Select to recycle worker processes after a specific period of inactivity - iis-6

Can anyone confirm that this statement "Select to recycle worker processes after a specific period of inactivity" in this Microsoft help file is wrong and should in fact not have the "of inactivity" at the end of it?

Yes, that seems wrong. As far as I'm aware, this option just recycles the processes regardless of whether they are idle or not.
This article seems to confirm that too.

The statement you quoted is correct. It's a way to allow you to free up resources that aren't being used.
When it is necessary to conserve
system resources by terminating unused
worker processes, you can configure a
worker process to gracefully close
after a specified period of time. You
can use this feature to better manage
the resources when the processing load
is heavy, when identified applications
consistently fall into an idle state,
or when new processing space is not
available. You can also start
additional worker processes to replace
a worker process that is finished.
http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/83b35271-c93c-49f4-b923-7fdca6fae1cf.mspx?mfr=true

Related

Listen or wait for a specific time without using timer

Is there a way to listen or wait for a specific time (e.g. 11:30 am) every day. The only way I know how is to set a timer that checks for the current time every 60 seconds which I have actually implemented using a backgroundworker. But is there a way to just wait and listen for the specified time (similar to monitoring for directory changes) and then take some action?
Thanks in advance.
Typically, rather than having a program resident in memory waiting, you would setup a Scheduled Task for this (or a cron job on linux). The scheduled task will run the program at the appropriate time. The program can still check (validate) the expected time if needed, but it shouldn't just always sit in the background using up resources if it's only going to run once per day.
The scheduled task is also better because it will recover automatically from computer reboots, crashes, etc. If something happens that interrupts your program's normal running, the scheduled task will still be able to run.
This is especially important in the .Net world, because .Net requires you to be very careful writing long-lived programs to avoid address space fragmentation. The .Net garbage collector is good at freeing up and returning old memory to the operating system, but over time your program's virtual address space can become fragmented and eventually you will not be able to allocate new memory any longer.
Even if this is part of a larger program, where there are also other things happening based on user interactions, it's still a good idea to split this off into a separate process.

Can a process terminate after I/O without returning to the CPU?

I have a question about the following diagram from Operating Systems Concepts: http://unboltingbinary.in/wp-content/uploads/2015/04/image028.jpg
This diagram seems to imply that after every I/O operation, the process is placed back on the ready queue before being sent to the CPU again. However, is it possible for a process to terminate after I/O but before being sent to the ready queue?
Suppose we have a program that computes a number and then writes it to storage. In this case, does the process really need to return to the CPU after the I/O operation? It seems to me that the process should be allowed to terminate right after I/O. That way, there would be no need for a context switch.
Once one process has successfully executed a termination request on another, the threads of the terminated process should never run again, no matter what state they were in - blocked on I/O, blocked on inter-thread comms, running on a core, sleeping, whatever - they all must be stopped immediately if running and all be put in a state where they will never run again.
Anything else would be a security issue - terminated threads should not be given execution at all, (else it may not be possible to terminate the process).
Process termination requires the cpu. Changes to kernel mode structures on process exit, returning memory resources, etc. all require the cpu.
A process simply just does not evaporate. The term you want here is process rundown - I think.

How do I wait for all work to complete in Akka.Net?

I have successfully sent work to a pool of actors to perform my work, but now I want to do some aggregation on the results returned by all the workers. How do I know that everyone is done?
The best I have come up with is to maintain a set of requests ids and wait for that set to go to zero, but this seems inelegant.
Generally, you want to use what we call the "Commander" pattern for this. Essentially, you have one stateful actor (the Commander) that is responsible for starting and monitoring the task. You then farm out the actual work across the actor pool, and have them report back to the Commander as they finish. The commander can then track the progress of the job by calculating # completions / size of worker pool.
This way, the workers can be monitored and restarted independently as they do the work, but all the precious task-level state and information lives in the Commander (this is called the "Error Kernel pattern")
You can see an example of this in the Akka.NET scalable webcrawler demo.

Will detached NSThreads always complete prior to application exit?

When using NSThread's detachNewThreadSelector:toTarget:withObject:, I'm finding that the thread will fully complete its execution before the application is terminated normally if the user were to attempt to quit the application while the background process was executing.
In this case, this is the behavior I desire, but I couldn't find anything in Apple's docs that suggests that this will always be the case. The only relevant information I was able to find was the following, from Apple's Threading Programming Guide:
Important: At application exit time, detached threads can be terminated immediately but joinable threads cannot. Each joinable thread must be joined before the process is allowed to exit. Joinable threads may therefore be preferable in cases where the thread is doing critical work that should not be interrupted, such as saving data to disk.
So from this, I know that detached threads can be terminated at the time of application exit, but will they ever be terminated automatically? Or, am I always safe to assume the thread will complete its execution before the application quits?
You cannot assume that any thread -- including the main thread -- will ever complete execution normally, regardless of the documentation.
This is because the user can quit an application at any time, the system may lose power/panic, or the app may crash.
As for detached threads, it would not be unheard of for the system frameworks to automatically terminate the app forcibly after some timeout once the main event loop has given up the ghost.

Worker process reached its allowed processing time

We are experiencing this issue approximately once a month. It is very hard to pinpoint the cause so any help would be appreciated. This causes the App pool to stop and brings the site down. We have gone through all log files and have concluded nothing. We are using the 2.0.3 version on IIS 6.
I've noticed IIS defaults web apps on a 29-hour recycle schedule, which can be troublesome since it may recycle at times your users do not expect it to.
For example: web app starts at 12 am, which means the next day it recycles at 5am, the day after that at 10am, the day after that at 3pm, etc. (this is assuming there is enough request activity against your app to keep it alive so it does not shutdown due to inactivity)
If your web app relies heavily on in-memory session state this is especially bad because the recycle will kill sessions and possibly force users to re-authenticate and lose any unsaved work. (if you don't design your app to work seamlessly with recycling)
Check the recycle schedule and make sure it recycles at a time that you expect. See this for screenshots: http://remy.supertext.ch/2010/08/iis7-worker-process-reached-its-allowed-processing-time-limit/
Not sure about the infinite loop suggestion... sounds like you just have a recycling configuration issue to resolve.
This likely indicates an infinite loop in your application code.
Basically, every time a request comes into the web server, IIS hands the request off to a worker process. You can configure in IIS how many of those workers there are, and what the timeout value is. The timeout is to keep things moving in case the application code hangs -- it gets killed so the thread can go back in the pool to keep servicing new requests.
So look through your code for likely infinite loops. Or alternatively, it could be an extremely long-running database query that could have eventually finished but exceeded the timeout value. Perhaps your web application offers the end user an opportunity to make too broad of a query that returns too much data or requires too much DB processing time.
It's hard to give a specific cause for you, of course, but try to think along these lines.
If you're experiencing a crash as a result (sounds like you are) then you might want to grab a copy of Debugging Tools for Windows and spend some time reading Tess Ferrandez' blog--she offers great advice on performing post mortem crash analysis and makes WinDbg a whole lot more approachable.