mono for emdedded - mono

I'm a C# developer, I'm interested in embedded development for chips like MSP430. Please suggest some tools and tutorials.
Mono framework is very powerful and customizable, mono specific examples will be more helpful.

Mono requires a 32 bit system, it is not going to work on 16-bit systems.

There is currently no full mono support for the MSP430.
Mono doesn't run in a vacuum - you will need to make a program that exposes the microcontroller functionality to Mono, then link to Mono and program the entire thing on the microcontroller. This program will have to provide some functionality to Mono that is normally provided by an operating system.
The paged igorgue linked to gives you a good starting point for this process: http://www.mono-project.com/Embedding%5FMono
I don't know what the requirements of the Mono VM are, though. It may be easy to compile and use, or you may have to write a lot of supporting code, or dig deep into mono to disable code you won't be using, or can't support on the chosen microcontroller.
Further, Mono isn't gargantuan, but it's complex and designed with larger 32 bit processors in mind. It may or may not fit onto the relatively limited 16 bit MSP430.
However, the MSP430 does have a GCC port, so you don't have to port the mono code to a new compiler, which should make your job easier.
Good luck, and please let us know what you decide to do, and how it works out!
-Adam

The tools to use Mono on an MSP430 just aren't available. Drop all the C# and use C/C++ instead.

MSP devices usually have 8 to 256KB Flash and 256 bytes (!) to 16kBytes of RAM.
Using C# or even c++ is really not an option. Also, complex frameworks are a no-go.
If you really want to start with MSP430 (which are powerful, fast and extremely low-power processors for their area of use), you should look for the MSPGCC toolchain.
http://mspgcc.sourceforge.net/
It contains compiler (GCC3.22 based) along with all necessary tools (make, JTAG programmer etc.). Most MSP processors are supported with code optimisation and support of internal hardware such as the hardware multiplier.
All you need is an editor (yopu can use Eclipse, UltraEdit or even the normal Notepad) and some knowledge about writing a simple makefile.
And you should prepare to write tight code (especially in terms of ram usage).

I think that Netduino can be of some interest for you.
Visit their web site at http://netduino.com/.
It's opensource hardware (like Arduino, http://www.arduino.cc/).
It runs .NET Micro Framework (http://www.microsoft.com/en-us/netmf/default.aspx), the breed oriented to embedded development.
Regards,
Giacomo

Related

Tools for embedded development [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
I would like to learn something about embedded development. I think the best thing would be to buy hardware stuff and play with it but I don't know where to start and, if possible, I would like not to pay too much....
If you have experience in this field, which would be the best road to follow?
I assume you mean real embedded and not embedded linux or some other operating system thing.
All above are good, sparkfun.com is a GREAT resource for sub $50 cards. Dont buy the embed. The armmite pro is nice, trivial to bypass the high level canned package and load your own binaries (I have a web page on how to do it if interested).
Stellaris is good, the 811 is easy to brick so be careful, the 1968 eval board is not a bad one. The problem with the stellaris boards is almost all of their I/O is consuemed by on board peripherals. The good thing about the stellaris eval boards, based on what you are wanting to do is that all the I/O is consumed by on board peripherals. Lots of peripherals for you to learn how to write embedded code for.
You are going to eventually want a jtag wiggler, I recommend the amontec jtag-tiny, it will open the door to a number of the olimex boards from sparkfun. the sam7 and stm32 header boards are good ones as well.
the lillypad is a good starting place for arduino (sparkfun), same price as the arduino pro mini, but you dont have to do any soldering. get a lillypad and the little usb to serial thing that powers it and gives you serial access to program it. Just like the armmite pro I have a web page on how to erase the as-shipped flash and have a linux programmer that lets you load any binary you want not just ones limited to their sandbox.
avoid PIC and 8051 unless you are interested in a history lesson. the PIC32X, not sure my first one is in the mail, it is a MIPS 32 not a PIC core.
the ez430 msp430 board is a very good one, the msp430 has a very nice architecture, better than the avr.
You can get your feet wet in simulation as well. I have a thumb instruction set emulator, thumbulator.blogspot.com. Thumb is a subset of the arm instruction set and if you learn thumb then you can jump right into a stellaris board or stm32. My sim does not support thumb2, the thumb2 processors also support thumb, the transition to thumb2 from thumb is trivial.
avoid the stm32 primer boards, avoid the stm32 primer boards, avoid the mbed2 boards, avoid the mbed2 boards, avoid the lpcxpresso boards, avoid the lpcxpresso boards!!
I recently found a behavioral model of an arm in verilog that you can simulate your programs, have not played with it much. qemu-arm is probably easier, not a bad place to get your feet wet although it can be frustrating. Which is why I wrote my own.
ARMS own armulator is out there, in the gdb source release for example, easier than qemu-arm to use, but can be frustrating as well.
go to codesourcery for arm gcc tools. use mspgcc4.sf.net for msp430 tools. llvm is rapidly catching and passing gcc, if nothing else I expect it to replace gcc for the universal cross compiler tool. at the moment it is much more stable and portable than gcc when it comes to building for cross compiling (because it is always/only a cross compiler wherever you find or use it). the msp backend for llvm was an afternoon experiment for someone, sadly, I would really like to have that supported. If you use llvm, use clang not llvm-gcc.
If you want to get your feet wet, get a cheap evaluation board like Stellaris LM3S811 Evaluation Kit (EK-LM3S811) which is $50 at Digi-Key then download CodeSourcery G++ which provides free command line tools or the IAR Kickstart Edition which allows you up to 32KB of code.
I would suggest starting up with MSP430. The MSP430 launchpad is quiet cheap. Alternatively, you could start up with the Stellaris (ARM Cortex M3) Boards. You can use the already provided libraries first to start developing apps rite away and then start writing your code for configuring and getting things done by referring the data sheet.You also get example codes, relevant documents and Keil 32K limited evaluation version. If you want to do things write from scratch, then get an ARM based board with IO breakout headers and start working. Lot of them are available from vendors like Olimex. One word of caution ARM is difficult to start with if you are working from scratch with little or no idea about embedded. So if you are looking for something easier go for AVR or 8051, but 8051 core is too old. So, Stellaris would be a good option in my opinion with their already available driver libs and codes.
Well, depending how much money you want to spend, and how much development expertise you have, you could either get an Arduino (arduino.cc) or a FEZ Domino (C# .NET) (tinyclr.com). Both are premade MCUs, with all the tools you need to start developing out of the box.
The Arduino is going to be very simplistic, but probably better for a beginner. The FEZ is a little harder to work with, but FAR more capable. Both have the same physical pinout, so you can use "shields" between them
I would recommend a kickstart kit from iar systems. They're fairly complete and work out of the box.
http://www.iar.com/website1/1.0.1.0/16/1/

Does it matter which microcontroller to use for 1st time embed system programmer?

I've experience in doing desktop and web programming for a few years. I would like to move onto doing some embed system programming. After asking the initial question, I wonder which hardware / software IDE should I start on...
Arduino + Arduino IDE?
Atmel AVR + AVR Studio 4?
Freescale HCS12 or Coldfire + CodeWarrior?
Microchip PIC+ MPLAB?
ARM Cortex-M3 + ARM RealView / WinARM
Or... doesn't matter?
Which development platform is the easiest to learn and program in (take in consideration of IDE usability)?
Which one is the easiest to debug if something goes wrong?
My goal is to learn about "how IO ports work, memory limitations/requirements incl. possibly paging, interrupt service routines." Is it better to learn one that I'll use later on, or the high level concept should carry over to most micro-controllers?
Thanks!
update: how is this dev kit for a start? Comment? suggestion?
Personally, I'd recommend an ARM Cortex-M3 based microcontroller. The higher-power ARM cores are extremely popular, and these low-power versions could very well take off in a space that is still littered with proprietary 8/16-bit cores. Here is a recent article on the subject: The ARM Cortex-M3 and the convergence of the MCU market.
The Arduino is very popular for hobbyist. Atmel's peripheral library is fairly common across processor types. So, it would smooth a later transition from an AVR to an ARM.
I don't mean to claim that an ARM is better than an AVR or any other core. Choosing an MCU for a commercial product usually comes down to peripherals and price, followed by existing code base and development tools. Besides, microcontrollers are general much much simpler than a desktop PC. So, it's really not that hard to move form one to another after you get the hang of it.
Also, look into FreeRTOS if you are interested in real-time operating system (RTOS) development. It's open source and contains a nice walk through of what an RTOS is and how they have implemented one. In fact, their walk-through example even targets an AVR.
Development tools for embedded systems can be very expensive. However, there are often open source alternatives for the more open cores like ARM and AVR. For example, see the WinARM and WinAVR projects.
Those tool-chains are based on GCC and are thus also available (and easier to use IMHO) on non-Windows platforms. If you are familiar with using GCC, then you know that there are an abundance of "IDE's" to suit your taste from EMACS and vi (my favorite) to Eclipse.
The commercial offerings can save you a lot of headaches getting setup. However, the choice of one will very much depend on your target hardware and budget. Also, Some hardware support direct USB debugging while others may require a pricey JTAG adapter.
Other Links:
Selection Guide of Low Cost Tools for Cortex-M3
Low-Cost Cortex-M3 Boards:
BlueBoard-LPC1768-H ($32.78)
ET-STM32 Stamp Module ($24.90)
New Arduino to utilize an ARM Cortex-M3 instead of an AVR microcontroller.
Given that you already have programming experience, you might want to consider getting an Arduino and wiping out the firmware to do your own stuff with AVR Studio + WinAVR. The Arduino gives you a good starting point in understanding the electronics side of it. Taking out the Arduino bootloader would give you better access to the Atmel's innards.
To get at the goals you're setting out, I would also recommend exploring desktop computers more deeply through x86 programming. You might build an x86 operating system kernel, for instance.
ARM is the most widely used embedded architecture and covers an enormous range of devices from multiple vendors and a wide range of costs. That said there are significant differences between ARM7, 9, 11, and Cortex devices - especially Cortex. However if getting into embedded systems professionally is your aim, ARM experience will serve you well.
8 bit architectures are generally easier to use, but often very limited in both memory capacity and core speeds. Also because they are simple to use, 8-bit skills are relatively easy to acquire, so it is a less attractive skill for a potential employer because it is easy to fulfil internally or with less experienced (and therefore less expensive) staff.
However if this is a hobby rather than a career, the low cost of parts, boards, and tools, and ease of use may make 8 bit attractive. I would suggest AVR simply because it is supported by the free avr-gcc toolchain. Some 8 bit targets are supported by SDCC, another open source C compiler. I believe Zilog make their Z8 compiler available for free, but you may need to pay for the debug hardware (although this is relatively inexpensive). Many commercial tool vendors provide code-size-limited versions of their tools for evaluation and non-commercial use, but beware most debuggers require specialist hardware which may be expensive, although in some cases you can build it yourself if you only need basic functionality and low speeds.
Whatever you do do take a look at www.embedded.com. If you choose ARM, I have used WinARM successfully on commercial projects, although it is not built-for-comfort! A good list of ARM resources is available here. For AVR definitely check out www.avrfreaks.net
I would only recommend Microchip PIC parts (at least the low-end ones) for highly cost sensitive projects where the peripheral mix is a good fit to the application; not for learning embedded systems. PIC is more of a branding than an architecture, the various ranges PIC12, 16, 18, 24, and PIC32 are very different from each other, so learning on one does not necessarily stand you in good stead for using another - often you even need to purchase new tools! That said, the dsPIC which is based on the PIC24 architecture may be a good choice if you wanted to get some simple DSP experience at the same time.
In all cases check out compiler availability (especially if C++ support is a requirement) and cost, and debugger hardware requirements, since often these will be the most expensive parts of your dev-kit, the boards and parts are often the least expensive part.
This is kind of a hard question to answer as your ideal answer very much depends on what it is your interested in learning.
If your goal is just to dive a little deeper into the inner workings of computing systems i would almost recommend you forgo the embedded route and pick up a book on writing a linux kernel module. Write something simple that reads a temperature sensor off the SMbus or something like that.
If your looking at getting into high level (phones, etc) embedded application development, download the Android SDK, you can code in java under eclipse and even has a nice emulator.
If your looking at getting into the "real" microcontroller space and really taking a look at low level system programming, i would recommend you start on a very simple architecture such as an AVR or PIC, something without an MMU.
Diving into the middle ground, for example an ARM with MMU and some sort of OS be it linux or otherwise is going to be a bit of a shock as without a background is both system programming and hardware interfacing i think the transition will be very rough if you plan to do much other than write very simple apps, counting button presses or similar.
Texas Instruments has released a very interesting development kit at a very low price: The eZ430-Chronos Development Tool contains an MSP430 with display and various sensors in a sports watch, including a usb debug programmer and a usb radio access point for 50$
There is also a wiki containing lots and lots of information.
I have already created a stackexchange proposal for the eZ430-Chronos Kit.
No it doesn't matter if you want to learn how to program an embedded device. But you need to know the flow of where to start and where to go next. Cause there are many micro-controllers out there and you don't know which one to choose. So better have a road-map before starting.
In my view you should start with - Any AVR board (atmega 328P- arduino boards or AVR boards)
then you should go to ARM micro-controller - first do ARM CORTEX TDMI
then ARM cortex M3 board.Thus this will give you an overall view after which you can choose any board depending on what kind of project you are working and what are your requirements.
Whatever you do, make sure you get a good development environment. I am not a fan of Microchip's development tools even though I like their microcontrollers (I have been burned too many times by MPLAB + ICD, too much hassle and dysfunction). TI's 2800 series DSPs are pretty good and have an Eclipse-based C++ development environment which you can get into for < US$100 (get one of the "controlCARD"-based experimenter's kits like the one for the 28335) -- the debugger communications link is really solid; the IDE is good although I do occasionally crash it.
Somewhere out there are ICs and boards that are better; I'm not that familiar with the embedded microcontroller landscape, but I don't have much patience for poor IDEs with yet another software tool chain that I have to figure out how to get around all the bugs.
Some recommend the ARM. I'd recommend it, not as a first platform to learn, but as a second platform. ARM is a bit complex as a platform to learn the low-level details of embedded, because its start-up code and initialisation requirements are more complicated than many other micros. But ARM is a big player in the embedded market, so well worth learning. So I'd recommend it as a second platform to learn.
The Atmel AVR would be good for learning many embedded essentials, for 3 main reasons:
Architecture is reasonably straight-forward
Good development kits available, with tutorials
Fan forum with many resources
Other micros with development kits could also be good—such as MSP430—although they may not have such a fan forum. Using a development kit is a good way to go, since they are geared towards quickly getting up-and-running with the micro, and foster effective learning. They are likely to have tutorials oriented towards quickly getting started.
Well, I suppose the development kits and their tutorials are likely to gloss over such things as bootloaders and start-up code, in favour of getting your code to blink the LED as soon as possible. But that could be a good way to get started, and you can explore the chain of events from "power-on" to "code running" at your pace.
I'm no fan of the PICs, at least the PIC16s, due to their architecture. It's not very C-friendly. And memory banks are painful.
It does matter, you need to gradually acquire experience starting with simpler systems. Note that by simpler I dont mean less powerful, I mean ease of use, ease of setup etc. In that vein I would recommend the following (I have no vested interest in a any of the products, I just found them the best):
I've started using one of these (MBED developer board). The big selling points for me were that I could code in C or C++, straightforward connection vis USB and a slick on-line development environment (no local tool installation required at all!).
http://mbed.org/
Five minutes afer opening box I had a sample blinky program (the 'hello world' of the emedded world) running the following:
#include "mbed.h"
DigitalOut myled(LED1);
int main()
{
while(1)
{
myled = 1;
wait(0.2);
myled = 0;
wait(0.2);
}
}
That's it! Above is the complete program!
It's based on ARM Cortex M3, fast and plenty of memory for embedded projects (100mhz, 256k flash & 32k ram). The online dev tools have a very good library and plenty of examples and theres a very active forum. Plenty of help on connecting devices to MBED etc
Even though I have plenty of experience with embedded systems (ARM 7/9, Renases M8/16/32, Coldfire, Zilog, PIC etc) I still found this a refreshingly easy system to get to grips with while having serious capability.
After initially playing with it on a basic breadboard I bought a base board from these guys: http://www.embeddedartists.com/products/lpcxpresso/xpr_base.php?PHPSESSID=lj20urpsh9isa0c8ddcfmmn207. This has a pile of I/O devices (including a miniture OLED and a 3axis accelerometer). From the same site I also bought one of the LCPExpresso processor boards which is cheap, less power/memory than the MBED but perfect for smaller jobs (still hammers the crap out of PIC/Atmega processors). The base board supports both the LCPExpresso and the MBED. Purchasing the LCPExpress processor board also got me me an attached JTAG debugger and an offline dev envoronment (Code Red's GCC/Eclipse based dev kit). This is much more complex than the online MBED dev environment but is a logical progression after you've gained expeience with the MBED.
With reference to my original point noite that the MBED controller is much more capable than the the LPCExpresso controller BUT is much simpler to use and learn with.
I use microchips PIC's, its what I started on, I mainly got going on it due to the 123 microcontroller projects for the evil genius book. I took a Microprocessors class at school for my degree and learned a bit about interrupts and timing and things, this helped a ton with my microcontrollers. I suppose some of the other programmers etc may be better/easier, but for $36 for the PicKit1, I'm too cheap to go buy another one...and frankly without using them I don't know if they are easier/better, I like mine and recommend it every chance I get, and it took me forever to really actually look at it, but I was able to program another chip off board with ICSP finally. I don't know what other programmers do it, but for me that's the nicest thing 5 wire interface and you're programmed. Can't beat that with a stick...
I've only used one of those.
The Freescale is a fine chip. I've used HC-something chips for years for little projects. The only caveat is that I wouldn't touch CodeWarrier embedded with a 10 foot pole. You can find little free C compilers and assemblers (I don't remember the name of the last one I used) that do the job just fine. Codewarrior was big and confusing and regardless of how much I knew about the chip architecture and C programming always seemed to only make things harder. If you've used Codewarrior on the Mac back in the old days and think CW is pretty neat, well, it's not at all like that. CW embedded looks vaguely similar, but it works very differently, and not very well.
A command-line compiler is generally fine. Professionals who can shell out the big bucks get expensive development environments, and I'm sure they make things better, but without that it's still far better than writing assembly code for a desktop PC in 1990, and somehow we managed to do that just fine. :-)
You might consider a RoBoard. Now, this board may not be what you are looking for in terms of a microcontroller, but it does have the advantage of being able to run Windows or DOS and thus you could use the Microsoft .NET or even C/C++ development tools to fiddle around with things like servos or sensors or even, what the heck, build a robot! It's actually kinda fun.
There's also the Axon II, which has the ATmega640 processor.
Either way, both boards should help you achieve your goal.
Sorry for the robotics focus, just something I'm interested in and thought it may help you too.
I use PICs, but would consider Arduino if I chose today. But from your goals:
how IO ports work
memory limitations/requirements
interrupt service routines
I wonder if you best bet is just to hack in the Linux kernel?
BBC Micro Bit
https://en.wikipedia.org/wiki/Micro_Bit
This cheap little board (~20 pounds) was crated by ARM Holdings as an educational device, and 1M units were given out for free to UK students.
It contains an ARM Cortex-M0, the smallest ARM core of all.
I recommend it as a first micro-controller board due to its wide availability, low cost, simplicity, and the fact that it introduces you to the ARM architecture, which has many more advanced boards also available for more serious applications.

How to move from microcontrollers to embedded linux?

As a kind of opposite to this question: "Is low-level embedded systems programming hard for software developers" I would like to ask for advice on moving from the low level embedded systems to programming for more advanced systems with OS, especially embedded Linux.
I have mostly worked with small microcontroller hardware and software, but now doing software only. My education also consists of hardware and embedded things mainly. I haven't had many programming courses and don't know much about software design or OO coding.
Now I have a big project in my hands that is going to be done in embedded Linux. I have major problems with designing things and keeping things manageable because I haven't really needed to do that before. Also making use of multitasking and blocking calls instead of running "parallel" task from main function is like another world.
What kind of experiences do you have on moving from low-level programming to bigger systems with OS (Linux)? What was hard and how did you solve it? What kind of mindset is needed?
Would it be worthwhile to learn C++ from zero or continue using plain C?
The main problems with using the Linux kernel to replace microcontroller systems is driving the devices you are interfacing with. For this you may have to write drivers. I would say stick with C as the language because you are going to want to keep the user-space as clean as possible. Look into the uclibc library for a leaner C standard library.
http://www.uclibc.org/
You may also find busybox useful. This provides many userspace utilities as a single binary.
http://www.busybox.net/
Then it is simply a matter of booting from some storage to a live system and running some controlling logic through init that interfaces with your hardware. If need be you can access the live system and run the busybox utilities. Really, the only difference is that the userspace is much leaner than in a normal distribution and you will be working 'closer' to the kernel in terms of objectives.
Also look into realtime linux.
http://www.realtimelinuxfoundation.org/
If you need some formal promise of task completion. I suspect the hardest bit will be booting/persistent storage and interfacing with your hardware if it is exotic. If you are unfamiliar with Linux booting then
http://www.cromwell-intl.com/unix/linux-boot.html
Might help.
In short, if you have not developed at a deep level for Linux, built your own distro, or have kernel experience then you might find the programming hard-going.
http://www.linuxdevices.com/ Might also help
Good Luck
In order to work with Unix/Linux you should get into the Unix philosophy: http://www.faqs.org/docs/artu/ch01s06.html
I consider the whole book a quite interesting read: http://www.faqs.org/docs/artu/index.html
Here you can find a free Linux distro for embedded targets plus bootloader to get you started: http://www.denx.de/wiki/DULG/WebHome
I was in a very similar predicament not too long ago. I bought and read Embedded Linux Primer and it was a very helpful way to make the mental-transition to a high level OS (from a microcontroller perspective).
If you have the "time to 'take your time'," you could obviously make the transition. But if you need to get up to speed quickly, you may want to strongly consider getting a technical mentor to help guide you.
You also may find it useful to work your way into Linux by starting out with ucLinux. It's basically Linux on a microcontroller. You could get a feel for the kernel without the virtual memory aspect of it as transition. See if ucLinux supports a microcontroller that you are already familiar with and see how the kernel interacts with that architecture.
I agree that the Embedded Linux Primer book is great for getting your brain wrapped around embedded Linux. You're better off sticking with C for now. C++ can wait, and it's more useful for applications, not driver code.
When you're comfortable with how ucLinux operates, then you could start out with a normal Linux kernel on a microprocessor architecture such as ARM that has an MMU and virtual memory.
Just my two cents!

embedded application

In the last two months I've worked as a simple application using a computer vision library(OpenCV).
I wish to run that application directly from the webcam without the need of an OS. I'm curious to know if that my application can be burned into a chip in order to not have the OS to run it.
Ofcorse the process can be expensive, but I'm just curious. Do you have any links about that?
ps: the application is written in C.
I'd use something bigger than a PIC, for example a small 32 bit ARM processor.
Yes. It is theoretically possible to port your app to PIC chips.
But...
There are C compilers for the PIC chip, however, due to the limitations of a microcontroller, you might find that the compiler, and the microcontroller itself is far too limited for computer vision work, especially if your initial implementation of the app was done on a full-blown PC:
You'll only have integer math available to you, in most cases, if not all (can't quote me on that, but our devs at work don't have floating point math for their PIC apps and it causes many foul words to emanate from their cubes). Either that, or you'll need to hook to an external math coprocessor.
You'll have to figure out how to get the PIC chip to talk USB to the camera. I know this is possible, but it will require additional hardware, and R&D time.
If you need strict timing control,
you might even have to program the
app in assembler.
You'd have to port portions of OpenCV to the PIC chip, if it hasn't been already. My guess is not.
If your'e not already familiar with microcontroller programming, you'll need some time to get up to speed on the differences between desktop PC programming and microcontroller programming, and you'll have to gain some experience in that. This may not be an issue for you.
Basically, it would probably be best to re-write the whole program from scratch given a PIC chip constraint. Good thing is though, you've done a lot of design work already. It would mainly be hardware/porting work.
OR...
You could try using a small embedded x86 single-board PC, perhaps in the PC/104 form factor, with your OS/app on a CF card. It's a real bone fide PC, you just add your software. Good thing is, you probably wouldn't have to re-write your app, unless it had ridiculous memory footprint. Embedded PC vendors are starting to ship boards based on 1 GHz Intel Atoms, and if you needed more help you could perhaps hook a daughterboard onto the PC-104 bus. You'll work around all of the limitations listed above, as your using an equivalent platform to the PC you developed your app on. And it has USB ports! If you do a thorough cost analysis and if your'e cool with a larger form factor, you might find it to be cheaper/quicker to use a system based on a SBC than rolling a solution using PIC chips/microcontrollers.
A quick search of PC-104 on Google would reveal many vendors of SBCs.
OR...
And this would be really cheap - just get a off-the-shelf cheap Netbook, overwrite the OEM OS, and run the code on there. Hackish, but cheap, and really easy - your hardware issues would be resolved within a week.
Just some ideas.
I think you'll find this might grow into pretty large project.
It's obviously possible to implement a stand-alone hardware solution to do something like this. Off the top of my head, Rabbit's solutions might get you to the finish-line faster. But you might be able to find some home-grown Beagle Board or Gumstix projects as well.
Two Google links I wanted to emphasize:
Rabbit: "Camera Interface Application Kit"
Gumstix: "Connecting a CMOS camera to a Gumstix Connex motherboard"
I would second Nate's recommendation to take a look at Rabbit's core modules.
Also, GHIElectronics has a product called the Embedded Master that runs .Net MicroFramework and has USB host/device capabilities built-in as well as a rich library that is a subset of the .Net framework. It runs on an Arm processor and is fairly inexpensive (> $85). Though not nearly as cheap as a single PIC chip it does come with a lot of glue logic pre-built onto the module.
CMUCam
I think you should have a look at the CMUcam project, which offers affordable hardware and an image processing library which runs on their hardware.

Best platform for learning embedded programming? [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I'm looking to learn about embedded programming (in C mainly, but I hope to brush up on my ASM as well) and I was wondering what the best platform would be. I have some experience in using Atmel AVR's and programming them with the stk500 and found that to be relatively easy. I especially like AVR Studio and the debugger that lets you view that state of registers.
However, If I was to take the time to learn, I would rather learn about something that is prevalent in industry. I am thinking ARM, that is unless someone has a better suggestion.
I would also be looking for some reference material, I have found the books section on the ARM website and if one is a technically better book than another I would appreciate a heads up.
The last thing I would be looking for is a prototyping/programming board like the STK500 that has some buttons and so forth.
Thanks =]
"embedded programming" is a very broad term. AVR is pretty well in that category, but it's a step below ARM, in that it's both simpler to use, as well as less powerful.
If you just want to play around with ARM, buy a Nintendo DS or a Gameboy Advance. These are very cheap compared to the hardware inside (wonders of mass production), and they both have free development toolchains based off of gcc which can compile to them.
If you want to play around with embedded linux, BeagleBoard is looking to be a good option, only $150 and it has a ton of features.
Personally I think AVR is best for the smaller-sized 8-bit platforms, and ARM is best for the larger, more powerful 32-bit based platforms. Like many AVR fans, I don't like PIC. It just seems worse in pretty much every way. Also avoid anything that requires you to write any type of BASIC.
If you just want to play around with it, I'd suggest the Arduino platform (http://www.arduino.cc). It's based on the ATmega168 or ATmega8, depending on the version. It uses a C-like language and has its own IDE.
Myself I've worked in embedded programming for 9 years now and have experience on TI MSP430, Atmel AVR (a couple of flavours) and will be using an ARM soon.
My suggestion is to pickup something that has some extra features in the processor like ethernet controller and CAN controller, even get two or three if you can. Embedded devices are nice to work with, but once they can talk to other similar devices via CAN or get onto a network, they can become much more fun to play with.
ADI's Blackfin is another option since it's quite a straight forward architecture to program, yet can also do some fairly hefty DSP stuff should you choose to go down that route. It helps that the assembly language is quite sane too.
The Blackfin STAMP boards are an inexpensive (~$100 last I checked) way in, and they support the free GCC tools and uClinux.
Whatever architecture you choose I'd definitely recommend first downloading the toolchain\SDK and looking through the sample projects and tutorials - generally having a bit of a play about. You can often get quite acquainted with the architecture through simulation without even touching any hardware.
ARM has the nicest instruction set of the widely used embedded platforms, leaving you free to pick up the general principles of writing software for embedded platforms without getting bogged down in weird details like non-orthogonal registers or branch delay slots. There are plenty of emulators - ARM's own, while not free, is cycle-accurate; and a huge variety of programmable ARM-based hardware is cheap and easy to come by as well.
The TI MSP430 is a great platform for learning how to program microcontrollers. TI has a variety of FREE Tools and some cheap evaluation boards (starting at $20). Plus, it's a low-power, modern microcontroller.
A nice choice would be PIC18 by Microchip
It has quite alot of material, documentation, tutorials and projects on the internet
Free IDE and compiler.
you can pull your own flash writer in a few minutes.
(Although for a debugger to work you'll need to work harder)
If you're a student (or has a student email address) Microchip will send you free sample chips. So basically you can have a full development environment for close to nothing.
PICs are quite prevalent in the industry. Specifically as controllers for robots for some reason although they can do so much more.
Arduino seems to be the platform of choice these days for beginners although there are lots of others. I like the Olimex boards personally but they are not really for beginners.
Microchip's PIC range of CPUs are also excellent for beginners, especially if you want to program in assembler.
BTW, Assembler is not used as much as it used to. The general rule with embedded is if you've got 4k of memory or more, use C. You get portability and you can develop code faster.
I suppose it depends on your skill level and what you want to do with the chip. I usually choose which embedded chip to use by the available peripherals. If you want a USB port, find one with USB built in, if you want analogue-to-digital, find one with an ADC etc. If you've got a simple application, use an 8-bit but if you need serious number crunching, go 32 bits.
I'd like to suggest the beagleboard from TI. It has a Omap3 on it. That's a Cortex-A8 ARM11 CPU, a C64x+ DSP and a video accelerator as well.
The board does not need an expensive jtag device. A serial cable an an SD-Card is all you need to get started. Board costs only $150 and there is a very active community.
www.beagleboard.org
Your question sort of has been answered in this question.
To add to that, the embedded processor industry is very segmented, it doesn't have a major player like Intel/x86 is for the "desktop" processor industry. The ARM processor does have a large share, so does MIPS I believe, and there are many smaller more specific microcontroller like chips available (like the MSP430 etc from TI).
As for documentation, I do embedded development for a day job, and the documentation we have access to (as software developers) is rather sparse. Your best bet is to use the documentation available on the processor manufacturers site.
Take a look at Processing and the associated Arduino and Wiring boards.
If you just want to have fun, then try the Parallax Propeller chip. The HYDRA game platform looks like a blast. There's a $100 C compiler for it now.
I started on BASIC stamps, moved up through SX chips and PICs into 8051s, then 68332s, various DSPs, FPGA soft processors, etc.
8051s are more useful in the real world... the things won't go away. There's TONS of derivatives and crazy stuff for them. (Just stay away from the DS80C400) The energy industry is absolutely full of them.
Start with something tiny. If you have external RAM and plenty of registers... what's the difference between that and a SBC?
Many moons ago I've worked with 8-bitters like 68HC05 and Z80, later AVR and MSP430 (16-bit). However most recent projects were on ARM7. Several manufacturers offer ARM controllers, in all colors and sizes (well, not really color).
ARM(7) is replacing 8-bit architecture: it's more performant (32-bit RISC at faster instruction cycles than most 8-bitters), has more memory and is available with several IO-configurations.
I worked with NXP LPC2000 controllers, which are also inexpensive (< 1 USD for a 32-bitter!).
If you're in Europe http://www.olimex.com/dev/index.html has some nice low-cost development boards. Works in the rest of the world too :-)
For a fun project to test, have a look at xgamestation
But for a more industrial used one chip solution programming, look at PIC
For my Computer Architecture course I had to work with both a PIC and an AVR; in my opinion the PIC was easier to work with, but that's maybe because that's what we worked with the most and we had the most time to get used to. We used the AVR maybe only a couple of times so I couldn't get the hang of it perfectly but it also was nothing overly complicated, or at least not more frustrating than the other.
I think you can also order microprocessor samples from Microchip's website so you could also get started with that?
Second that:
Arduino platform http://www.arduino.cc
HTH
For learning, you can't go past the AVR. The chips are cheap and they'll run with zero external components - they also supply enough current to drive an LED straight from the port.
You can start with a cheap programmer such as lady-ada's USBTinyISP (USD$22 for a kit) which can power your board with 5V from the USB port. Get the free tools WinAVR (GCC based) and AVRStudio and get a small project working in no time.
Yes the AVRs have limitations - but developing software for microcontrollers is largely about managing resources and coping with those problems. It's unlikely that you'll experience problems such as running out of stack space, RAM or ROM when you're making hobbist projects for powerful ARM platforms.
That said, ARM is also a great platform which is widely used in the industry, however, for learning I highly recommend AVRs.
I would suggest Microchip's PIC18F series. I just started developing for them with the RealICE in-circuit emulator, but the pickit2 is a decent debugger for the price. You could say this for the AVR's also, but there is a large following for the device all over the web. I was able to have a - buggy, yet functional - embedded USB device running within days due to all the PIC related chatter.
The only thing I don't like about the PICs is that a lot of the sample code is VERY entwined into the demo boards. That can make it hard to tear out sections that you need and still have an application that will build and run for your application.
Texas Instruments has released a very interesting development kit at a very low price: The eZ430-Chronos Development Tool contains an MSP430 with display and various sensors in a sports watch, including a usb debug programmer and a usb radio access point for 50$
There is also a wiki containing lots and lots of information.
I have already created a stackexchange proposal for the eZ430-Chronos Kit.
You should try and learn from developpers kits provided by Embedded Artists. After you get the kit, check their instructional videos and videos provided by NXP, which are not as detailed as they could be, but they cover a lot of things. Problems with learning ARM as your first architecture and try to do something practicall are:
You need to buy dev. kit.
You need a good book to learn ARM assembly, because sooner or later you will come across ARM startup code, which is quite a deal for a beginner. The book i mentioned allso covers some C programming.
Combine book mentioned above with a user guide for your speciffic processor like this one. Make sure you get this as studying this in combination with above book is the only way to learn your ARM proc. in detail.
If you want to make a transfer from ARM assembly to C programming you will need to read this book, which covers a different ARM processor but is easier for C beginner. The down side is that it doesn't explain any ARM assembly, but this is why you need the first book.
There is no easy way.
mikroElektronika has nice ARM boards and C, Pascal and Basic compilers that might suite your demands.