Multi core programming - hardware

I want to get into multi core programming (not language specific) and wondered what hardware could be recommended for exploring this field.
My aim is to upgrade my existing desktop.

If at all possible, I would suggest getting a dual-socket machine, preferably with quad-core chips. You can certainly get a single-socket machine, but dual-socket would let you start seeing some of the effects of NUMA memory that are going to be exacerbated as the core counts get higher and higher.
Why do you care? There are two huge problems facing multi-core developers right now:
The programming model Parallel programming is hard, and there is (currently) no getting around this. A quad-core system will let you start playing around with real concurrency and all of the popular paradigms (threads, UPC, MPI, OpenMP, etc).
Memory Whenever you start having multiple threads, there is going to be contention for resources, and the memory wall is growing larger and larger. A recent article at arstechnica outlines some (very preliminary) research at Sandia that shows just how bad this might become if current trends continue. Multicore machines are going to have to keep everything fed, and this will require that people be intimately familiar with their memory system. Dual-socket adds NUMA to the mix (at least on AMD machines), which should get you started down this difficult road.
If you're interested in more info on performance inconsistencies with multi-socket machines, you might also check out this technical report on the subject.
Also, others have suggested getting a system with a CUDA-capable GPU, which I think is also a great way to get into multithreaded programming. It's lower level than the stuff I mentioned above, but throw one of those on your machine if you can. The new Portland Group compilers have provisional support for optimizing loops with CUDA, so you could play around with your GPU even if you don't want to learn CUDA yourself.

Quad-core, because it'll permit you to do problems where the number of concurrent processes is > 2, which often non-trivializes problems.
I would also, for sheer geek squee, pick up a nice NVidia card and use the CUDA API. If you have the bucks, there's a stand-alone CUDA workstation that plugs into your main computer via a cable and an expansion slot.

It depends what you want to do.
If you want to learn the basics of multithreaded programming, then you can do that on your existing single-core PC. (If you have 2 threads, then the OS will switch between them on a single-core PC. Then when you move to a dual-core PC they should automatically run in parallel on separate cores, for a 2x speedup). This has the advantage of being free! The disadvantages are that you won't see a speedup (in fact a parallel implementation is probably slightly slower due to overheads), and that buggy code has a slightly higher chance of working.
However, although you can learn multithreaded programming on a single-core box, a dual-core (or even HyperThreading) CPU would be a great help.
If you want to really stress-test the code you're writing, then as "blue tuxedo" says, you should go for as many cores as you can easily afford, and if possible get hyperthreading too.
If you want to learn about algorithms for running on graphics cards - which is a very different area to x86 multicore - then get CUDA and buy a normal nVidia graphics card that supports it.

I'd recommend at least a quad-core processor.

You could try tinkering with CUDA. It's free, not that hard to use and will run on any recent NVIDIA card.
Alternatively, you could get a PlayStation 3 and the Linux SDK and work out how to program a Cell processor. Note that the next cheapest option for Cell BE development is an order of magnitude more expensive than a PS3.
Finally, any modern motherboard that will take a Core Quad or quad-core Opteron (get a good one from Asus or some other reputable manufacturer) will let you experiment with a multi-core PC system for a reasonable sum of money.

The difficult thing with multithreaded/core programming is that it opens a whole new can of worms. The bugs you'll be faced with are usually not the one you're used to. Race conditions can remain dormant for ages until they bite and your mainstream language compiler won't assist you in any way. You'll get random data and/or crashes that only happen once a day/week/month/year, usually under the most mysterious conditions...
One things remains true fortunately : the higher the concurrency exhibited by a computer, the more race conditions you'll unveil.
So if you're serious about multithreaded/core programming, then go for as many cpu cores as possible. Keep in mind that neither hyperthreading nor SMT allow for the level of concurrency that multiple cores provide.

I would agree that, depending on what you ultimately want to do, you can probably get by with just your current single-core system. Multi-core programming is basically multi-threaded programming, and you can certainly do that on a single-core chip.
When I was a student, one of our projects was to build a thread-safe implementation the malloc library for C. Even on a single core processor, that was more than enough to cure me of my desire to get into multi-threaded programming. I would try something small like that before you start thinking about spending lots of money.

I agree with the others where I would upgrade to a quad-core processor. I am also a BIG FAN of ASUS Motherboards (the P5Q Pro is excellent for Core2Quad and Core2Duo processors)!
The draw for multi-core programming is that you have more resources to get things done faster. If you are serious about multi-core programming, then I would absolutely get a quad-core processor. I don't believe that you should get the new i7 architecture from Intel to take advantage of multi-core processing because anything written to take advantage of the Core2Duo or Core2Quad will just run better on the newer architecture.
If you are going to dabble in multi-core programming, then I would get a good Core2Duo processor. Remember, it's not just how many cores you have, but also how FAST the cores are to process the jobs. My Core2Duo running at 4GHz routinely completes jobs faster than my Core2Quad running at 2.4GHz even with a multi-core program.
Let me know if this helps!
JFV

Related

Why do you need a Programmable Real Time Unit (PRU) while you can have an RTOS?

The beaglebone Black processor includes two independent Programmable Real Time Units (PRUs). Hobbyists and professionals are excited about possible use of these units for real-time applications, which is understood. However, if you can have a RTOS (whether for the beaglebone or the raspberry pi), why would you need the PRUs?
EDIT-
For information, the BBB has an ARM Cortex A8 running at 1 GHz, with 1.9 DMIPS / MHz. The PRUs are simple RISCs running at 200 MHz.
Linux, even with the real-time scheduler is unsuited to many critical hard real-time tasks with response requirements at the microsecond level, on the other hand it provides or enables a great deal of functionality in terms of UI, connectivity and filesystem support. These things are either not available in an RTOS or are provided at significant cost in high end RTOS, and with much more limited hardware support.
So if you have a system that has hard-real time constraints, but needs more general purpose computing features such a networking, filesystem connection to commercial-off-the-shelf (COTS) peripherals etc., then the PRU provides a solution to that.
On the other hand I can't help but think that this is a marketing exercise on the part of TI to sell more chips. A similar solution has always been possible (and indeed common) using one or more processors to perform time critical tasks, possibly running an RTOS, while UI and connectivity are handled by a single processor with the necessary hardware and memory resources but without the real-time constraints. The PRU device does have two 32 bit cores, but XMOS xCORE devices have as many as 16 cores - with 16 communicating cores, you may not even need an RTOS.
To answer the question...
[...] if you can have a RTOS [...], why would you need the PRUs?
... directly; you probably wouldn't need them in that case, but you would loose Linux - and your application may need that. It is just one of many solutions to real-time applications using Linux. You pays your money, and takes your choice.
Most likely the processor in BeagleBone or RaspberryPI is too "heavy" for real time - after all, you could run RTOS on your PC, but it will not be very responsive entirely deterministic, even when it's faster than your typical microcontroller (I guess that these PRUs are some sort of microcontrollers with a new fancy name). In such high-level application processor as found on these boards you rarely have direct access to hardware or interrupts, which are essential for real time applications that actually do something time-critical.

Could a GPU be Programmed and/or Modified to Carry Out CPU Instructions?

I was wondering if a GPU could behave like a CPU if modified or programmed to do so. If there is a way, I would also like to know how that could be done. The reason why is, well, sometimes I do that kind of stuff as experiments, just for fun. Plus, if it isn't a big hassle, then it would be much better than buying an expensive processor just to get better performance. I usually don't need my GPU, only because I use my computer for the simplest of things. My other computer, that's a slightly different story (because I use it for video playback), but you get the idea.
Yes, it's called GPGPU (general purpose GPU), and with it you could program some CPU-like workloads on your GPU using languages like CUDA or OpenCL.
Of course this method doesn't work well with any workload, the CPU is still much better in single-threaded hard-to-parallelize codes, or codes with complicated control flow (due to branch predictors) or memory locality (due to better caching and prefetching). GPGPUs are mostly better for performing very straight-forward highly parallel vectorizable code.
In fact, this method of computation caught enough traction to create a new lines of products, (such as Xeon Phi, formely Larrabee), and enhancing existing GPUs (e.g. Tesla/Fermi, and others)
EDIT
Having reread your question - if you mean running actual CPU ISA on such GPGPU, not just some general CPU task, then the best bet is Xeon Phi mentioned above, it's intended to be based on the same ISA as the CPU (it's the only x86 GPGPU I know of).

Which platform should i choose for scientific computing?

What are the pros and cons in choosing PS3 as a platform for scientific computing in detriment of GPU's? Is It the better choice ?
Stick with a PC, you will have a far easier life at the end of the day. I also wouldn't be surprised if you get more horsepower out of GPU's.
p.s., from what I know dispatching work to the cells is not an enjoyable task :D
I'd go for GPU, for three reasons:
(a) GPU code can be developed, tested, and run on pretty much any PC you may want to use, with the only dependency being a $150 video card, whereas CELL/PS3 is a much more custom development environment and won't run natively on your laptop, etc.;
(b) I'm willing to bet a lot that GPUs and Cuda will be alive and well in 5 years, but I wouldn't put money on PS3 being around that long -- what are you going to do if PS4 has a totally different architecture and CELL effectively dies?
(c) There's a more vibrant research and development community around GPU than there is around PS3/Cell (outside of strict game development), so you're likely to be in more good company, have example code and tools to work with, etc.
There is no broad "better" choice, it is all dependent on the situation and what you're doing. Probably the biggest PRO to a PS3 is they're cheap by comparison. A computer can more easily scale bigger though (for a price) when looking into things like CUDA.
CUDA is pretty slick. I was shown a presentation recently demonstrating how easy it is to get at the power of the GPU's many cores using a C++ based syntax. If I was starting a parallel computing project now, I would probably take the PC/GPU-based route.
A major objection to the PS3 (which is already quite a wacky choice unless you're under some pretty extreme price/performance constraints) has to be that Sony are dropping support for installation of other OS. In future, PS3s without the disabling firmware update may become harder and harder to get hold of.

Optimisation , Compilers and Its Effects

(i) If a Program is optimised for one CPU class (e.g. Multi-Core Core i7)
by compiling the Code on the same , then will its performance
be at sub-optimal level on other CPUs from older generations (e.g. Pentium 4)
... Optimizing may prove harmful for performance on other CPUs..?
(ii)For optimization, compilers may use x86 extensions (like SSE 4) which are
not available in older CPUs.... so ,Is there a fall-back to some non-extensions
based routine on older CPUs..?
(iii)Is Intel C++ Compiler is more optimizing than Visual C++ Compiler or GCC..
(iv) Will a truly Multi-Core Threaded application will perform effeciently on a
older CPUs (like Pentium III or 4)..?
Compiling on a platform does not mean optimizing for this platform. (maybe it's just bad wording in your question.)
In all compilers I've used, optimizing for platform X does not affect the instruction set, only how it is used, e.g. optimizing for i7 does not enable SSE2 instructions.
Also, optimizers in most cases avoid "pessimizing" non-optimized platforms, e.g. when optimizing for i7, typically a small improvement on i7 will not not be chosen if it means a major hit for another common platform.
It also depends in the performance differences in the instruction sets - my impression is that they've become much less in the last decade (but I haven't delved to deep lately - might be wrong for the latest generations). Also consider that optimizations make a notable difference only in few places.
To illustrate possible options for an optimizer, consider the following methods to implement a switch statement:
sequence if (x==c) goto label
range check and jump table
binary search
combination of the above
the "best" algorithm depends on the relative cost of comparisons, jumps by fixed offsets and jumps to an address read from memory. They don't differ much on modern platforms, but even small differences can create a preference for one or other implementation.
It is probably true that optimising code for execution on CPU X will make that code less optimal on CPU Y than the same code optimised for execution on CPU Y. Probably.
Probably not.
Impossible to generalise. You have to test your code and come to your own conclusions.
Probably not.
For every argument about why X should be faster than Y under some set of conditions (choice of compiler, choice of CPU, choice of optimisation flags for compilation) some clever SOer will find a counter-argument, for every example a counter-example. When the rubber meets the road the only recourse you have is to test and measure. If you want to know whether compiler X is 'better' than compiler Y first define what you mean by better, then run a lot of experiments, then analyse the results.
I) If you did not tell the compiler which CPU type to favor, the odds are that it will be slightly sub-optimal on all CPUs. On the other hand, if you let the compiler know to optimize for your specific type of CPU, then it can definitely be sub-optimal on other CPU types.
II) No (for Intel and MS at least). If you tell the compiler to compile with SSE4, it will feel safe using SSE4 anywhere in the code without testing. It becomes your responsibility to ensure that your platform is capable of executing SSE4 instructions, otherwise your program will crash. You might want to compile two libraries and load the proper one. An alternative to compiling for SSE4 (or any other instruction set) is to use intrinsics, these will check internally for the best performing set of instructions (at the cost of a slight overhead). Note that I am not talking about instruction instrinsics here (those are specific to an instruction set), but intrinsic functions.
III) That is a whole other discussion in itself. It changes with every version, and may be different for different programs. So the only solution here is to test. Just a note though; Intel compilers are known not to compile well for running on anything other than Intel (e.g.: intrinsic functions may not recognize the instruction set of a AMD or Via CPU).
IV) If we ignore the on-die efficiencies of newer CPUs and the obvious architecture differences, then yes it may perform as well on older CPU. Multi-Core processing is not dependent per se on the CPU type. But the performance is VERY dependent on the machine architecture (e.g.: memory bandwidth, NUMA, chip-to-chip bus), and differences in the Multi-Core communication (e.g.: cache coherency, bus locking mechanism, shared cache). All this makes it impossible to compare newer and older CPU efficiencies in MP, but that is not what you are asking I believe. So on the whole, a MP program made for newer CPUs, should not be using less efficiently the MP aspects of older CPUs. Or in other words, just tweaking the MP aspects of a program specifically for an older CPU will not do much. Obviously you could rewrite your algorithm to more efficiently use a specific CPU (e.g.: A shared cache may permit you to use an algorithm that exchanges more data between working threads, but this algo will die on a system with no shared cache, full bus lock and low memory latency/bandwidth), but it involves a lot more than just MP related tweaks.
(1) Not only is it possible but it has been documented on pretty much every generation of x86 processor. Go back to the 8088 and work your way forward, every generation. Clock for clock the newer processor was slower for the current mainstream applications and operating systems (including Linux). The 32 to 64 bit transition is not helping, more cores and less clock speed is making it even worse. And this is true going backward as well for the same reason.
(2) Bank on your binaries failing or crashing. Sometimes you get lucky, most of the time you dont. There are new instructions yes, and to support them would probably mean trap for an undefined instruction and have a software emulation of that instruction which would be horribly slow and the lack of demand for it means it is probably not well done or just not there. Optimization can use new instructions but more than that the bulk of the optimization that I am guessing you are talking about has to do with reordering the instructions so that the various pipelines do not stall. So you arrange them to be fast on one generation processor they will be slower on another because in the x86 family the cores change too much. AMD had a good run there for a while as they would make the same code just run faster instead of trying to invent new processors that eventually would be faster when the software caught up. No longer true both amd and intel are struggling to just keep chips running without crashing.
(3) Generally, yes. For example gcc is a horrible compiler, one size fits all fits no one well, it can never and will never be any good at optimizing. For example gcc 4.x code is slower on gcc 3.x code for the same processor (yes all of this is subjective, it all depends on the specific application being compiled). The in house compilers I have used were leaps and bounds ahead of the cheap or free ones (I am not limiting myself to x86 here). Are they worth the price though? That is the question.
In general because of the horrible new programming languages and gobs of memory, storage, layers of caching, software engineering skills are at an all time low. Which means the pool of engineers capable of making a good compiler much less a good optimizing compiler decreases with time, this has been going on for at least 10 years. So even the in house compilers are degrading with time, or they just have their employees to work on and contribute to the open source tools instead having an in house tool. Also the tools the hardware engineers use are degrading for the same reason, so we now have processors that we hope to just run without crashing and not so much try to optimize for. There are so many bugs and chip variations that most of the compiler work is avoiding the bugs. Bottom line, gcc has singlehandedly destroyed the compiler world.
(4) See (2) above. Don't bank on it. Your operating system that you want to run this on will likely not install on the older processor anyway, saving you the pain. For the same reason that the binaries optimized for your pentium III ran slower on your Pentium 4 and vice versa. Code written to work well on multi core processors will run slower on single core processors than if you had optimized the same application for a single core processor.
The root of the problem is the x86 instruction set is dreadful. So many far superior instructions sets have come along that do not require hardware tricks to make them faster every generation. But the wintel machine created two monopolies and the others couldnt penetrate the market. My friends keep reminding me that these x86 machines are microcoded such that you really dont see the instruction set inside. Which angers me even more that the horrible isa is just an interpretation layer. It is kinda like using Java. The problems you have outlined in your questions will continue so long as intel stays on top, if the replacement does not become the monopoly then we will be stuck forever in the Java model where you are one side or the other of a common denominator, either you emulate the common platform on your specific hardware, or you are writing apps and compiling to the common platform.

CUDA or FPGA for special purpose 3D graphics computations? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 3 years ago.
Improve this question
I am developing a product with heavy 3D graphics computations, to a large extent closest point and range searches. Some hardware optimization would be useful. While I know little about this, my boss (who has no software experience) advocates FPGA (because it can be tailored), while our junior developer advocates GPGPU with CUDA, because its cheap, hot and open. While I feel I lack judgement in this question, I believe CUDA is the way to go also because I am worried about flexibility, our product is still under strong development.
So, rephrasing the question, are there any reasons to go for FPGA at all? Or is there a third option?
I investigated the same question a while back. After chatting to people who have worked on FPGAs, this is what I get:
FPGAs are great for realtime systems, where even 1ms of delay might be too long. This does not apply in your case;
FPGAs can be very fast, espeically for well-defined digital signal processing usages (e.g. radar data) but the good ones are much more expensive and specialised than even professional GPGPUs;
FPGAs are quite cumbersome to programme. Since there is a hardware configuration component to compiling, it could take hours. It seems to be more suited to electronic engineers (who are generally the ones who work on FPGAs) than software developers.
If you can make CUDA work for you, it's probably the best option at the moment. It will certainly be more flexible than a FPGA.
Other options include Brook from ATI, but until something big happens, it is simply not as well adopted as CUDA. After that, there's still all the traditional HPC options (clusters of x86/PowerPC/Cell), but they are all quite expensive.
Hope that helps.
We did some comparison between FPGA and CUDA. One thing where CUDA shines if you can realy formulate your problem in a SIMD fashion AND can access the memory coalesced. If the memory accesses are not coalesced(1) or if you have different control flow in different threads the GPU can lose drastically its performance and the FPGA can outperform it. Another thing is when your operation is realtive small, but you have a huge amount of it. But you cant (e.g. due to synchronisation) no start it in a loop in one kernel, then your invocation times for the GPU kernel exceeds the computation time.
Also the power of the FPGA could be better (depends on your application scenarion, ie. the GPU is only cheaper (in terms of Watts/Flop) when its computing all the time).
Offcourse the FPGA has also some drawbacks: IO can be one (we had here an application were we needed 70 GB/s, no problem for GPU, but to get this amount of data into a FPGA you need for conventional design more pins than available). Another drawback is the time and money. A FPGA is much more expensive than the best GPU and the development times are very high.
(1) Simultanously accesses from different thread to memory have to be to sequential addresses. This is sometimes really hard to achieve.
I would go with CUDA.
I work in image processing and have been trying hardware add-ons for years. First we had i860, then Transputer, then DSP, then the FPGA and direct-compiliation-to-hardware.
What innevitably happened was that by the time the hardware boards were really debugged and reliable and the code had been ported to them - regular CPUs had advanced to beat them, or the hosting machine architecture changed and we couldn't use the old boards, or the makers of the board went bust.
By sticking to something like CUDA you aren't tied to one small specialist maker of FPGA boards. The performence of GPUs is improving faster then CPUs and is funded by the gamers. It's a mainstream technology and so will probably merge with multi-core CPUs in the future and so protect your investment.
FPGAs
What you need:
Learn VHDL/Verilog (and trust me you don't want to)
Buy hw for testing, licences for synthesis tools
If you already have infrastructure and you need to develop only your core
Develop design ( and it can take years )
If you don't:
DMA, hw driver, ultra expensive synthesis tools
tons of knowledge about buses, memory mapping, hw synthesis
build the hw, buy the ip cores
Develop design
Not mentioning of board developement
For example average FPGA pcie card with chip Xilinx ZynqUS+ costs more than 3000$
FPGA cloud is also costly 2$/h+
Result:
This is something which requires resources of running company at least.
GPGPU (CUDA/OpenCL)
You already have hw to test on.
Compare to FPGA stuff:
Everything is well documented .
Everything is cheap
Everything works
Everything is well integrated to programming languages
There is GPU cloud as well.
Result:
You need to just download sdk and you can start.
This is an old thread started in 2008, but it would be good to recount what happened to FPGA programming since then:
1. C to gates in FPGA is the mainstream development for many companies with HUGE time saving vs. Verilog/SystemVerilog HDL. In C to gates System level design is the hard part.
2. OpenCL on FPGA is there for 4+ years including floating point and "cloud" deployment by Microsoft (Asure) and Amazon F1 (Ryft API). With OpenCL system design is relatively easy because of very well defined memory model and API between host and compute devices.
Software folks just need to learn a bit about FPGA architecture to be able to do things that are NOT EVEN POSSIBLE with GPUs and CPUs for the reasons of both being fixed silicon and not having broadband (100Gb+) interfaces to the outside world. Scaling down chip geometry is no longer possible, nor extracting more heat from the single chip package without melting it, so this looks like the end of the road for single package chips. My thesis here is that the future belongs to parallel programming of multi-chip systems, and FPGAs have a great chance to be ahead of the game. Check out http://isfpga.org/ if you have concerns about performance, etc.
FPGA-based solution is likely to be way more expensive than CUDA.
Obviously this is a complex question. The question might also include the cell processor.
And there is probably not a single answer which is correct for other related questions.
In my experience, any implementation done in abstract fashion, i.e. compiled high level language vs. machine level implementation, will inevitably have a performance cost, esp in a complex algorithm implementation. This is true of both FPGA's and processors of any type. An FPGA designed specifically to implement a complex algorithm will perform better than an FPGA whose processing elements are generic, allowing it a degree of programmability from input control registers, data i/o etc.
Another general example where an FPGA can be much higher performance is in cascaded processes where on process outputs become the inputs to another and they cannot be done concurrently. Cascading processes in an FPGA is simple, and can dramatically lower memory I/O requirements while processor memory will be used to effectively cascade two or more processes where there are data dependencies.
The same can be said of a GPU and CPU. Algorithms implemented in C executing on a CPU developed without regard to the inherent performance characteristics of the cache memory or main memory system will not perform as well as one implemented which does. Granted, not considering these performance characteristics simplifies implementation. But at a performance cost.
Having no direct experience with a GPU, but knowing its inherent memory system performance issues, it too will be subjected to performance issues.
CUDA has a fairly substantial code base of examples and a SDK, including a BLAS back-end. Try to find some examples similar to what you are doing, perhaps also looking at the GPU Gems series of books, to gauge how well CUDA will fit your applications. I'd say from a logistic point of view, CUDA is easier to work with and much, much cheaper than any professional FPGA development toolkit.
At one point I did look into CUDA for claim reserve simulation modelling. There is quite a good series of lectures linked off the web-site for learning. On Windows, you need to make sure CUDA is running on a card with no displays as the graphics subsystem has a watchdog timer that will nuke any process running for more than 5 seconds. This does not occur on Linux.
Any mahcine with two PCI-e x16 slots should support this. I used a HP XW9300, which you can pick up off ebay quite cheaply. If you do, make sure it has two CPU's (not one dual-core CPU) as the PCI-e slots live on separate Hypertransport buses and you need two CPU's in the machine to have both buses active.
What are you deploying on? Who is your customer? Without even know the answers to these questions, I would not use an FPGA unless you are building a real-time system and have electrical/computer engineers on your team that have knowledge of hardware description languages such as VHDL and Verilog. There's a lot to it and it takes a different frame of mind than conventional programming.
I'm a CUDA developer with very littel experience with FPGA:s, however I've been trying to find comparisons between the two.
What I've concluded so far:
The GPU has by far higher ( accessible ) peak performance
It has a more favorable FLOP/watt ratio.
It is cheaper
It is developing faster (quite soon you will literally have a "real" TFLOP available).
It is easier to program ( read article on this not personal opinion)
Note that I'm saying real/accessible to distinguish from the numbers you will see in a GPGPU commercial.
BUT the gpu is not more favorable when you need to do random accesses to data. This will hopefully change with the new Nvidia Fermi architecture which has an optional l1/l2 cache.
my 2 cents
Others have given good answers, just wanted to add a different perspective. Here is my survey paper published in ACM Computing Surveys 2015 (its permalink is here), which compares GPU with FPGA and CPU on energy efficiency metric. Most papers report: FPGA is more energy efficient than GPU, which, in turn, is more energy efficient than CPU. Since power budgets are fixed (depending on cooling capability), energy efficiency of FPGA means one can do more computations within same power budget with FPGA, and thus get better performance with FPGA than with GPU. Of course, also account for FPGA limitations, as mentioned by others.
FPGA will not be favoured by those with a software bias as they need to learn an HDL or at least understand systemC.
For those with a hardware bias FPGA will be the first option considered.
In reality a firm grasp of both is required & then an objective decision can be made.
OpenCL is designed to run on both FPGA & GPU, even CUDA can be ported to FPGA.
FPGA & GPU accelerators can be used together
So it's not a case of what is better one or the other. There is also the debate about CUDA vs OpenCL
Again unless you have optimized & benchmarked both to your specific application you can not know with 100% certainty.
Many will simply go with CUDA because of its commercial nature & resources. Others will go with openCL because of its versatility.
FPGAs are more parallel than GPUs, by three orders of magnitude. While good GPU features thousands of cores, FPGA may have millions of programmable gates.
While CUDA cores must do highly similar computations to be productive, FPGA cells are truly independent from each other.
FPGA can be very fast with some groups of tasks and are often used where a millisecond is already seen as a long duration.
GPU core is way more powerful than FPGA cell, and much easier to program. It is a core, can divide and multiply no problem when FPGA cell is only capable of rather simple boolean logic.
As GPU core is a core, it is efficient to program it in C++. Even it it is also possible to program FPGA in C++, it is inefficient (just "productive"). Specialized languages like VDHL or Verilog must be used - they are difficult and challenging to master.
Most of the true and tried instincts of a software engineer are useless with FPGA. You want a for loop with these gates? Which galaxy are you from? You need to change into the mindset of electronics engineer to understand this world.
at latest GTC'13 many HPC people agreed that CUDA is here to stay. FGPA's are cumbersome, CUDA is getting quite more mature supporting Python/C/C++/ARM.. either way, that was a dated question
Programming a GPU in CUDA is definitely easier. If you don't have any experience with programming FPGAs in HDL it will almost surely be too much of a challenge for you, but you can still program them with OpenCL which is kinda similar to CUDA. However, it is harder to implement and probably a lot more expensive than programming GPUs.
Which one is Faster?
GPU runs faster, but FPGA can be more efficient.
GPU has the potential of running at a speed higher than FPGA can ever reach. But only for algorithms that are specially suited for that. If the algorithm is not optimal, the GPU will loose a lot of performance.
FPGA on the other hand runs much slower, but you can implement problem-specific hardware that will be very efficient and get stuff done in less time.
It's kinda like eating your soup with a fork very fast vs. eating it with a spoon more slowly.
Both devices base their performance on parallelization, but each in a slightly different way. If the algorithm can be granulated into a lot of pieces that execute the same operations (keyword: SIMD), the GPU will be faster. If the algorithm can be implemented as a long pipeline, the FPGA will be faster. Also, if you want to use floating point, FPGA will not be very happy with it :)
I have dedicated my whole master's thesis to this topic.
Algorithm Acceleration on FPGA with OpenCL