hibernate - pattern for mapping a default entity? - nhibernate

Is there a sleek way to map a default database object in Hibernate?
For example, in this class, a Foo should always be able to return a Bar, whether it's custom defined for the Foo, or it comes from a default value that's stored in the database somewhere. Users of Foo should be able to set a custom Bar object in it, but they don't need write access to Bar - hence the reduced visibility. :
public Class Foo {
public Bar Bar {
get {
return CustomBar ?? DefaultBar;
}
}
public Bar CustomBar { get; set; }
protected Bar DefaultBar { get; private set; }
}
The thing I'm wondering about is how to hibernate map that DefaultFoo property. All the Bar classes should be able to get to that single DefaultFoo object. The only way I know how to do this in Hibernate is with a one-to-many mapping in Foo. (Foo containing one to many Bars)...this seems a little kludgy, since there's always at most one Bar. Is there a better pattern for this type of behavior? TIA.

This is also called the NullObject or DefaultObject pattern. There has been some discussion on the Hibernate mailing lists about this. But I haven't seen anything about how you would actually store it in the database. If you want a real NullObject, external of the Database, then you can implement a Singleton default object and implement the ILifecycle interface (I think) and veto the OnSave event to prevent it from being persisted.

Related

Problem with Include() EntityFramework Core with blazor server side [duplicate]

I had seen some books(e.g programming entity framework code first Julia Lerman) define their domain classes (POCO) with no initialization of the navigation properties like:
public class User
{
public int Id { get; set; }
public string UserName { get; set; }
public virtual ICollection<Address> Address { get; set; }
public virtual License License { get; set; }
}
some other books or tools (e.g Entity Framework Power Tools) when generates POCOs initializes the navigation properties of the the class, like:
public class User
{
public User()
{
this.Addresses = new IList<Address>();
this.License = new License();
}
public int Id { get; set; }
public string UserName { get; set; }
public virtual ICollection<Address> Addresses { get; set; }
public virtual License License { get; set; }
}
Q1: Which one is better? why? Pros and Cons?
Edit:
public class License
{
public License()
{
this.User = new User();
}
public int Id { get; set; }
public string Key { get; set; }
public DateTime Expirtion { get; set; }
public virtual User User { get; set; }
}
Q2: In second approach there would be stack overflow if the `License` class has a reference to `User` class too. It means we should have one-way reference.(?) How we should decide which one of the navigation properties should be removed?
Collections: It doesn't matter.
There is a distinct difference between collections and references as navigation properties. A reference is an entity. A collections contains entities. This means that initializing a collection is meaningless in terms of business logic: it does not define an association between entities. Setting a reference does.
So it's purely a matter of preference whether or not, or how, you initialize embedded lists.
As for the "how", some people prefer lazy initialization:
private ICollection<Address> _addresses;
public virtual ICollection<Address> Addresses
{
get { return this._addresses ?? (this._addresses = new HashSet<Address>());
}
It prevents null reference exceptions, so it facilitates unit testing and manipulating the collection, but it also prevents unnecessary initialization. The latter may make a difference when a class has relatively many collections. The downside is that it takes relatively much plumbing, esp. when compared to auto properties without initialization. Also, the advent of the null-propagation operator in C# has made it less urgent to initialize collection properties.
...unless explicit loading is applied
The only thing is that initializing collections makes it hard to check whether or not a collection was loaded by Entity Framework. If a collection is initialized, a statement like...
var users = context.Users.ToList();
...will create User objects having empty, not-null Addresses collections (lazy loading aside). Checking whether the collection is loaded requires code like...
var user = users.First();
var isLoaded = context.Entry(user).Collection(c => c.Addresses).IsLoaded;
If the collection is not initialized a simple null check will do. So when selective explicit loading is an important part of your coding practice, i.e. ...
if (/*check collection isn't loaded*/)
context.Entry(user).Collection(c => c.Addresses).Load();
...it may be more convenient not to initialize collection properties.
Reference properties: Don't
Reference properties are entities, so assigning an empty object to them is meaningful.
Worse, if you initiate them in the constructor, EF won't overwrite them when materializing your object or by lazy loading. They will always have their initial values until you actively replace them. Worse still, you may even end up saving empty entities in the database!
And there's another effect: relationship fixup won't occcur. Relationship fixup is the process by which EF connects all entities in the context by their navigation properties. When a User and a Licence are loaded separately, still User.License will be populated and vice versa. Unless of course, if License was initialized in the constructor. This is also true for 1:n associations. If Address would initialize a User in its constructor, User.Addresses would not be populated!
Entity Framework core
Relationship fixup in Entity Framework core (2.1 at the time of writing) isn't affected by initialized reference navigation properties in constructors. That is, when users and addresses are pulled from the database separately, the navigation properties are populated.
However, lazy loading does not overwrite initialized reference navigation properties.
In EF-core 3, initializing a reference navigation property prevents Include from working properly.
So, in conclusion, also in EF-core, initializing reference navigation properties in constructors may cause trouble. Don't do it. It doesn't make sense anyway.
In all my projects I follow the rule - "Collections should not be null. They are either empty or have values."
First example is possible to have when creation of these entities is responsibility of third-part code (e.g. ORM) and you are working on a short-time project.
Second example is better, since
you are sure that entity has all properties set
you avoid silly NullReferenceException
you make consumers of your code happier
People, who practice Domain-Driven Design, expose collections as read-only and avoid setters on them. (see What is the best practice for readonly lists in NHibernate)
Q1: Which one is better? why? Pros and Cons?
It is better to expose not-null colections since you avoid additional checks in your code (e.g. Addresses). It is a good contract to have in your codebase. But it os OK for me to expose nullable reference to single entity (e.g. License)
Q2: In second approach there would be stack overflow if the License class has a reference to User class too. It means we should have one-way reference.(?) How we should decide which one of the navigation properties should be removed?
When I developed data mapper pattern by myself I tryed to avoid bidirectional references and had reference from child to parent very rarely.
When I use ORMs it is easy to have bidirectional references.
When it is needed to build test-entity for my unit-tests with bidirectional reference set I follow the following steps:
I build parent entity with emty children collection.
Then I add evey child with reference to parent entity into children collection.
Insted of having parameterless constructor in License type I would make user property required.
public class License
{
public License(User user)
{
this.User = user;
}
public int Id { get; set; }
public string Key { get; set; }
public DateTime Expirtion { get; set; }
public virtual User User { get; set; }
}
It's redundant to new the list, since your POCO is depending on Lazy Loading.
Lazy loading is the process whereby an entity or collection of entities is automatically loaded from the database the first time that a property referring to the entity/entities is accessed. When using POCO entity types, lazy loading is achieved by creating instances of derived proxy types and then overriding virtual properties to add the loading hook.
If you would remove the virtual modifier, then you would turn off lazy loading, and in that case your code no longer would work (because nothing would initialize the list).
Note that Lazy Loading is a feature supported by entity framework, if you create the class outside the context of a DbContext, then the depending code would obviously suffer from a NullReferenceException
HTH
The other answers fully answer the question, but I'd like to add something since this question is still relevant and comes up in google searches.
When you use the "code first model from database" wizard in Visual Studio all collections are initialized like so:
public partial class SomeEntity
{
[System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage", "CA2214:DoNotCallOverridableMethodsInConstructors")]
public SomeEntity()
{
OtherEntities = new HashSet<OtherEntity>();
}
public int Id { get; set; }
[System.Diagnostics.CodeAnalysis.SuppressMessage("Microsoft.Usage", "CA2227:CollectionPropertiesShouldBeReadOnly")]
public virtual ICollection<OtherEntity> OtherEntities { get; set; }
}
I tend to take wizard output as basically being an official recommendation from Microsoft, hence why I'm adding to this five-year-old question. Therefore, I'd initialize all collections as HashSets.
And personally, I think it'd be pretty slick to tweak the above to take advantage of C# 6.0's auto-property initializers:
public virtual ICollection<OtherEntity> OtherEntities { get; set; } = new HashSet<OtherEntity>();
Q1: Which one is better? why? Pros and Cons?
The second variant when virtual properties are set inside an entity constructor has a definite problem which is called "Virtual member call in a constructor".
As for the first variant with no initialization of navigation properties, there are 2 situations depending on who / what creates an object:
Entity framework creates an object
Code consumer creates an object
The first variant is perfectly valid when Entity Framework creates a object,
but can fail when a code consumer creates an object.
The solution to ensure a code consumer always creates a valid object is to use a static factory method:
Make default constructor protected. Entity Framework is fine to work with protected constructors.
Add a static factory method that creates an empty object, e.g. a User object, sets all properties, e.g. Addresses and License, after creation and returns a fully constructed User object
This way Entity Framework uses a protected default constructor to create a valid object from data obtained from some data source and code consumer uses a static factory method to create a valid object.
I use the answer from this Why is my Entity Framework Code First proxy collection null and why can't I set it?
Had problems with constructor initilization. Only reason I do this is to make test code easier. Making sure collection is never null saves me constantly initialising in tests etc

Deserializing IEnumerable with private backing field in RavenDb

I've been modeling a domain for a couple of days now and not been thinking at all at persistance but instead focusing on domain logic. Now I'm ready to persist my domain objects, some of which contains IEnumerable of child entities. Using RavenDb, the persistance is 'easy', but when loading my objects back again, all of the IEnumerables are empty.
I've realized this is because they don't have any property setters at all, but instead uses a list as a backing field. The user of the domain aggregate root can add child entities through a public method and not directly on the collection.
private readonly List<VeryImportantPart> _veryImportantParts;
public IEnumerable<VeryImportantPart> VeryImportantParts { get { return _veryImportantParts; } }
And the method for adding, nothing fancy...
public void AddVeryImportantPart(VeryImportantPart part)
{
// some logic...
_veryImportantParts.Add(part);
}
I can fix this by adding a private/protected setter on all my IEnumerables with backing fields but it looks... well... not super sexy.
private List<VeryImportantPart> _veryImportantParts;
public IEnumerable<VeryImportantPart> VeryImportantParts
{
get { return _veryImportantParts; }
protected set { _veryImportantParts = value.ToList(); }
}
Now the RavenDb json serializer will populate my objects on load again, but I'm curious if there isn't a cleaner way of doing this?
I've been fiddeling with the JsonContractResolver but haven't found a solution yet...
I think I've found the root cause of this issue and it's probably due to the fact that many of my entities were created using:
protected MyClass(Guid id, string name, string description) : this()
{ .... }
public static MyClass Create(string name, string description)
{
return new MyClass(Guid.NewGuid(), name, description);
}
When deserializing, RavenDb/Json.net couldn't rebuild my entities in a proper way...
Changing to using a public constructor made all the difference.
Do you need to keep a private backing field? Often an automatic property will do.
public IList<VeryImportantPart> VeryImportantParts { get; protected set; }
When doing so, you may want to initialize your list in the constructor:
VeryImportantParts = new List<VeryImportantPart>();
This is optional, of course, but it allows you to create a new class and start adding to the list right away, before it is persisted. When Raven deserializes a class, it will use the setter to overwrite the default blank list, so this just helps with the first store.
You certainly won't be able to use a readonly field, as it couldn't be replaced during deserialization. It might be possible to write a contract resolver or converter that fills an existing list rather than creating a new one, but that seems like a rather complex solution.
Using an automatic property can add clarity to your code anyway - as it is less confusing whether to use the field or the property.

fluent nhibernate polymorphism. how to check for type of class

I have an Icon which has a Content (one to one) relationship.
public class Icon
{
public virtual Content Content {get; set;}
}
By default, it is lazy loaded which is what I want.
However, at some point in the code, I need to check what kind of Content is, Content being polymorphic, something like
if(icon.Content is TextContent)
{
...
}
Icon is part of another association and it is automatically obtained by the NHibernate, I do not get it manually.
What is the recommended way of checking for the actual type in this situation?
I can have a specific property like ContentType which will be an enum in order to identify the actual content type, but I am looking to know if there's a different way.
If you want to do that kind of check, you have to remove the proxy from the property.
There is a few ways to do it:
If you have access to the session call:
session.PersistenceContext.Unproxy(icon.Content);
Implement a virtual method (in a base class if possible) that forces the removal of the proxy by returning the instance with the proper type.
public virtual U As<U>() where U : YourType {
return this as U;
}
Disable the lazy initialization of the property.
This is very similar to another recent question.
To add to csanchez's list, a fourth method is to add a Self property to the Content base class that returns the un-proxied type:
public virtual void Self
{
get { return this; }
}
And a fifth method is to use 'lazy="no-proxy"` in the mapping as described on Ayende's blog.
Thanks for the suggestions but meanwhile I found an interesting solution, better I think.
Using the Visitor pattern, I can define an IconContent visitor and pass an Action to be executed to it.
For example, suppose there is a TextContent and an ImageContent, it will be something like this:
IconContentVisitor.Func(()=> { Console.WriteLine("this is TextContent"; }, ()=> { Console.WriteLine("this is ImageContent"));
Idea came from here: http://mookid.dk/oncode/archives/991

Do write-only properties have practical applications?

I don't know why I started thinking about this, but now I can't seem to stop.
In C# - and probably a lot of other languages, I remember that Delphi used to let you do this too - it's legal to write this syntax:
class WeirdClass
{
private void Hello(string name)
{
Console.WriteLine("Hello, {0}!", name);
}
public string Name
{
set { Hello(name); }
}
}
In other words, the property has a setter but no getter, it's write-only.
I guess I can't think of any reason why this should be illegal, but I've never actually seen it in the wild, and I've seen some pretty brilliant/horrifying code in the wild. It seems like a code smell; it seems like the compiler should be giving me a warning:
CS83417: Property 'Name' appears to be completely useless and stupid. Bad programmer! Consider replacing with a method.
But maybe I just haven't been doing this long enough, or have been working in too narrow a field to see any examples of the effective use of such a construct.
Are there real-life examples of write-only properties that either cannot be replaced by straight method calls or would become less intuitive?
My first reaction to this question was: "What about the java.util.Random#setSeed method?"
I think that write-only properties are useful in several scenarios. For example, when you don't want to expose the internal representation (encapsulation), while allowing to change the state of the object. java.util.Random is a very good example of such design.
Code Analysis (aka FxCop) does give you a diagnostic:
CA1044 : Microsoft.Design : Because
property 'WeirdClass.Name' is write-only,
either add a property getter with an
accessibility that is greater than or
equal to its setter or convert this
property into a method.
Write-only properties are actually quite useful, and I use them frequently. It's all about encapsulation -- restricting access to an object's components. You often need to provide one or more components to a class that it needs to use internally, but there's no reason to make them accessible to other classes. Doing so just makes your class more confusing ("do I use this getter or this method?"), and more likely that your class can be tampered with or have its real purpose bypassed.
See "Why getter and setter methods are evil" for an interesting discussion of this. I'm not quite as hardcore about it as the writer of the article, but I think it's a good thing to think about. I typically do use setters but rarely use getters.
I have code similar to the following in an XNA project. As you can see, Scale is write-only, it is useful and (reasonably) intuitive and a read property (get) would not make sense for it. Sure it could be replaced with a method, but I like the syntax.
public class MyGraphicalObject
{
public double ScaleX { get; set; }
public double ScaleY { get; set; }
public double ScaleZ { get; set; }
public double Scale { set { ScaleX = ScaleY = ScaleZ = value; } }
// more...
}
One use for a write-only property is to support setter dependency injection, which is typically used for optional parameters.
Let's say I had a class:
public class WhizbangService {
public WhizbangProvider Provider { set; private get; }
}
The WhizbangProvider is not intended to be accessed by the outside world. I'd never want to interact with service.Provider, it's too complex. I need a class like WhizbangService to act as a facade. Yet with the setter, I can do something like this:
service.Provider = new FireworksShow();
service.Start();
And the service starts a fireworks display. Or maybe you'd rather see a water and light show:
service.Stop();
service.Provider = new FountainDisplay(new StringOfLights(), 20, UnitOfTime.Seconds);
service.Start();
And so on....
This becomes especially useful if the property is defined in a base class. If you chose construction injection for this property, you'd need to write a constructor overload in any derived class.
public abstract class DisplayService {
public WhizbangProvider Provider { set; private get; }
}
public class WhizbangService : DisplayService { }
Here, the alternative with constructor injection is:
public abstract class DisplayService {
public WhizbangProvider Provider;
protected DisplayService(WhizbangProvider provider) {
Provider = provider ?? new DefaultProvider();
}
}
public class WhizbangService : DisplayService {
public WhizbangService(WhizbangProvider provider)
: base(provider)
{ }
}
This approach is messier in my opinion, because you need to some of the internal workings of the class, specifically, that if you pass null to the constructor, you'll get a reasonable default.
In MVP pattern it is common to write a property with a setter on the view (no need for a getter) - whenever the presenter sets it content the property will use that value to update some UI element.
See here for a small demonstration:
public partial class ShowMeTheTime : Page, ICurrentTimeView
{
protected void Page_Load(object sender, EventArgs e)
{
CurrentTimePresenter presenter = new CurrentTimePresenter(this);
presenter.InitView();
}
public DateTime CurrentTime
{
set { lblCurrentTime.Text = value.ToString(); }
}
}
The presenter InitView method simply sets the property's value:
public void InitView()
{
view.CurrentTime = DateTime.Now;
}
Making something write-only is usefulwhenever you're not supposed to read what you write.
For example, when drawing things onto the screen (this is precisely what the Desktop Window Manager does in Windows):
You can certainly draw to a screen, but you should never need to read back the data (let alone expect to get the same design as before).
Now, whether write-only properties are useful (as opposed to methods), I'm not sure how often they're used. I suppose you could imagine a situation with a "BackgroundColor" property, where writing to it sets the background color of the screen, but reading makes no sense (necessarily).
So I'm not sure about that part, but in general I just wanted to point out that there are use cases for situations in which you only write data, and never read it.
Although the .NET design guidelines recommend using a method ("SetMyWriteOnlyParameter") instead of a write-only property, I find write-only properties useful when creating linked objects from a serialised representation (from a database).
Our application represents oil-field production systems. We have the system as a whole (the "Model" object) and various Reservoir, Well, Node, Group etc objects.
The Model is created and read from database first - the other objects need to know which Model they belong to. However, the Model needs to know which lower object represents the Sales total. It makes sense for this information to be stored a Model property. If we do not want to have to do two reads of Model information, we need to be able to read the name of Sales object before its creation. Then, subsequently, we set the "SalesObject" variable to point to the actual object (so that, e.g., any change by the user of the name of this object does not cause problems)
We prefer to use a write-only property - 'SalesObjectName = "TopNode"' - rather than a method - 'SetSalesObjectName("TopNode") - because it seems to us that the latter suggests that the SalesObject exists.
This is a minor point, but enough to make us want to use a Write-Only property.
As far as I'm concerned, they don't. Every time I've used a write-only property as a quick hack I have later come to regret it. Usually I end up with a constructor or a full property.
Of course I'm trying to prove a negative, so maybe there is something I'm missing.
I can't stop thinking about this, either. I have a use case for a "write-only" property. I can't see good way out of it.
I want to construct a C# attribute that derives from AuthorizeAttribute for an ASP.NET MVC app. I have a service (say, IStore) that returns information that helps decide if the current user should be authorized. Constructor Injection won't work, becuase
public AllowedAttribute: AuthorizeAttribute
{
public AllowedAttribute(IStore store) {...}
private IStore Store { get; set; }
...
}
makes store a positional attribute parameter, but IStore is not a valid attribute parameter type, and the compiler won't build code that is annotated with it. I am forced to fall back on Property Setter Injection.
public AllowedAttribute: AuthorizeAttribute
{
[Inject] public IStore Store { private get; set; }
...
}
Along with all the other bad things about Property Setter instead of Constructor Injection, the service is a write-only property. Bad enough that I have to expose the setter to clients that shouldn't need to know about the implementation detail. It wouldn't do anybody any favors to let clients see the getter, too.
I think that the benefit of Dependency Injection trumps the guidelines against write-only properties for this scenario, unless I am missing something.
I just came across that situation when writing a program that reads data from a JSON database (Firebase). It uses Newtonsoft's Json.NET to populate the objects. The data are read-only, i.e., once loaded they won't change. Also, the objects are only deserialized and won't be serialized again. There may be better ways, but this solution just looks reasonable for me.
using Newtonsoft.Json;
// ...
public class SomeDatabaseClass
{
// JSON object contains a date-time field as string
[JsonProperty("expiration")]
public string ExpirationString
{
set
{
// Needs a custom parser to handle special date-time formats
Expiration = Resources.CustomParseDateTime(value);
}
}
// But this is what the program will effectively use.
// DateTime.MaxValue is just a default value
[JsonIgnore]
public DateTime Expiration { get; private set; } = DateTime.MaxValue;
// ...
}
No, I can' imagine any case where they can't be replaced, though there might people who consider them to be more readable.
Hypothetical case:
CommunicationDevice.Response = "Hello, World"
instead of
CommunicationDevice.SendResponse("Hello, World")
The major job would be to perform IO side-effects or validation.
Interestingly, VB .NET even got it's own keyword for this weird kind of property ;)
Public WriteOnly Property Foo() As Integer
Set(value As Integer)
' ... '
End Set
End Property
even though many "write-only" properties from outside actually have a private getter.
I recently worked on an application that handled passwords. (Note that I'm not claiming that the following is a good idea; I'm just describing what I did.)
I had a class, HashingPassword, which contained a password. The constructor took a password as an argument and stored it in a private attribute. Given one of these objects, you could either acquire a salted hash for the password, or check the password against a given salted hash. There was, of course, no way to retrieve the password from a HashingPassword object.
So then I had some other object, I don't remember what it was; let's pretend it was a password-protected banana. The Banana class had a set-only property called Password, which created a HashingPassword from the given value and stored it in a private attribute of Banana. Since the password attribute of HashingPassword was private, there was no way to write a getter for this property.
So why did I have a set-only property called Password instead of a method called SetPassword? Because it made sense. The effect was, in fact, to set the password of the Banana, and if I wanted to set the password of a Banana object, I would expect to do that by setting a property, not by calling a method.
Using a method called SetPassword wouldn't have had any major disadvantages. But I don't see any significant advantages, either.
I know this has been here for a long time, but I came across it and have a valid (imho) use-case:
When you post parameters to a webapi call from ajax, you can simply try to fill out the parameters class' properties and include validation or whatsoever.
public int MyFancyWepapiMethod([FromBody]CallParams p) {
return p.MyIntPropertyForAjax.HasValue ? p.MyIntPropertyForAjax.Value : 42;
}
public class CallParams
{
public int? MyIntPropertyForAjax;
public object TryMyIntPropertyForAjax
{
set
{
try { MyIntPropertyForAjax = Convert.ToInt32(value); }
catch { MyIntPropertyForAjax = null; }
}
}
}
On JavaScript side you can simply fill out the parameters including validation:
var callparameter = {
TryMyIntPropertyForAjax = 23
}
which is safe in this example, but if you handle userinput it might be not sure that you have a valid intvalue or something similar.

The Object-Oriented way to separate the model from its representation

Suppose we have an object that represents the configuration of a piece of hardware. For the sake of argument, a temperature controller (TempController). It contains one property, the setpoint temperature.
I need to save this configuration to a file for use in some other device. The file format (FormatA) is set in stone. I don't want the TempController object to know about the file format... it's just not relevant to that object. So I make another object, "FormatAExporter", that transforms the TempController into the desired output.
A year later we make a new temperature controller, let's call it "AdvancedTempController", that not only has a setpoint but also has rate control, meaning one or two more properties. A new file format is also invented to store those properties... let's call it FormatB.
Both file formats are capable of representing both devices ( assume AdvancedTempController has reasonable defaults if it lacks settings ).
So here is the problem: Without using 'isa' or some other "cheating" way to figure out what type of object I have, how can FormatBExporter handle both cases?
My first instinct is to have a method in each temperature controller that can provide a customer exporter for that class, e.g., TempController.getExporter() and AdvancedTempController.getExporter(). This doesn't support multiple file formats well.
The only other approach that springs to mind is to have a method in each temperature controller that returns a list of properties and their values, and then the formatter can decide how to output those. It'd work, but that seems convoluted.
UPDATE: Upon further work, that latter approach doesn't really work well. If all your types are simple it might, but if your properties are Objects then you end up just pushing the problem down a level... you are forced to return a pair of String,Object values, and the exporter will have to know what the Objects actually are to make use of them. So it just pushes the problem to another level.
Are there any suggestions for how I might keep this flexible?
What you can do is let the TempControllers be responsible for persisting itself using a generic archiver.
class TempController
{
private Temperature _setPoint;
public Temperature SetPoint { get; set;}
public ImportFrom(Archive archive)
{
SetPoint = archive.Read("SetPoint");
}
public ExportTo(Archive archive)
{
archive.Write("SetPoint", SetPoint);
}
}
class AdvancedTempController
{
private Temperature _setPoint;
private Rate _rateControl;
public Temperature SetPoint { get; set;}
public Rate RateControl { get; set;}
public ImportFrom(Archive archive)
{
SetPoint = archive.Read("SetPoint");
RateControl = archive.ReadWithDefault("RateControl", Rate.Zero);
}
public ExportTo(Archive archive)
{
archive.Write("SetPoint", SetPoint);
archive.Write("RateControl", RateControl);
}
}
By keeping it this way, the controllers do not care how the actual values are stored but you are still keeping the internals of the object well encapsulated.
Now you can define an abstract Archive class that all archive classes can implement.
abstract class Archive
{
public abstract object Read(string key);
public abstract object ReadWithDefault(string key, object defaultValue);
public abstract void Write(string key);
}
FormatA archiver can do it one way, and FormatB archive can do it another.
class FormatAArchive : Archive
{
public object Read(string key)
{
// read stuff
}
public object ReadWithDefault(string key, object defaultValue)
{
// if store contains key, read stuff
// else return default value
}
public void Write(string key)
{
// write stuff
}
}
class FormatBArchive : Archive
{
public object Read(string key)
{
// read stuff
}
public object ReadWithDefault(string key, object defaultValue)
{
// if store contains key, read stuff
// else return default value
}
public void Write(string key)
{
// write stuff
}
}
You can add in another Controller type and pass it whatever formatter. You can also create another formatter and pass it to whichever controller.
In C# or other languages that support this you can do this:
class TempController {
int SetPoint;
}
class AdvancedTempController : TempController {
int Rate;
}
class FormatAExporter {
void Export(TempController tc) {
Write(tc.SetPoint);
}
}
class FormatBExporter {
void Export(TempController tc) {
if (tc is AdvancedTempController) {
Write((tc as AdvancedTempController).Rate);
}
Write(tc.SetPoint);
}
}
I'd have the "temp controller", through a getState method, return a map (e.g. in Python a dict, in Javascript an object, in C++ a std::map or std::hashmap, etc, etc) of its properties and current values -- what's convoluted about it?! Could hardly be simpler, it's totally extensible, and totally decoupled from the use it's put to (displaying, serializing, &c).
Well, a lot of that depends on the file formats you're talking about.
If they're based on key/value combinations (including nested ones, like xml), then having some kind of intermediate memory object that's loosely typed that can be thrown at the appropriate file format writer is a good way to do it.
If not, then you've got a scenario where you've got four combinations of objects and file formats, with custom logic for each scenario. In that case, it may not be possible to have a single representation for each file format that can deal with either controller. In other words, if you can't generalize the file format writer, you can't generalize it.
I don't really like the idea of the controllers having exporters - I'm just not a fan of objects knowing about storage mechanisms and whatnot (they may know about the concept of storage, and have a specific instance given to them via some DI mechanism). But I think you're in agreement with that, and for pretty much the same reasons.
If FormatBExporter takes an AdvancedTempController, then you can make a bridge class that makes TempController conform to AdvancedTempController. You may need to add some sort of getFormat() function to AdvancedTempController though.
For example:
FormatBExporter exporterB;
TempController tempController;
AdvancedTempController bridged = TempToAdvancedTempBridge(tempController);
exporterB.export(bridged);
There is also the option of using a key-to-value mapping scheme. FormatAExporter exports/imports a value for key "setpoint". FormatBExporter exports/imports a values for keys "setpoint" and "ratecontrol". This way, old FormatAExporter can still read the new file format (it just ignores "ratecontrol") and FormatBExporter can read the old file format (if "ratecontrol" is missing, it uses a default).
In the OO model, the object methods as a collective is the controller. It's more useful to separate your program in to the M and V and not so much the C if you're programming using OO.
I guess this is the where the Factory method pattern would apply