An advantage of an IoC container is that you can swap in a mock service at the bottom of your object graph. However this seems much harder to do in Spring.Net than in other IoC Containers. Here's some code that does it in Unity and has Spring.Net code;
namespace IocSpringDemo
{
using Microsoft.Practices.Unity;
using NUnit.Framework;
using Spring.Context;
using Spring.Context.Support;
public interface ISomeService
{
string DoSomething();
}
public class ServiceImplementationA : ISomeService
{
public string DoSomething()
{
return "Hello A";
}
}
public class ServiceImplementationB : ISomeService
{
public string DoSomething()
{
return "Hello B";
}
}
public class RootObject
{
public ISomeService SomeService { get; private set; }
public RootObject(ISomeService service)
{
SomeService = service;
}
}
[TestFixture]
public class UnityAndSpringDemo
{
[Test]
public void UnityResolveA()
{
UnityContainer container = new UnityContainer();
container.RegisterType<ISomeService, ServiceImplementationA>();
RootObject rootObject = container.Resolve<RootObject>();
Assert.AreEqual("Hello A", rootObject.SomeService.DoSomething());
}
[Test]
public void UnityResolveB()
{
UnityContainer container = new UnityContainer();
container.RegisterType<ISomeService, ServiceImplementationB>();
RootObject rootObject = container.Resolve<RootObject>();
Assert.AreEqual("Hello B", rootObject.SomeService.DoSomething());
}
[Test]
public void SpringResolveA()
{
IApplicationContext container = ContextRegistry.GetContext();
RootObject rootObject = (RootObject)container.GetObject("RootObject");
Assert.AreEqual("Hello A", rootObject.SomeService.DoSomething());
}
[Test]
public void SpringResolveB()
{
// does not work - what to do to make this pass?
IApplicationContext container = ContextRegistry.GetContext();
RootObject rootObject = (RootObject)container.GetObject("RootObject");
Assert.AreEqual("Hello B", rootObject.SomeService.DoSomething());
}
}
}
For the benefit of Spring, the following needed to be in the App.config file. Clearly this only serves the first spring test, and not the second. Can you put multiple spring configurations in the config file? If so, what is the syntax and how do you access them? Or is there another way to do this?
<configSections>
<sectionGroup name="spring">
<section name="context" type="Spring.Context.Support.ContextHandler, Spring.Core"/>
<section name="objects" type="Spring.Context.Support.DefaultSectionHandler, Spring.Core" />
</sectionGroup>
</configSections>
<spring>
<context>
<resource uri="config://spring/objects"/>
</context>
<objects xmlns="http://www.springframework.net">
<object name="RootObject" type="IocSpringDemo.RootObject, IocDemo" autowire="constructor" />
<object name="service" type="IocSpringDemo.ServiceImplementationA, IocDemo" autowire="constructor" />
</objects>
</spring>
Update
Here is a partial answer based at code at the links that Marko Lahma gave to Mark Pollack's blog. I have the above tests passing, with the following code:
public static class SpringHelper
{
public static T Resolve<T>(this IApplicationContext context, string name)
{
return (T)context.GetObject(name);
}
public static void RegisterType<T>(this GenericApplicationContext context, string name)
{
context.RegisterType(name, typeof(T));
}
public static void RegisterType(this GenericApplicationContext context, string name, Type type)
{
IObjectDefinitionFactory objectDefinitionFactory = new DefaultObjectDefinitionFactory();
ObjectDefinitionBuilder builder = ObjectDefinitionBuilder.RootObjectDefinition(objectDefinitionFactory, type);
builder.SetAutowireMode(AutoWiringMode.AutoDetect);
context.RegisterObjectDefinition(name, builder.ObjectDefinition);
}
}
...
[Test]
public void SpringResolveA()
{
GenericApplicationContext container = new GenericApplicationContext();
container.RegisterType<RootObject>("RootObject");
container.RegisterType<ServiceImplementationA>("service");
RootObject rootObject = container.Resolve<RootObject>("RootObject");
Assert.AreEqual("Hello A", rootObject.SomeService.DoSomething());
}
[Test]
public void SpringResolveB()
{
GenericApplicationContext container = new GenericApplicationContext();
container.RegisterType<RootObject>("RootObject");
container.RegisterType<ServiceImplementationB>("service");
RootObject rootObject = container.Resolve<RootObject>("RootObject");
Assert.AreEqual("Hello B", rootObject.SomeService.DoSomething());
}
This raises a few questions to me:
I want to integrate this technique into existing code that uses the usual container. Why do I have to use a different container type, GenericApplicationContext in this case? What if I want to read data into this object from the existing spring config in app.config or web.config? Would it work as the usual context? Could I then write data over these registrations with code?
How can I specify that ISomeService is to be created as a singleton? I don't mean supply a singleton instance to the container, but the container to create the instance, resolving its constructor, and use it when that type is needed.
how can I do the equivalent of container.RegisterType<ISomeService, ServiceImplementationA>(); ? I want to register type mappings to use in all cases where that type is needed by a constructor.
What exactly does container.RegisterType<ServiceImplementationA>("service"); do? It seems to register ServiceImplementationA as the implementation of ISomeService but ISomeServiceis never mentioned, so there could be ambiguity. e.g. what if ServiceImplementationA implemented more than one interface.
What is the string name given to the registration for? It won't work with en empty string, but it doesn't seem to matter what it is.
Am I trying to use spring in a way that it just does not work? I'm trying to use it like other IoC containers, but it's not quite working.
Adding as new answer trying to address the open points...
I want to integrate this technique
into existing code that uses the usual
container. Why do I have to use a
different container type,
GenericApplicationContext in this
case? What if I want to read data into
this object from the existing spring
config in app.config or web.config?
Would it work as the usual context?
Could I then write data over these
registrations with code?
Spring has concrete application context implementations for different kind of initialization tactics. The most common ones to use are GenericApplicationContext (manual), XmlApplicationContext (XML files) and WebApplicationContext (very much like XmlApplicationContext but tailored for web use). They all implement common interface: IApplicationContext which is the preferred way to access these containers.
Unfortonately altering registrations with code usually means that you need to use the specific sub-class directly. With GenericApplicationContext and StaticApplicationContext this is quite natural but XmlApplicationContext is usually considered to be XML only and this ways "fixed" to XML definition.
How can I specify that ISomeService is
to be created as a singleton? I don't
mean supply a singleton instance to
the container, but the container to
create the instance, resolving its
constructor, and use it when that type
is needed.
Your SpringHelper does just that, by default all objects in Spring are singletons. You could alter this behavior by calling ObjectDefinitionBuilder's SetSingleton method with false.
how can I do the equivalent of
container.RegisterType(); ? I want to
register type mappings to use in all
cases where that type is needed by a
constructor.
Spring uses object names (ids) to distinct between different implementations. So if you want to get specific type to serve a specific instance in case that there are many alternatives you should refer to this specific instance by name. If you are using autowiring and your object has dependency to interface ISomeService and there's only one object registered that implements it, the autowiring can set it without ambiguity.
What exactly does
container.RegisterType("service");
do? It seems to register
ServiceImplementationA as the
implementation of ISomeService but
ISomeServiceis never mentioned, so
there could be ambiguity. e.g. what if
ServiceImplementationA implemented
more than one interface.
Continuing from previous answer, this registers singleton of type ServiceImplementationA with name "service". This object comes autowiring candidate with all it's implemented interfaces (and with it's concrete type of course).
What is the string name given to the
registration for? It won't work with
en empty string, but it doesn't seem
to matter what it is.
It matters a great deal as explained earlier. The name is unique id within that context (parent context could have object with same name) and can be used to access specific object registrations. In short where other frameworks may associate a type as key to object registration, Spring uses name.
That's a bit apples and oranges comparison as the unit test uses code configuration for Unity and XML (app.config) configuration for Spring.NET.
If you go the XML route, then you can either comment out old implementation A and define the B implementation as the one to use - that what's configuration is all about right? Other option is to have dedicated XML files for each scenario (configuration setup) and include them via context's resource definitions (you have inline resource now). Other options include file system and assembly, see the web configuration section in Spring.NET's manual for a nice example.
If you go the code configuration route I would suggest to check Spring.NET Recoil and upcoming CodeConfig.
Related
According to this article (first paragraph), it is bad practice to inject your IKernel into wherever you need it.
Instead it is proposed to introduce a factory interface that is automatically implementend by Ninject (doing internally the same resolution).
This is an actual code snipped I am working on:
Former implementation:
public class CommandServer
{
[Inject]
public IKernel Kernel { get; set; }
....
public TResponse ExecuteCommand<TRequest, TResponse>(TRequest request)
where TResponse : ResponseBase, new()
{
...
var command = Kernel.Get<ICommand<TRequest, TResponse>>();
...
}
}
Using a factory:
public class CommandServer
{
[Inject]
public ICommandFactory CommandFactory { get; set; }
....
public TResponse ExecuteCommand<TRequest, TResponse>(TRequest request)
where TResponse : ResponseBase, new()
{
...
var command = CommandFactory.CreateCommand<TRequest, TResponse>();
...
}
}
// at binding time:
public interface ICommandFactory
{
ICommand<TRequest, TResponse> CreateCommand<TRequest, TResponse>();
}
Bind<ICommandFactory>().ToFactory();
I am not saying I don't like it (it looks nice and clean) - just not exactly sure why the former is particularly bad and the latter is so much better?
Generally you should not be using the Service Locator pattern. Why you ask? Please see Mark Seeman(comments, too!) and this SO question. Using the IKernel (or somewhat better: only the IResolutionRoot part of it) smells like Service Locator.
Now Mark would suggest that you should apply the Abstract Factory Pattern instead - and he also mentions the Dynamic proxy approach.
I personally think that using ninject auto-generated factories (= dynamic proxy approach) instead is worth the trade off.
You should not use a factory like:
public interface IServiceLocator
{
T Create<T>();
}
because well.. it's service locator ;-)
However, using something like
public interface IResponseHandleFactory
{
IResponseHandle Create(int responseId);
}
is perfectly fine.
Of course you can also do this by using the IResolutionRoot directly - instead of the factory. The code would look like:
IResolutionRoot.Get<IResponseHandle>(
new ConstructorArgument("responseId", theResponseIdValue);
Reasons not to use IResolutionRoot directly
A lot of the IResolutionRoot "methods" are in fact extension methods. That complicates unit-testing a lot (it's basically not a sensible choice if you want to unit test it, at all).
slight worse decoupling from container (=> ease of changing DI containers) than when using a factory interface. The auto-generated factory feature you can also implement as an add on to other containers - if they don't have it already (i've done so personally for Unity and AutoFac). However it requires some know-how about dynamic proxies.
Alternative to factory interfaces: Using Func<> factories. The above example could also be replaced by Func<int, IResponseHandle>(). Quite a lot DI containers support this out of the box / with standard plugins (ninject needs the Factory extension). So you'd be decoupled from the container even more. Disadvantage: harder to unit test and not clearly named parameters.
I just recently started using Ninject (v2.2.0.0) in my ASP.NET MVC 3 application. So far I'm thrilled with it, but I ran into a situation I can't seem to figure out.
What I'd like to do is bind an interface to concrete implementations and have Ninject be able to inject the concrete implementation into a constructor using a factory (that will also be registered with Ninject). The problem is that I'd like my constructor to reference the concrete type, not the interface.
Here is an example:
public class SomeInterfaceFactory<T> where T: ISomeInterface, new()
{
public T CreateInstance()
{
// Activation and initialization logic here
}
}
public interface ISomeInterface
{
}
public class SomeImplementationA : ISomeInterface
{
public string PropertyA { get; set; }
}
public class SomeImplementationB : ISomeInterface
{
public string PropertyB { get; set; }
}
public class Foo
{
public Foo(SomeImplementationA implA)
{
Console.WriteLine(implA.PropertyA);
}
}
public class Bar
{
public Bar(SomeImplementationB implB)
{
Console.WriteLine(implB.PropertyB);
}
}
Elsewhere, I'd like to bind using just the interface:
kernel.Bind<Foo>().ToSelf();
kernel.Bind<Bar>().ToSelf();
kernel.Bind(typeof(SomeInterfaceFactory<>)).ToSelf();
kernel.Bind<ISomeInterface>().To ...something that will create and use the factory
Then, when requesting an instance of Foo from Ninject, it would see that one of the constructors parameters implements a bound interface, fetch the factory, and instantiate the correct concrete type (SomeImplementationA) and pass it to Foo's constructor.
The reason behind this is that I will have many implementations of ISomeInterface and I'd prefer to avoid having to bind each one individually. Some of these implementations may not be known at compile time.
I tried using:
kernel.Bind<ISomeInterface>().ToProvider<SomeProvider>();
The provider retrieves the factory based on the requested service type then calls its CreateInstance method, returning the concrete type:
public class SomeProvider : Provider<ISomeInterface>
{
protected override ISomeInterface CreateInstance(IContext context)
{
var factory = context.Kernel.Get(typeof(SomeInterfaceFactory<>)
.MakeGenericType(context.Request.Service));
var method = factory.GetType().GetMethod("CreateInstance");
return (ISomeInterface)method.Invoke();
}
}
However, my provider was never invoked.
I'm curious if Ninject can support this situation and, if so, how I might go about solving this problem.
I hope this is enough information to explain my situation. Please let me know if I should elaborate further.
Thank you!
It seems you have misunderstood how ninject works. In case you create Foo it sees that it requires a SomeImplementationA and will try to create an instance for it. So you need to define a binding for SomeImplementationA and not for ISomeInterface.
Also most likely your implementation breaks the Dependency Inversion Princple because you rely upon concrete instances instead of abstractions.
The solution to register all similar types at once (and the prefered way to configure IoC containers) is to use configuration by conventions. See the Ninject.Extensions.Conventions extenstion.
I have looked at the Dozer's FAQs and docs, including the SourceForge forum, but I didn't see any good tutorial or even a simple example on how to implement a custom BeanFactory.
Everyone says, "Just implement a BeanFactory". How exactly do you implement it?
I've Googled and all I see are just jars and sources of jars.
Here is one of my BeanFactories, I hope it helps to explain the common pattern:
public class LineBeanFactory implements BeanFactory {
#Override
public Object createBean(final Object source, final Class<?> sourceClass, final String targetBeanId) {
final LineDto dto = (LineDto) source;
return new Line(dto.getCode(), dto.getElectrified(), dto.getName());
}
}
And the corresponding XML mapping:
<mapping>
<class-a bean-factory="com.floyd.nav.web.ws.mapping.dozer.LineBeanFactory">com.floyd.nav.core.model.Line</class-a>
<class-b>com.floyd.nav.web.contract.dto.LineDto</class-b>
</mapping>
This way I declare that when a new instance of Line is needed then it should create it with my BeanFactory. Here is a unit test, that can explain it:
#Test
public void Line_is_created_with_three_arg_constructor_from_LineDto() {
final LineDto dto = createTransientLineDto();
final Line line = (Line) this.lineBeanFactory.createBean(dto, LineDto.class, null);
assertEquals(dto.getCode(), line.getCode());
assertEquals(dto.getElectrified(), line.isElectrified());
assertEquals(dto.getName(), line.getName());
}
So Object source is the source bean that is mapped, Class sourceClass is the class of the source bean (I'm ignoring it, 'cause it will always be a LineDto instance). String targetBeanId is the ID of the destination bean (too ignored).
A custom bean factory is a class that has a method that creates a bean. There are two "flavours"
a) static create method
SomeBean x = SomeBeanFactory.createSomeBean();
b) instance create method
SomeBeanFactory sbf = new SomeBeanFactory();
SomeBean x = sbf.createSomeBean();
You would create a bean factory if creating and setting up your bean requires some tricky logic, like for example initial value of certain properties depend on external configuration file. A bean factory class allows you to centralize "knowledge" about how to create such a tricky bean. Other classes just call create method without worying how to correctly create such bean.
Here is an actual implementation. Obviously it does not make a lot of sense, since Dozer would do the same without the BeanFactory, but instead of just returning an object, you could initialized it somehow differently.
public class ComponentBeanFactory implements BeanFactory {
#Override
public Object createBean(Object source, Class<?> sourceClass,
String targetBeanId) {
return new ComponentDto();
}
}
Why do you need a BeanFactory anyways? Maybe that would help understanding your question.
Does anybody know if it is possible to control the names of the types generated through Castle DynamicProxy? I was hoping to take advantage of the ability to persist the assembly generated by Castle to add some additional classes with some specific functionality to my project, but I would like to be able to control the names of these generated proxy types. Any help would be greatly appreciated.
I actually plan to persist instances of these classes as well as instances of the original classes that are the sources of the proxies with NHibernate. So, I need these names to be consistent across multiple generations of the assembly.
I did some interesting digging. Specifying proxy names appears to be possible using an INamingScope, but it is far from straightforward to get the INamingScope wedged in. You would need to create your own ProxyFactoryFactory, which would create a ProxyFactory identical to NHibernate.ByteCode.Castle.ProxyFactory, except it would initilize ProxyGenerator:
public class CustomProxyFactory : AbstractProxyFactory {
private static readonly ProxyGenerator ProxyGenerator = new ProxyGenerator(new CustomProxyBuilder());
// remainder of code is identical
}
public class CustomProxyBuilder : DefaultProxyBuilder {
public CustomProxyBuilder() : base(new CustomModuleScope()) {}
}
public class CustomModuleScope : ModuleScope {
public CustomModuleScope() : base(false, false, new CustomNamingScope(), DEFAULT_ASSEMBLY_NAME, DEFAULT_FILE_NAME, DEFAULT_ASSEMBLY_NAME, DEFAULT_FILE_NAME) {}
}
public class CustomNamingScope : INamingScope {
public CustomNamingScope() {}
private CustomNamingScope(INamingScope parent) {
ParentScope = parent;
}
public string GetUniqueName(string suggestedName) {
// your naming logic goes here
}
public INamingScope SafeSubScope() {
return new CustomModuleScope(this);
}
public INamingScope ParentScope { get; private set; }
}
I honestly haven't tried running or compiling any of this. Just digging through the NHibernate and Castle.Core source code. Hopefully it gives you some ideas...
Take a look at the ProxyGenerators project in NHContrib. It allows you to pre-generate NHibernate's lazy loading proxies.
http://nhforge.org/wikis/proxygenerators10/default.aspx
Whether you use the ProxyGenerators or not, you integrate your custom proxies into NHibernate via the Proxy Factory Factory. In hibernate.cfg.xml:
<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
<session-factory>
<property name="proxyfactory.factory_class">YOUR_PROXY_FACTORY_FACTORY</property>
</session-factory>
</hibernate-configuration>
I have read in Chapter 4 of the NHibernate docs that all of a persistent classes public methods, properties and events must be declared as virtual.
However, whilst a runtime error is generated for any Properties that are not marked as virtual, I have found that static methods are allowed and do not generate a runtime error . As they are static they are of course not marked virtual which seems to break the rule in point 4.1.4 of the documentation (see above). I have checked the resulting sql and it also implements lazy loading correctly when I run a test against the method so is it therefore ok to use static methods?
Here's the basic details of the persistant class:
public class CmsPage
{
public virtual int? Id { get; set; }
public virtual string Title { get; set; }
public virtual void Update()
{
using (ISession session = NHibernateHelper.OpenSession())
{
using (ITransaction transaction = session.BeginTransaction())
{
session.Update(this);
transaction.Commit();
}
}
}
// Note: static and non-virtual and yet it will not cause a problem for Nhibernate
public static IEnumerable<CmsPage> GetList()
{
IList<CmsPage> pageList;
using (ISession session = NHibernateHelper.OpenSession())
{
string hql = "from CmsPage p";
pageList = session.CreateQuery(hql)
.List<CmsPage>();
}
return pageList;
}
}
So my question is why is it ok to use a static method in the persistent domain class when the documentation seems to say it's not?
Please answer from NHibernate's point of view not an OO design point of view; I don't want to get into an OOD/OOP debate if it can be avoided please.
The documentation says: "NHibernate works best if these classes follow some simple rules, ..." It doesn't say it won't work (clearly it does work).
So, really, the discussion boils down to an OO issue.
Actually this applies only to properties. Methods are not persisted, so proxies and lazy-loading does not apply. Ideally you should separate data access (the static methods in your case) from the domain object. But you are correct to point this out, maybe the documentation should have been clearer.
In conclusion your class is perfectly fine but it could be even better if you separated the concerns.
NHibernate needs all your properties to be virtual because it carries out its lazy-loading magic by making proxies of your objects that override everything. So when you write this code:
class Foo {
public virtual Foo[] Neighbors { get; set; }
}
NHibernate secretly generates classes like:
class NHProxy03450843275 : Foo {
public virtual Foo[] Neighbors { /* Godawful lazy-loading magic goes here */ }
}
Actually it's worse than that, but this gives you the idea. Anyway, static methods aren't bound to particular instances of a class, so NH doesn't need proxies to deal with them. Thus they can be non-virtual.