Automatic testing for web based projects - testing

Recently I've came up with the question is it worth at all to spent development time to generate automatic unit test for web based projects? I mean it seems useless at some point because at some point those projects are oriented on interactions with users/clients, so you cannot anticipate the whole possible set of user action so you be able to check the correctness of content showed. Even regression test can hardly be done. So I'm very eager to know to know the opinion of other experienced developers.

Selenium have a good web testing framework
http://seleniumhq.org/
Telerik are also in the process of developing one for web app testing.
http://www.telerik.com/products/web-ui-test-studio.aspx

You cannot anticipate the whole
possible set of user action so you be
able to check the correctness of
content showed.
You can't anticipate all the possible data your code is going to be handed, or all the possible race conditions if it's threaded, and yet you still bother unit testing. Why? Because you can narrow it down a hell of a lot. You can anticipate the sorts of pathological things that will happen. You just have to think about it a bit and get some experience.
User interaction is no different. There are certain things users are going to try and do, pathological or not, and you can anticipate them. Users are just inputting particularly imaginative data. You'll find programmers tend to miss the same sorts of conditions over and over again. I keep a checklist. For example: pump Unicode into everything; put the start date after the end date; enter gibberish data; put tags in everything; leave off the trailing newline; try to enter the same data twice; submit a form, go back and submit it again; take a text file, call it foo.jpg and try to upload it as a picture. You can even write a program to flip switches and push buttons at random, a bad monkey, that'll find all sorts of fun bugs.
Its often as simple as sitting someone down who's unfamiliar with the software and watching them use it. Fight the urge to correct them, just watch them flounder. Its very educational. Steve Krug refers to this as "Advanced Common Sense" and has an excellent book called "Don't Make Me Think" which covers cheap, simple user interaction testing. I highly recommend it. It's a very short and eye opening read.
Finally, the client themselves, if their expectations are properly prepared, can be a fantastic test suite. Be sure they understand its a work in progress, that it will have bugs, that they're helping to make their product better, and that it absolutely should not be used for production data, and let them tinker with the pre-release versions of your product. They'll do all sorts of things you never thought of! They'll be the best and most realistic testing you ever had, FOR FREE! Give them a very simple way to report bugs, preferably just a one button box right on the application which automatically submits their environment and history; the feedback box on Hiveminder is an excellent example. Respond to their bugs quickly and politely (even if its just "thanks for the info") and you'll find they'll be delighted you're so responsive to their needs!

Yes, it is. I just ran into an issue this week with a web site I am working on. I just recently switched-out the data access layer and set up unit tests for my controllers and repositories, but not the UI interactions.
I got bit by a pretty obvious bug that would have been easily caught if I had integration tests. Only through integration tests and UI functionality tests do you find issues with the way different tiers of the application interact with one another.

It really depends on the structure and architecture of your web application. If it contains an application logic layer, then that layer should be easy to unit test with automating tools such as Visual Studio. Also, using a framework that has been designed to enable unit testing, such as ASP.NET MVC, helps alot.

If you're writing a lot of Javascript, there have been a lot of JS testing frameworks that have come around the block recently for unit testing your Javascript.
Other than that, testing the web tier using something like Canoo, HtmlUnit, Selenium, etc. is more a functional or integration test than a unit test. These can be hard to maintain if you have the UI change a lot, but they can really come in handy. Recording Selenium tests is easy and something you could probably get other people (testers) to help you create and maintain. Just know that there is a cost associated with maintaining tests, and it needs to be balanced out.
There are other types of testing that are great for the web tier - fuzz testing especially, but a lot of the good options are commercial tools. One that is open source and plugs into Rails is called Tarantula. Having something like that at the web tier is a nice to have run in a continuous integration process and doesn't require much in the form of maintenance.

Unit tests make sense in TDD process. They do not have much value if you don't do test-first development. However the acceptance test are a big thing for quality of the software. I'd say that acceptance test is a holy grail of the development. Acceptance tests show whether the application satisfies the requirements. How do I know when to stop developing the feature --- only when all my acceptance test pass. Automation of acceptance testing a big thing because I do not have to do it all manualy each time I make changes to the application. After months of development there can be hundreds of test and it becomes unfeasible (sometime impossible) to run all the test manually. Then how do I know if my application still works?
Automation of acceptance tests can be implemented with use of xUnit test frameworks, which makes a confusion here. If I create an acceptance test using phpUnit or httpUnit is it a unit test? My answer is no. It does not matter what tool I use to create and run test. Acceptance test is the one that show whether the features is working IAW requirements. Unit test show whether a class (or function) satisfies the developer's implementation idea. Unit test has no value for the client (user). Acceptance test has a lot of value to the client (and thus to developer, remember Customer Affinity)
So I strongly recommend creating automated acceptance tests for the web application.
The good frameworks for the acceptance test are:
Sahi (sahi.co.in)
Silenium
Simpletest (I't a unit-test framework for php, but includes the browser object that can be used for acceptance testing).
However
You have mentioned that web-site is all about user interaction and thus test automation will not solve the whole problem of usability. For example: testing framework shows that all tests pass, however the user cannot see the form or link or other page element due to accidental style="display:none" in the div. The automated tests pass because the div is present in the document and test framework can "see" it. But the user cannot. And the manual test would fail.
Thus, all web-applications needs manual testing. The automated test can reduce the test workload drastically (80%), but manual test are as well significant for the quality of the resulting software.
As for the Unit testing and TDD -- it make the code quality. It is beneficial to the developers and for the future of the project (i.e. for projects longer that a couple of month). However TDD requires skill. If you have the skill -- use it. If you don't consider gaining the skill, but mind the time it will take to gain. It usually takes about 3 - 6 month to start creating a good Unit tests and code. If you project will last more that a year, I recommend studding TDD and investing time in proper development environment.

I've created a web test solution (docker + cucumber); it's very basic and simple, so easy to understand and modify / improve. It lies in the web directory;
my solution: https://github.com/gyulaweber/hosting_tests

Related

What testing advice will you give a beginner for testing websites

I'm just starting out working on test scripts.I'm going to get a web application created in .net for testing. I have no idea what kind of testing is needed for such kind of applications.
My suggestion is that you should have a healthy mix of automated and manual testing.
AUTOMATED TESTING
Unit Testing
Use NUnit to test your classes, functions and interaction between them.
http://www.nunit.org/index.php
Automated Functional Testing
If it's possible you should automate a lot of the functional testing. Some frame works have functional testing built into them. Otherwise you have to use a tool for it. If you are developing web sites/applications you might want to look at Selenium.
http://www.peterkrantz.com/2005/selenium-for-aspnet/
Continuous Integration
Use CI to make sure all your automated tests run every time someone in your team makes a commit to the project.
http://martinfowler.com/articles/continuousIntegration.html
MANUAL TESTING
As much as I love automated testing it is, IMHO, not a substitute for manual testing. The main reason being that an automated can only do what it is told and only verify what it has been informed to view as pass/fail. A human can use it's intelligence to find faults and raise questions that appear while testing something else.
Exploratory Testing
ET is a very low cost and effective way to find defects in a project. It take advantage of the intelligence of a human being and a teaches the testers/developers more about the project than any other testing technique i know of. Doing an ET session aimed at every feature deployed in the test environment is not only an effective way to find problems fast, but also a good way to learn and fun!
http://www.satisfice.com/articles/et-article.pdf
There are a lot of small things that you may need to check (assuming you're doing manual testing):
Check for the exact location/alignment of items
Check whether all hyperlinks are working as expected
Check by clicking a button (submitting the form) multiple time
Check for security aspects (google for xss or cross site scripting)
Check for fonts etc. (if they're different from standards)
Hope this helps.
A web application should go through below test's
1) Functionality Testing
2) Usability testing
3) Interface testing
4) Compatibility testing
5) Performance testing
6) Security testing
for complete guide
Read this Article

What kinds of tests are there?

I've always worked alone and my method of testing is usually compiling very often and making sure the changes I made work well and fix them if they don't. However, I'm starting to feel that that is not enough and I'm curious about the standard kinds of tests there are.
Can someone please tell me about the basic tests, a simple example of each, and why it is used/what it tests?
Thanks.
Different people have slightly different ideas about what constitutes what kind of test, but here are a few ideas of what I happen to think each term means. Note that this is heavily biased towards server-side coding, as that's what I tend to do :)
Unit test
A unit test should only test one logical unit of code - typically one class for the whole test case, and a small number of methods within each test. Unit tests are (ideally) small and cheap to run. Interactions with dependencies are usually isolated with a test double such as a mock, fake or stub.
Integration test
An integration test will test how different components work together. External services (ones not part of the project scope) may still be faked out to give more control, but all the components within the project itself should be the real thing. An integration test may test the whole system or some subset.
System test
A system test is like an integration test but with real external services as well. If this is automated, typically the system is set up into a known state, and then the test client runs independently, making requests (or whatever) like a real client would, and observing the effects. The external services may be production ones, or ones set up in just a test environment.
Probing test
This is like a system test, but using the production services for everything. These run periodically to keep track of the health of your system.
Acceptance test
This is probably the least well-defined term - at least in my mind; it can vary significantly. It will typically be fairly high level, like a system test or an integration test. Acceptance tests may be specified by an external entity (a standard specification or a customer).
Black box or white box?
Tests can also be "black box" tests, which only ever touch the public API, or "white box" tests which take advantage of some extra knowledge to make testing easier. For example, in a white box test you may know that a particular internal method is used by all the public API methods, but is easier to test. You can test lots of corner cases by calling that method directly, and then do fewer tests with the public API. Of course, if you're designing the public API you should probably design it to be easily testable to start with - but it doesn't always work out that way. Often it's nice to be able to test one small aspect in isolation of the rest of the class.
On the other hand, black box testing is generally less brittle than white box testing: by definition, if you're only testing what the API guarantees in its contracts, then the implementation can change as much as it wants without the tests changing. White box tests, on the other hand, are sensitive to implementation changes: if the internal method changes subtly - or gains an extra parameter, for example - then you'll need to change the tests to reflect that.
It all boils down to balance, in the end - the higher the level of the test, the more likely it is to be black box. Unit tests, on the other hand, may well include an element of white box testing... at least in my experience. There are plenty of people who would refuse to use white box testing at all, only ever testing the public API. That feels more dogmatic than pragmatic to me, but I can see the benefits too.
Starting out
Now, as for where you should go next - unit testing is probably the best thing to start with. You may choose to write the tests before you've designed your class (test-driven development) or at roughly the same time, or even months afterwards (not ideal, but there's a lot of code which doesn't have tests but should). You'll find that some of your code is more amenable to testing than others... the two crucial concepts which make testing feasible (IMO) are dependency injection (coding to interfaces and providing dependencies to your class rather than letting them instantiate those dependencies themselves) and test doubles (e.g. mocking frameworks which let you test interaction, or fake implementations which do everything a simple way in memory).
I would suggest reading at least book about this, since the domain is quite huge, and books tend to synthesize better such concepts.
E.g. A very good basis might be: Software Testing Testing Across the Entire Software Development Life Cycle (2007)
I think such a book might explain better everything than some out of context examples we could post here.
Hi… I would like to add on to what Jon Skeet Sir’s answer..
Based on white box testing( or structural testing) and black box testing( or functional testing) the following are the other testing techniques under each respective category:
STRUCTURAL TESTING Techniques
Stress Testing
This is used to test bulk volumes of data on the system. More than what a system normally takes. If a system can stand these volumes, it can surely take normal values well.
E.g.
May be you can take system overflow conditions like trying to withdraw more than available in your bank balance shouldn’t work and withdrawing up to a maximum threshold should work.
Used When
This can be mainly used we your unsure about the volumes up to your system can handle.
Execution Testing
Done in order to check how proficient is a system.
E.g.
To calculate turnaround time for transactions.
Used when:
Early in the development process to see if performance criteria is met or not.
Recovery Testing
To see if a system can recover to original form after a failure.
E.g.
A very common e.g. in everyday life is the System Restore present in Windows OS..
They have restore points used for recovery as one would well know.
Used when:
When a user feels an application critical to him/her at that point of time has stopped working and should continue to work, for which he performs recovery.
Other types of testing which you could find use of include:-
Operations Testing
Compliance Testing
Security Testing
FUNCTIONAL TESTING Techniques include:
Requirements Testing
Regression Testing
Error-Handling Testing
Manual-Support Testing
Intersystem testing
Control Testing
Parallel Testing
There is a very good book titled “Effective methods for Software Testing” by William Perry of Quality Assurance Institute(QAI) which I would suggest is a must read if you want to go in depth w.r.t. Software Testing.
More on the above mentioned testing types would surely be available in this book.
There are also two other very broad categories of Testing namely
Manual Testing: This is done for user interfaces.
Automated Testing: Testing which basically involves white box testing or testing done
through Software Testing tools like Load Runner, QTP etc.
Lastly I would like to mention a particular type of testing called
Exhaustive Testing
Here you try to test for every possible condition, hence the name. This is as one would note pretty much infeasible as the number of test conditions could be infinite.
Firstly there are various tests one can perform. The Question is how does one organize it. Testing is a Vast & enjoying process.
Start Testing with
1.Smoke Testing. Once passed , go ahead with Functionality Testing. This is the Backbone of Testing. If Functionality works fine then 80% of Testing is profitable.
2.Now go with User Interface testing. AS at times User Interface is something that attracts the Client more than functionality. It is the look & feel that a client gets more attracted to it.
3.Now its time to have a look on Cosmetics bugs. Generally these bugs are ignored because of time constraint. But these play a major role depending on the page it is found. A spelling mistake turns to be Major when found on Splash Screen Or Your landing page or the App name itself. Hence these can not be overlooked as well.
4.Do Conduct Compatibility Testing. i,e Testing on Various Browsers & browser Versions. May be devices & OS for Responsive applications.
Happy testing :)

What test methods do you use for developing websites?

There are a lot of testing methods out there i.e. blackbox, graybox, unit, functional, regression etc.
Obviously, a project cannot take on all testing methods. So I asked this question to gain an idea of what test methods to use and why should I use them. You can answer in the following format:
Test Method - what you use it on
e.g.
Unit Testing - I use it for ...(blah, blah)
Regression Testing - I use it for ...(blah, blah)
I was asked to engage into TDD and of course I had to research testing methods. But there is a whole plethora of them and I don't know what to use (because they all sound useful).
1. Unit Testing is used by developers to ensure unit code he wrote is correct. This is usually white box testing as well as some level of black box testing.
2. Regression Testing is a functional testing used by testers to ensure that new changes in system has not broken any of existing functionality
3. Functional testing is testing conducted on a complete, integrated system to evaluate the system's compliance with its specified requirements. Functionality testing falls within the scope of black box testing, and as such, should require no knowledge of the inner design of the code or logic
.
This Test-driven development and Feature Driven Development wiki articles will be of great help for you.
For TDD you need to follow following process:
Document feature (or use case) that
you need to implement or enhance
in your application that
currently does not exists.
Write set of functional test
cases that can ensure above
feature (from step 1) works. You may need to
write multiple test cases for
above feature to test all different
possible work flows.
Write code to implement above feature (from step 1).
Test this code using test cases you
had written earlier (in step 2). The actual
testing can be manual but I would recommend to create automated tests
if possible.
If all test cases pass, you are good to
go. If not, you need to update code (go back to step 3)
so as to make the test case pass.
TDD is to ensure that functional test cases which were written before you coded should work and does not matter how code was implemented.
There is no "right" or "wrong" in testing. Testing is an art and what you should choose and how well it works out for you depends a lot from project to project and your experience.
But as a professional Test Expert my suggestion is that you have a healthy mix of automated and manual testing.
(Examples below are in PHP but you can easily find the correct examples for what ever langauge/framework you are using)
AUTOMATED TESTING
Unit Testing
Use PHPUnit to test your classes, functions and interaction between them.
http://phpunit.sourceforge.net/
Automated Functional Testing
If it's possible you should automate a lot of the functional testing. Some frame works have functional testing built into them. Otherwise you have to use a tool for it. If you are developing web sites/applications you might want to look at Selenium.
http://www.webinade.com/web-development/functional-testing-in-php-using-selenium-ide
Continuous Integration
Use CI to make sure all your automated tests run every time someone in your team makes a commit to the project.
http://martinfowler.com/articles/continuousIntegration.html
MANUAL TESTING
As much as I love automated testing it is, IMHO, not a substitute for manual testing. The main reason being that an automated can only do what it is told and only verify what it has been informed to view as pass/fail. A human can use it's intelligence to find faults and raise questions that appear while testing something else.
Exploratory Testing
ET is a very low cost and effective way to find defects in a project. It take advantage of the intelligence of a human being and a teaches the testers/developers more about the project than any other testing technique i know of. Doing an ET session aimed at every feature deployed in the test environment is not only an effective way to find problems fast, but also a good way to learn and fun!
http://www.satisfice.com/articles/et-article.pdf
This answer is (almost) identical to one that I gave to another question. Check out that question since it had some other good answers that might help you.
How can we decide which testing method can be used?
I usually do the following things:
Page consistency in case of multi-page web sties.
Testing the database connections.
Testing the functionalities that can be affected by the change I just made.
I test functions with sample input to make sure they work fine (especially those that are algorithm-like).
In some cases I implement features very simply hard-coding most of the settings then implement the settings later, testing after implementing every setting.
Most of these apply to applications, too.
Well before going to the answer i would like to clear testing concept about multiple methods.
There are six main testing types which cover all most all testing methods.
Black Box Testing
White Box Testing
Grey Box Testing
Functional Testing
Integration Testing
Usability Testing
Almost all Testing methods lies under these types, you can also use some testing method in multiple types like you can use Smoke testing in black box or white box approach on the basis of resources available to test.
So for testing a web site completely you need to use at least following testing methods on the basis of resources available to test. These are at least methods which should be used to test a web site, but there may be some more imp methods on the basic of nature of website.
Requirement Testing
Smock Testing
System Testing
Integration Testing
Regression Testing
Security Testing
Performance & Load Testing
Deployment Testing
You should at least use all of above (8) testing methods to test a web site no matter what testing type you are focusing. You can automate you test in some areas and you can do this manually it all depends upon the resources availability.
There is specifically no hard and fast rule to follow any testing type or any method. As you know "Testing Is An ART" so art don't have rules or boundaries. Its totally up to you What you use to test and how.......
Hope you got the answer of question.
Selenium is very good for testing websites.
The answer depends on the Web framework used (if any). Django for example has built-in testing functions.
For PHP (or functional web testing), SimpleTest is pretty good and well... simple. It support Unit Testing (PHP only) and Web Testing. Tests can run in the IDE (Eclipse), or in the browser (meaning on your server).
The other answers posted so far focus on unit/functional/performance/etc. testing, and they are all reasonable.
However, one the key questions you should ask is, "how effective is my testing?".
This is often answered with test coverage tools, that determine which parts of your application actually get exercised by some set of tests. The ideal test coverage tool lets you test your application by any method you can imagine (including all the standard answers above) and will then report what part and what percentage of your code was exercised. Most importantly, it will tell you what code you did not exercise. You can then inspect that code and decide if more testing is warranted, or if you don't care. If the untested code has to do with "disk full error handling" and you belive that 1TB disks are common, you might decide to ignore that. If the untested code is the input validation logic leading to SQL queries, you might decide that you must test that logic to ensure that no SQL injection attacks can occur.
What test coverage tools let you do it to make a rational decision that you have tested adequately, using data about what parts of your code has been exercised. So regardless of how you test, best practices indicates you should also do test coverage analysis.
Test coverage tools can be obtained from a variety of sources. SD provides a family of test coverage tools that handle C, C++, Java, C#, PHP and COBOL, all of which are used to support web site testing in various ways.

Is there a right way to implement a continuous improvement (AKA software hardening) process?

Each release it seems that our customers find a few old issues with our software. It makes it look like every release has multiple bugs, when in reality our new code is generally solid.
We have tried to implement some additional testing where we have testers do several hours of monthly regression testing on a single app each month in an effort to stay ahead of small issues. We refer to this process as our Software Hardening process, but it does not seem like we are catching enough of the bugs and it feels like a very backburner process since there is always new code to write.
Is there a trick to this kind of testing? Do I need to target one specific feature at a time?
When you develop your testing procedures, you may want to implement these kind of tests:
unit testing (testing invididual components of your project to test their functionality), these tests are important because they allow you to pinpoint where in the software the error may come from. Basically in these tests you will test a single functionality and use mock objects to simulate the behavior, return value of other objects/entities.
regression testing, which you mentioned
characterization testing, one example could be running automatically the program on automatically generated input (simulating the user input), storing the results and compare the results of every version against these results.
At the beginning this will be very heavy to put in place, but with more releases and more bugs fixes being added to the automated non-regression tests, you should be starting to save time.
It is very important that you do not fall in the trap of designing huge numbers of dumb tests. Testing should make your life easier, if you spend too much time understanding where the tests have broken you should redesign the tests such as they give you better messages/understanding of the problem so you can locate the issue quickly.
Depending of your environment, these tests can be linked to the development process.
In my environment, we use SVN for versioning, a bot runs the tests against every revision and returns the failing tests and messages with the name of the revision which broke it and the contributor (his login).
EDIT:
In my environment, we use a combination of C++ and C# to deliver analytics used in Finance, the code was C++ and is quite old while we are trying to migrate the interfaces toward C# and keep the core of the analytics in C++ (mainly because of speed requirements)
Most of the C++ tests are hand-written unit tests and regression tests.
On the C# side we are using NUnit for unit testing. We have a couple of general tests.
We have a 0 warnings policy, we explicitely forbid people to commit code which is generating warnings unless they can justify why it is useful to bypass the warning for this part of the code. We have as well conventions about exception safety, the use of design patterns and many other aspects.
Setting explicitely conventions and best practices is another way to improve the quality of your code.
Is there a trick to this kind of testing?
You said, "we have testers do several hours of monthly regression testing on a single app each month in an effort to stay ahead of small issues."
I guess that by "regression testing" you mean "manually exercising old features".
You ought to decide whether you're looking for old bugs which have never been found before (which means, running tests which you've never run before); or, whether you're repeating previously-run tests to verify that previously-tested functionality is unchanged. These are two opposite things.
"Regression testing" implies to me that you're doing the latter.
If the problem is that "customers find a few old issues with our software" then either your customers are running tests which you've never run before (in which case, to find these problems you need to run new tests of old software), or they're finding bugs which you have previous tested and found, but which you apparently never fixed after you found them.
Do I need to target one specific feature at a time?
What are you trying to do, exactly:
Find bugs before customers find them?
Convince customers that there's little wrong with the new development?
Spend as little time as possible on testing?
Very general advice is that bugs live in families: so when you find a bug, look for its parents and siblings and cousins, for example:
You might have this exact same bug in other modules
This module might be buggier than other modules (written by somone on an off day, perhaps), so look for every other kind of bug in this module
Perhaps this is one of a class of problems (performance problems, or low-memory problems) which suggests a whole area (or whole type of requirement) which needs better test coverage
Other advice is that it's to do with managing customer expectations: you said, "It makes it look like every release has multiple bugs, when in reality our new code is generally solid" as if the real problem is the mistaken perception that the bug is newly-written.
it feels like a very backburner process since there is always new code to write
Software develoment doesn't happen in the background, on a burner: either someone is working on it, or they're not. Management must to decide whether to assign anyone to this task (i.e. look for existing previously-unfound bugs, or fix-previously-found-but-not-yet-reported bugs), or whether they prefer to concentrate on new development and let the customers do the bug-detecting.
Edit: It's worth mentioning that testing isn't the only way to find bugs. There's also:
Informal design reviews (35%)
Formal design inspections (55%)
Informal code reviews (25%)
Formal code inspections (60%)
Personal desk checking of code (40%)
Unit test (30%)
Component test (30%)
Integration test (35%)
Regression test (25%)
System test (40%)
Low volume beta test (<10 sites) (35%)
High-volume beta test (>1000 sites) (70%)
The percentage which I put next to each is a measure of the defect-removal rate for each technique (taken from page 243 of McConnel's Software Estimation book). The two most effective techniques seem to be formal code inspection, and high-volume beta tests.
So it might be a good idea to introduce formal code reviews: that might be better at detecting defects than black-box testing is.
As soon as your coding ends, first you should go for the unit testing. THere you will get some bugs which should be fixed and you should perform another round of unit testing to find if new bugs came or not. After you finish Unit testing you should go for functional testing.
YOu mentioned here that your tester are performing regression testing on a monthly basis and still there are old bugs coming out. So it is better to sit with the tester and review the test cases as i feel that they need to be updated regularly. Also during review put stress on which module or functionality the bugs are coming. Stress on those areas and add more test cases in those areas and add those in your rgression test cases so that once new build comes those test cases should be run.
YOu can try one more thing if your project is a long term one then you should talk with the tester to automate the regression test cases. It will help you to run the test cases at off time like night and in the next day you will get the results. Also the regression test cases should be updated as the major problem comes when regression test cases are not updated regularly and by running old regression test cases and new progression test cases you are missing few modules that are not tested.
There is a lot of talk here about unit testing and I couldn't agree more. I hope that Josh understands that unit testing is a mechanized process. I disagree with PJ in that unit tests should be written before coding the app and not after. This is called TDD or Test Driven Development.
Some people write unit tests that exercise the middle tier code but neglect testing the GUI code. That is imprudent. You should write unit tests for all tiers in your application.
Since unit tests are also code, there is the question of QA for your test suite. Is the code coverage good? Are there false positives/negatives errors in the unit tests? Are you testing for the right things? How do you assure the quality of your quality assurance process? Basically, the answer to that comes down to peer review and cultural values. Everyone on the team has to be committed to good testing hygiene.
The earlier a bug is introduced into your system, the longer it stays in the system, the harder and more costly it is to remove it. That is why you should look into what is known as continuous integration. When set up correctly, continuous integration means that the project gets compiled and run with the full suite of unit tests shortly after you check in your changes for the day.
If the build or unit tests fail, then the offending coder and the build master gets a notification. They work with the team lead to determine what the most appropriate course correction should be. Sometimes it is just as simple as fix the problem and check the fix in. A build master and team lead needs to get involved to identify any overarching patterns that require additional intervention. For example, a family crisis can cause a developer's coding quality to bottom out. Without CI and some managerial oversight, it might take six months of bugs before you realize what is going on and take corrective action.
You didn't mention what your development environment is. If yours were a J2EE shop, then I would suggest that you look into the following.
CruiseControl for continuous integration
Subversion for the source code versioning control because it integrates well with CruiseControl
Spring because DI makes it easier to mechanize the unit testing for continuous integration purposes
JUnit for unit testing the middle tier
HttpUnit for unit testing the GUI
Apache JMeter for stress testing
Going back and implementing a testing strategy for (all) existing stuff is a pain. It's long, it's difficult, and no one will want to do it. However, I strongly recommend that as a new bug comes in, a test be developed around that bug. If you don't get a bug report on it, then either is (a) works or (b) the user doesn't care that it doesn't work. Either way, a test is a waste of your time.
As soon as its identified, write a test that goes red. Right now. Then fix the bug. Confirm that it is fixed. Confirm that the test is now green. Repeat as new bugs come in.
Sorry to say that but maybe you're just not testing enough, or too late, or both.

BDD GUI Automation

I've started a new role in my life. I was a front end web developer, but I've now been moved to testing web software, or more so, automating the testing of the software. I believe I am to pursue a BDD (Behavior Driven Development) methodology. I am fairly lost as to what to use, and how to piece it together.
The code that is being used/written is in Java to write a web interface for the application to test. I have documentation of the tests to run, but I've been curious how to go about automating it.
I've been directed to Cucumber as one of the "languages" to help with the automation. I have done some research and come across a web site for a synopsis of BDD Tools/Frame works,
8 Best Behavior Driven Development (BDD) Tools and Testing Frameworks. This helped a little but then I got a little confused of how to implement it. It seems that Selenium is a common denominator in a lot of the BDD frameworks for testing a GUI, but it still doesn't seem to help describe what to do.
I then came across the term Functional Testing tool, and I think that confused me even more. Do they all test a GUI?
I think the one that looked like it was all one package was SmartBear TestComplete, and then there is, what seems to be, another similar application by SmartBear called, SmartBear TestLeft, but I think I saw that they still used Cucumber for BDDing it. There a few others that looked like they might work as well, but I guess the other question is what's the cheapest route?
I guess the biggest problem I have is how to make these tests more dynamic, as the UI/browser dimensions can easily change from system to system, and how do I go about writing automation that can handle this, and tie into a BDD methodology?
Does anyone have any suggestions here? Does anybody out there do this?
Thanks in advance.
BDD Architecture
BDD automation typically consists of a few layers:
The natural language steps
The wiring that ties the steps to their definition
The step definitions, which usually access page objects
Page objects, which provide all the capabilities of a page or widget
Automation over the actual code being exercised, often through the GUI.
The wiring between natural language steps and the step definitions is normally done by the BDD tool (Cucumber).
The automation is normally done using the automation tool (Selenium). Sometimes people do skip the GUI, perhaps targeting an API or the MVC layer instead. It depends how complex the functionality in your web page is. If in doubt, give Selenium a try. I've written automation frameworks for desktop apps; the principle's the same regardless.
Keeping it maintainable
To make the steps easy to maintain and change, keep the steps at a fairly high level. This is frequently referred to as "declarative" as opposed to "imperative". For instance, this is too detailed:
When Fred provides his receipt
And his receipt is scanned
And the cashier clicks "Refund to original card"
And the card is inserted...
Think about what the user is trying to achieve:
When Fred gets a refund to his original card
Generally a scenario will have a few Givens or Thens, but typically only one When (unless you have something like users interacting or time passing, where both events are needed to illustrate the behaviour).
Your page objects in this scenario might well be a "RefundPageObject" or perhaps, if that's too large, a "RefundToCardPageObject". This pattern allows multiple scenario steps to access the same capabilities without duplication, which means that if the way the capabilities are exercised changes, you only need to change them in one place.
Different page objects could also be used for different systems.
Getting started
If you're attacking this for the first time, start by getting an empty scenario that just runs and passes without doing anything (make the steps empty). When you've done this, you'll have successfully wired up Cucumber.
Write the production code that would make the scenario run. (This is the other way round from the way you'd normally do it; normally you'd write the scenario code first. I've found this is a good way to get started though.)
When you can run your scenario manually, add the automation directly to the steps (you've only got one scenario at this point). Use your favourite assertion package (JUnit) to get the outcome you're after. You'll probably need to change your code so that you can automate over it easily, by e.g.: giving relevant test ids to elements in your webpage.
Once you've got one scenario running, try to write any subsequent scenarios first; this helps you think about your design and the testability of what you're about to do. When you start adding more scenarios, start extracting that automation out into page objects too.
Once you've got a few scenarios, have a think about how you might want to address different systems. Avoid using lots of "if" statements if you can; those are hard to maintain. Injecting different implementations of page objects is probably better (the frameworks may well support this by now; I haven't used them in a while).
Keep refactoring as you add more scenarios. If the steps are too big, split them up. If the page objects are too big, divide them into widgets. I like to organize my scenarios by user / stakeholder capabilities (normally related to the "when" but sometimes to the "then") then by different contexts.
So to summarize:
Write an empty scenario
Write the code to make that pass manually
Wire up the scenario using your automation tool; it should now run!
Write another scenario, this time writing the automation before the production code
Refactor the automation, moving it out of the steps into page objects
Keep refactoring as you add more scenarios.
Now you've got a fully wired BDD framework, and you're in a good place to keep going while making it maintainable.
A final hint
Think of this as living documentation, rather than tests. BDD scenarios hardly ever pick up bugs in good teams; anything they catch is usually a code design issue, so address it at that level. It helps people work out what the code does and doesn't do yet, and why it's valuable.
The most important part of BDD is having the conversations about how the code works. If you're automating tests for code that already exists, see if you can find someone to talk to about the complicated bits, at least, and verify your understanding with them. This will also help you to use the right language in the scenarios.
See my post on using BDD with legacy systems for more. There are lots of hints for beginners on that blog too.
Since you feel lost as to where to start, I will hint you about some blogs I have written that talks a bit about your problem.
Some categories that may help you:
http://www.thinkcode.se/blog/category/Cucumber
http://www.thinkcode.se/blog/category/Selenium
This, rather long and old post, might give you hints as well:
http://www.thinkcode.se/blog/2012/11/01/cucumberjvm-not-just-for-testing-guis
Notice that versions are dated, but hopefully it can give some ideas as what too look for.
I am not an expert on the test automation but I am currently working on this part. So let me share some idea and hope it will help you at the current stage.
We have used selenium+cucumber+intellij for testing web application. We have used testcomplete+cucumber+intellij for testing java desktop application.
As to the test of web application, we have provided a test mode in our web application, which allows us to get some useful details of the product and the environment; and also allows us to easily trigger events through clicking the button and inputting text into the test panel under test mode.
I hope these are helpful for you.