First & Follow Sets check for simple grammar - grammar

Here's a few questions I had on a quiz in a class and just want to verify their correctness.
Grammar:
S -> ABC
A -> df | epsilon
B -> f | epsilon
C -> g | epsilon
1.) The Follow set of B contains g and epsilon (T/F)? Ans: F.
There is no epsilon in the Follow sets, correct? (Only $ aka end of input)
2.) The First set of S contains d, f, g, and epsilon (T/F)? Ans: T.
I said false for this because I thought First(S) = First(A), which g is not a part of. Who is correct?

You are correct. If epsilon is involved, it will be accounted for in the First set, not the Follow set. If it's possible for the production to end the string, then $ goes in the Follow set, not epsilon.
The quiz is correct. The production S can indeed start with any of d, f, and g, and it can also be started by the empty string. Consider the input string g. It matches S, right? A is satisfied by the empty string, B is satisfied by the empty string, and C is satisfied by g. Since A, B, and C are all satisfied, S is satisfied. The first character consumed by S is g, so g must be in First(S).

Related

Construct a grammar for a language

I have a question regarding this question:
L= empty where the alphabet is {a,b}
how to create a grammar for this ? how can be the production rule ?
thanks in advance
A grammar G is an ordered 4-tuple {S, N, E, e, P} where:
N is a set of non-terminal symbols
E is a set of terminal symbols
N and E are disjoint
E is a superset of the alphabet of L(G)
e is the empty string
P is a set of ordered pairs of elements of (N U E U e); that is, P is a subset of (N U E U e) X (N U E U e)*.
S, the start symbol, is in N
A derivation in G is a sequence of elements of (N U E U e)* such that:
The first element is S
Adjacent elements w[i] and w[i+1] can be written as w[i] = uxv and w[i+1] = uyv such that (x, y) is in P
If there is a derivation in G whose last element is a string w[n] over (E U e)*, we say G generates w[n]; that is, w[n] is in L(G).
Now, we want to define a grammar G such that L(G) is the empty set. We fix the alphabet E = {a, b}. We must still define:
N, the set of nonterminals
S, the start symbol
P, the productions
We might as well take S as our start symbol. So N contains at least S; N is a superset of {S}. We will only add more nonterminals if we determine we need them. Let us turn our attention to the condition that L(G) is empty.
If L(G) is empty, that means there is no derivation in G that leads to a string of only terminal symbols. We can accomplish this easily be ensuring all our productions produce at least one nonterminal with any terminal. Or produce no terminals at all. So the following grammars would all work:
S := S
or
S := aSb
or
S := aXb | XXSSX
X := aabbXbbaaS
etc. All of these grammars have L(G) empty since none of them can derive a string of nonterminals.

Constructing a linear grammar for the language

I find difficulties in constructing a Grammar for the language especially with linear grammar.
Can anyone please give me some basic tips/methodology where i can construct the grammar for any language ? thanks in advance
I have a doubt whether the answer for this question "Construct a linear grammar for the language: is right
L ={a^n b c^n | n belongs to Natural numbers}
Solution:
Right-Linear Grammar :
S--> aS | bA
A--> cA | ^
Left-Linear Grammar:
S--> Sc | Ab
A--> Aa | ^
As pointed out in the comments, these grammars are wrong since they generate strings not in the language. Here's a derivation of abcc in both grammars:
S -> aS -> abA -> abcA -> abccA -> abcc
S -> Sc -> Scc -> Abcc -> Aabcc -> abcc
Also as pointed out in the comments, there is a simple linear grammar for this language, where a linear grammar is defined as having at most one nonterminal symbol in the RHS of any production:
S -> aSc | b
There are some general rules for constructing grammars for languages. These are either obvious simple rules or rules derived from closure properties and the way grammars work. For instance:
if L = {a} for an alphabet symbol a, then S -> a is a gammar for L.
if L = {e} for the empty string e, then S -> e is a grammar for L.
if L = R U T for languages R and T, then S -> S' | S'' along with the grammars for R and T are a grammar for L if S' is the start symbol of the grammar for R and S'' is the start symbol of the grammar for T.
if L = RT for languages R and T, then S = S'S'' is a grammar for L if S' is the start symbol of the grammar for R and S'' is the start symbol of the grammar for T.
if L = R* for language R, then S = S'S | e is a grammar for L if S' is the start symbol of the grammar for R.
Rules 4 and 5, as written, do not preserve linearity. Linearity can be preserved for left-linear and right-linear grammars (since those grammars describe regular languages, and regular languages are closed under these kinds of operations); but linearity cannot be preserved in general. To prove this, an example suffices:
R -> aRb | ab
T -> cTd | cd
L = RT = a^n b^n c^m d^m, 0 < a,b,c,d
L' = R* = (a^n b^n)*, 0 < a,b
Suppose there were a linear grammar for L. We must have a production for the start symbol S that produces something. To produce something, we require a string of terminal and nonterminal symbols. To be linear, we must have at most one nonterminal symbol. That is, our production must be of the form
S := xYz
where x is a string of terminals, Y is a single nonterminal, and z is a string of terminals. If x is non-empty, reflection shows the only useful choice is a; anything else fails to derive known strings in the language. Similarly, if z is non-empty, the only useful choice is d. This gives four cases:
x empty, z empty. This is useless, since we now have the same problem to solve for nonterminal Y as we had for S.
x = a, z empty. Y must now generate exactly a^n' b^n' b c^m d^m where n' = n - 1. But then the exact same argument applies to the grammar whose start symbol is Y.
x empty, z = d. Y must now generate exactly a^n b^n c c^m' d^m' where m' = m - 1. But then the exact same argument applies to the grammar whose start symbol is Y.
x = a, z = d. Y must now generate exactly a^n' b^n' bc c^m' d^m' where n' and m' are as in 2 and 3. But then the exact same argument applies to the grammar whose start symbol is Y.
None of the possible choices for a useful production for S is actually useful in getting us closer to a string in the language. Therefore, no strings are derived, a contradiction, meaning that the grammar for L cannot be linear.
Suppose there were a grammar for L'. Then that grammar has to generate all the strings in (a^n b^n)R(a^m b^m), plus those in e + R. But it can't generate the ones in the former by the argument used above: any production useful for that purpose would get us no closer to a string in the language.

How to determine if a context-free grammar describes a regular language?

Given an arbitrary context-free grammar, how can I check whether it describes a regular language?
I'm not looking for exam "tricks". I'm looking for a foolproof mechanical test that I can code.
If it helps, here's an example of a CFG that I might receive as an input.
Specifically, notice that the answer must be much more complicated than just looking for left- or right-recursion, since the presence of another type of recursion does not automatically imply the grammar is irregular.
S: A B C D X
A: A a
A:
B: b B
B:
C: c C c
C: c
D: D d D
D: d
X: x Y
X:
Y: y X
Y:
There is no such mechanical procedure because the problem of determining whether a CFG defines a regular language is undecidable.
This result is a simple application of Greibach's Thereom.

Why the need for terminals? Is my solution sufficient enough?

I'm trying to get my head around context free grammars and I think I'm close. What is baffling me is this one question (I'm doing practise questions as I have an exam in a month's time):
I've come up with this language but I believe it's wrong.
S --> aSb | A | B
A --> aA | Σ
B --> bB | Σ
Apparently this is the correct solution:
S --> aSb | aA | bB
A --> aA | Σ
B --> bB | Σ
What I don't quite understand is why we have S --> aSb | aA | bB and not just S --> aSb | A | B. What is the need for the terminals? Can't I just call A instead and grab my terminals that way?
Testing to see if I can generate the string: aaabbbb
S --> aSb --> aaSbb --> aaaSbbb --> aaaBbbb --> aaabbbb
I believe I generate the string correctly, but I'm not quite sure. I'm telling myself that the reason for S --> aSb | aA | bB is that if we start with aA and then replace A with a, we have two a's which gives us our correct string as they're not equal, this can be done with b as well. Any advice is greatly appreciated.
Into the Tuple (G-4-tuple)
V (None terminals) = {A, B}
Σ (Terminals) = {a, b}
P = { } // not quite sure how to express my solution in R? Would I have to use a test string to do so?
S = A
First:
Σ means language symbols. in your language Σ = {a, b}
^ means null symbols (it is theoretical, ^ is not member of any language symbol)
ε means empty string (it is theoretical, ε can be a member of some language)
See ^ symbol means nothing but we use it just for theoretical purpose, like ∞ infinity symbol we uses in mathematics(really no number is ∞ but we use it to understand, to proof some theorems) similarly ^ is nothing but we use it.
this point not written in any book, I am writing it to explain/for understanding point of view. The subject more belongs to theoretical and math and I am from computer science.
As you says your grammar is L = {am bn | m != n}. Suppose if productions are as follows:
First:
S --> aSb | A | B
A --> aA | Σ
B --> bB | Σ
It means.(very rare book may use Σ in grammar rules)
S --> aSb | A | B
A --> aA | a | b
B --> bB | a | b
I replaced Σ by a | b (a, b language symbols).
This grammar can generates a string of equal numbers of symbols a and symbol b(an bn). How it can generate an bn? See below an example derivation:
S ---> aSb ---> aAb ---> aaAb ---> aabb
^ ^ ^ ^
rule-1 S-->A A--> aA A --> b
But these kind of strings are not possible in language L because m != n.
Second:
For the same reason production rules S --> aSb | aA | bB is also not correct grammar if A --> aA | Σ or B --> bB | Σ are in grammar.
I think in second grammar you mean:
S --> aSb | aA | bB
A --> aA | ^
B --> bB | ^
Then this is correct grammar for language L = {am bn | m != n}. Because using:
S --> aSb
you can only generate equal numbers of a' and b and by replacing S either by aA or by bB you make a sentential form in which unequal numbers of a and b symbols are present and that can't convert back to generate a string of type an bn. (since A doesn't generates b and B doesn't generates a).
Third:
But usually we write grammar rules like:
S --> aSb | A | B
A --> aA | a
B --> bB | b
Both forms are equivalent (generate same language L = {am bn | m != n}) because once you convert S into either A or B you have to generate at-least one a or b (or more) respectively and thus constraint m != n holds.
Remember proofing, whether two grammars are equivalent or not is undecidable problem. We can't prove it by algorithm (but logically possible, that works because we are human being having brain better then processor :P :) ).
Fourth:
At the end I would also like to add, Grammar:
S --> aSb | A | B
A --> aA | ^
B --> bB | ^
doesn't produces L = {am bn | m != n} because we can generate an bn for example:
S ---> aSb ---> aAb ---> ab
^
A --> ^
Grammar in formal languages
Any class of formal languages can be represented by a formal Grammar consisting of the four-tuple (S, V, Σ, P). (note a Grammar or an automata both are finite representation weather language is finite or infinite: Check figures one & two).
Σ: Finite set of language symbols.
In grammar we commonly call it finite set of terminals (in contrast of variables V). Language symbols or terminals are thing, using which language strings (sentences) are constructed. In your example set of terminals Σ is {a, b}. In natural language you can correlate terminals with vocabulary or dictionary words.
Natural language means what we speak Hindi, English
V: Finite set of Non-terminals.
Non-terminal or say 'variable', should always participate in grammar production rules. (otherwise the variable counts in useless variables, that is a variable that doesn't derives terminals or nothing).
See: 'ultimate aim of grammar is to produce language's strings in correct form hence every variable should be useful in some way.
In natural language you can correlate variable set with Noun/Verbs/Tens that defined a specific semantical property of an language (like Verb means eating/sleeping, Noun means he/she/Xiy etc).
Note: One can find in some books V ∩ Σ = ∅ that means variables are not terminals.
S: Start Variable. (S ∈ V)
S is a special variable symbol, that is called 'Start Symbol'. We can only consider a string in language of grammar L(G) if it can be derived from Start variable S. If a string can not be derived from S (even if its consist of language symbols Σ) then string will not be consider in the language of grammar( actually that string belongs to 'complement language' of L(G), we writes complement language L' = Σ* - L(G) , Check: "the complement language in case of regular language")
P: Finite set of Production Rules.
Production Rules defines replacement rules in the from α --> β, that means during the derivation of a string from S, from grammar rules at any time α (lhs) can be replaced by β (rhs).(this is similar to Noun can be replace by he,she or Xiy, and Verb can be replace by eating, sleeping etc in natural language.
Production rules defines formation rules of language sentences. Formal language are similar to Natural language having a pattern that is certain thing can occurs in certain form--that we call syntax in programming language. And because of this ability of grammar, grammar use for syntax checking called parse).
Note: In α --> β, α and β both are consists of language symbols and terminals (V U Σ)* with a constraint that in α their must be at-least one variable. (as we can replace only a string contain variable by rhs of rule. a terminal can't replace by other terminal or we can say a sentence can't be replaced by other sentence)
Remember: There is two form Sentential Form and Sentence of a string:
Sentence: if all symbols are terminals (sentence can be either in L(G) or in complement language L' = Σ* - L)
Sentential: if any symbol is variable (not a language string but derivation string)
From #MAV (Thanks!!):
To represent grammar of above language L = {am bn | m != n}, 4-tuple are :
V = {S, A, B}
Σ = {a, b}
P = {S --> aSb | A | B, A --> aA | a, B --> bB | a}
S = S
note: Generally I use P for Production rules, your book may use R for rules
Terminology uses in theory of formal languages and automate
Capital letters are uses for variables e.g. S, A, B in grammar construction.
Small letter from start uses for terminals(language symbols) for example a, b.
(some time numbers like 0, 1 uses. Also ^ is null symbol).
Small letters form last uses for string of terminals z, y, w, x (for example you can find these notations in pumping lemma,
symbols use for language string or sub strings).
α, β, γ for Sentential forms.
Σ for language symbols.
Γ for input or output tap symbol, other then language symbols.
^ for null symbol, # or ☐ Symbol for blank symbol in Turing machine and PDA (^, #, ☐ are other then language symbols.
ε uses for empty string (can be a part of language string for example { } is empty body in C language, you can write while(1); or
while(1){ } both are valid see here I have defined a valid program
with empty sentences).
∅ means empty set in set theory.
Φ, Ψ uses for substring in Sentential forms.
Note: ∅ means set is empty, ε means string is empty, ^ means none symbol (don't mix in theory, all are different in semantic)
There is no rules I know about symbol notation, but these are commonly used terminology once can find in most standard books I observed during study.
Next post: Tips for writing Context free grammar

What's the -> operator in Prolog and how can I use it?

I've read about it in a book but it wasn't explained at all. I also never saw it in a program. Is part of Prolog syntax? What's it for? Do you use it?
It represents implication. The righthand side is only executed if the lefthand side is true. Thus, if you have this code,
implication(X) :-
(X = a ->
write('Argument a received.'), nl
; X = b ->
write('Argument b received.'), nl
;
write('Received unknown argument.'), nl
).
Then it will write different things depending on it argument:
?- implication(a).
Argument a received.
true.
?- implication(b).
Argument b received.
true.
?- implication(c).
Received unknown argument.
true.
(link to documentation.)
It's a local version of the cut, see for example the section on control predicated in the SWI manual.
It is mostly used to implement if-then-else by (condition -> true-branch ; false-branch). Once the condition succeeds there is no backtracking from the true branch back into the condition or into the false branch, but backtracking out of the if-then-else is still possible:
?- member(X,[1,2,3]), (X=1 -> Y=a ; X=2 -> Y=b ; Y=c).
X = 1,
Y = a ;
X = 2,
Y = b ;
X = 3,
Y = c.
?- member(X,[1,2,3]), (X=1, !, Y=a ; X=2 -> Y=b ; Y=c).
X = 1,
Y = a.
Therefore it is called a local cut.
It is possible to avoid using it by writing something more wordy. If I rewrite Stephan's predicate:
implication(X) :-
(
X = a,
write('Argument a received.'), nl
;
X = b,
write('Argument b received.'), nl
;
X \= a,
X \= b,
write('Received unknown argument.'), nl
).
(Yeah I don't think there is any problem with using it, but my boss was paranoid about it for some reason, so we always used the above approach.)
With either version, you need to be careful that you are covering all cases you intend to cover, especially if you have many branches.
ETA: I am not sure if this is completely equivalent to Stephan's, because of backtracking if you have implication(X). But I don't have a Prolog interpreter right now to check.