added any object in wheels mutableArray, u have to add some check mark. Is the object which i am adding is class "wheel". if it is then add, other wise not.
Example:
if([id isClassOf:"Wheel"] == YES)
{
[array addObject:id)
}
Something like this. i dont remember the exact syntax.
I hope this will help (and work... :P )
Wheel.h file:
#protocol Wheel
#end
#interface Wheel : NSObject
#property ...
#end
Car.h file:
#import "Wheel.h"
#interface Car:NSObject
{
NSString *model;
NSString *make;
NSMutableArray<Wheel, Optional> *wheels;
}
#end
Car.m file:
#import "Car.h"
#implementation Car
-(id)init{
if (self=[super init]){
self.wheels = (NSMutableArray<Wheel,Optional>*)[NSMutableArray alloc]init];
}
return self;
}
#end
Xcode 7 allows you to define Arrays, Dictionaries, and even your own Classes as having generics. The array syntax is as follows:
NSArray<NSString*>* array = #[#"hello world"];
I don't believe there's any way to do it with NSMutableArray out of the box. You could probably enforce this by subclassing and overriding all the constructors and insertion methods, but it's probably not worth it. What are you hoping to achieve with this?
That's not possible; an NSArray (whether mutable or not) will hold any object type. What you can do is to create your own custom subclasses as already suggested by Jim. Alternatively, if you wanted to filter an array to remove objects that weren't of the type you want, then you could do:
- (void)removeObjectsFromArray:(NSMutableArray *)array otherThanOfType:(Class)type
{
int c = 0;
while(c < [array length])
{
NSObject *object = [array objectAtIndex:c];
if([object isKindOfClass:type])
c++;
else
[array removeObjectAtIndex:c];
}
}
...
[self removeObjectsFromArray:array otherThanOfType:[Car class]];
Or make other judgments based on the result of isKindOfClass:, e.g. to divide an array containing a mixture of Cars and Wheels into two arrays, each containing only one kind of object.
You can use the nsexception if you dont have the specific object.
for (int i = 0; i<items.count;i++) {
if([[items objectAtIndex:i] isKindOfClass:[Wheel class]])
{
// do something..!
}else{
[NSException raise:#"Invalid value" format:#"Format of %# is invalid", items];
// do whatever to handle or raise your exception.
}
}
Here's something I've done to avoid subclassing NSMutableArray: use a category. This way you can have the argument and return types you want. Note the naming convention: replace the word "object" in each of the methods you will use with the name of the element class. "objectAtIndex" becomes "wheelAtIndex" and so on. This way there's no name conflict. Very tidy.
typedef NSMutableArray WheelList;
#interface NSMutableArray (WheelList)
- (wheel *) wheelAtIndex: (NSUInteger) index;
- (void) addWheel: (wheel *) w;
#end
#implementation NSMutableArray (WheelList)
- (wheel *) wheelAtIndex: (NSUInteger) index
{
return (wheel *) [self objectAtIndex: index];
}
- (void) addWheel: (wheel *) w
{
[self addObject: w];
}
#end
#interface Car : NSObject
#property WheelList *wheels;
#end;
#implementation Car
#synthesize wheels;
- (id) init
{
if (self = [super init]) {
wheels = [[WheelList alloc] initWithCapacity: 4];
}
return self;
}
#end
protocol maybe a good idea:
#protocol Person <NSObject>
#end
#interface Person : NSObject <Person>
#end
to use:
NSArray<Person>* personArray;
There is one-header file project which allows this:
Objective-C-Generics
Usage:
Copy ObjectiveCGenerics.h to your project.
When defining a new class use the GENERICSABLE macro.
#import "ObjectiveCGenerics.h"
GENERICSABLE(MyClass)
#interface MyClass : NSObject<MyClass>
#property (nonatomic, strong) NSString* name;
#end
Now you can use generics with arrays and sets just as you normally do in Java, C#, etc.
Code:

forward invocation, by hand vs magically?

I have the following two class:
//file FruitTree.h
#interface FruitTree : NSObject
{
Fruit * f;
Leaf * l;
}
#end
//file FruitTree.m
#implementation FruitTree
//here I get the number of seeds from the object f
#end
//file Fruit
#interface Fruit : NSObject
{
int seeds;
}
-(int) countfruitseeds;
#end
My question is at the point of how I request the number of seeds from f. I have two choices.
Either: Since I know f I can explicitly call it, i.e. I implement the method
-(int) countfruitseeds
{
return [f countfruitseeds];
}
Or: I can just use forwardInvocation:
- (NSMethodSignature *)methodSignatureForSelector:(SEL)selector
{
// does the delegate respond to this selector?
if ([f respondsToSelector:selector])
return [f methodSignatureForSelector:selector];
else if ([l respondsToSelector:selector])
return [l methodSignatureForSelector:selector];
else
return [super methodSignatureForSelector: selector];
}
- (void)forwardInvocation:(NSInvocation *)invocation
{
[invocation invokeWithTarget:f];
}
(Note this is only a toy example to ask my question. My real classes have lots of methods, which is why I am asking.)
Which is the better/faster method?
The direct method implementation is much, much faster. But if you want a real proxy object, the forwardInvocation: route is really the only way to go. Even if you us a macro to make the method declarations very short, you'd still need to write all the method names you wanted and keep the list up to date when any are added or removed.

Method signature for a Selector

I'm new to the Objective C business (Java developer most of the time) and am woking on my first killer app now. :-)
At the moment I am somehow confused about the usage of selectors as method arguments. They seem to be a little bit different than delegates in C# for example.
Given the following method signature
-(void)execute:(SEL)callback;
is there a way to enforce the signature for the selector passed to such a method?
The method is expecting a selector of a method with the following signature
-(void)foo:(NSData*)data;
But the SEL (type) is generic, so there is a good chance to pass a wrong selector to the
execute method. OK at least at runtime one would see a funny behavior... but I would like to see a compiler warning/error when this happens.
The quick answer is: no, there is no way to have the compiler enforce the method signature of a method selector that is provided via a SEL argument.
One of the strengths of Objective-C is that it is weakly-typed language, which allows for a lot more dynamic behaviour. Of course, this comes at the cost of compile-time type safety.
In order to do what (I think) you want, the best approach is to use delegates. Cocoa uses delegates to allow another class to implement "callback"-type methods. Here is how it might look:
FooController.h
#protocol FooControllerDelegate
#required:
- (void)handleData:(NSData *)data forFoo:(FooController *)foo;
#end
#interface FooController : NSObject
{
id <FooControllerDelegate> * delegate;
}
#property (assign) id <FooControllerDelegate> * delegate;
- (void)doStuff;
#end
FooController.m
#interface FooController (delegateCalls)
- (void)handleData:(NSData *)data;
#end
#implementation FooController
#synthesize delegate;
- (id)init
{
if ((self = [super init]) == nil) { return nil; }
delegate = nil;
...
return self;
}
- (void)doStuff
{
...
[self handleData:data];
}
- (void)handleData:(NSData *)data
{
if (delegate != nil)
{
[delegate handleData:data forFoo:self];
}
else
{
return;
// or throw an error
// or handle it yourself
}
}
#end
Using the #required keyword in your delegate protocol will prevent you from assigning a delegate to a FooController that does not implement the method exactly as described in the protocol. Attempting to provide a delegate that does not match the #required protocol method will result in a compiler error.
Here is how you would create a delegate class to work with the above code:
#interface MyFooHandler <FooControllerDelegate> : NSObject
{
}
- (void)handleData:(NSData *)data forFoo:(FooController *)foo;
#end
#implementation MyFooHandler
- (void)handleData:(NSData *)data forFoo:(FooController *)foo
{
// do something here
}
#end
And here is how you would use everything:
FooController * foo = [[FooController alloc] init];
MyFooHandler * fooHandler = [[MyFooHandler alloc] init];
...
[foo setDelegate:fooHandler]; // this would cause a compiler error if fooHandler
// did not implement the protocol properly
...
[foo doStuff]; // this will call the delegate method on fooHandler
...
[fooHandler release];
[foo release];
To directly answer your question, no, the SEL type allows any type of selector, not just ones with a specific signature.
You may want to consider passing an object instead of a SEL, and document that the passed object should respond to a particular message. For example:
- (void)execute:(id)object
{
// Do the execute stuff, then...
if ([object respondsToSelector:#selector(notifyOnExecute:)]) {
[object notifyOnExecute:self];
}
// You could handle the "else" case here, if desired
}
If you want to enforce the data handling, use isKindOfClass inside your selector. This works a lot like instanceof which you are familiar with in Java.