Understanding Variables in Visual Basic - vb.net

What's the main problem if I don't declare the type of a variable? Like, Dim var1 versus Dim var1 as Integer.

The main reason to declare variable types in languages which allow you to use variant types is as a check on yourself. If you have a variable that you're using to hold a string, and then by accident you pass it to a function that expects an integer, the compiler can't tell you that you messed up unless you told it that that variable was supposed to always be a string. Instead, you're stuck with your string being reinterpreted as an integer, which is pretty much never going to give you what you want and the results will likely be confusing, and it will be hard to track down the bug.
In pretty much all languages there are a lot of constructs where you could leave it out and your program would work, but exist as a check on the programmer. The first job of a compiler is to make your code into an executable. But the second job of the compiler is to try as much as possible to make sure that the programmer didn't make a mistake. Especially when your program gets large, it's easier to let the compiler find mistakes like this as opposed to trusting that you typed everything exactly right.
Additionally, there is usually some processing overhead associated with variants, but this is a more minor concern.

There are a few reasons:
Vastly improved type safety.
Lower cognitive overhead; the compiler and Intellisense can help you.
Lower performance overhead; transforming things to and from Variant types has a small but nontrivial cost.
Eliminates need for naming warts (e.g., lblTitle to tell you that something is supposed to hold a Label).
Moves some kinds of runtime errors to compile-time errors, which is a big productivity win.

Someone else already mentioned Intellisense, but but it's worth repeating.
Additionally, when you declare an explicit type for your variable you make it possible for the compiler to do all kinds of extra type checking and validation on your code that would not otherwise be possible. What happens is that now certain kinds of very common error are caught and fixed at compile time rather than run time. The user never sees them. You don't want to leave errors for run-time.
You say "it could be anything" — and that is true. But you then go on to say "so it must be good". That doesn't necessarily follow, and it's very dangerous. Not everything can be assigned or combined with everything else. It could be anything — but it is something, or rather some specific thing. Without an explicit type, the compiler has no way to know what and can't help you avoid errors.

Superficially, if you don't declare the type, Intellisense can't help you with it because it doesn't know what type it is.

Contrast this to Python's typing system. Python allows a developer to use a variable without declaring type in advance but once a variable is used, the type is fixed. A variant, by contrast, can be assigned any type of value initially and a different type can be stored later on without any warning or complaint. So you can put a string into a variable that previously held a numeric.
Dim myvar1
myvar1 = 1
'A whole lot more code
myvar1 = "this string"
If you ever have to maintain someone else's code, you'll start to understand why this sort of thing (changing a variable type silently) can be extra tough to maintain. Especially if you're using a module level variable this could lead to some really interesting problems. This is along the same lines as using Option Explicit in VB code. Without Option Explicit you can do this sort of thing without realizing it:
myvar1 = 1
'A whole lot more code here too
myvarl = 2
In some fonts those two variable names would be impossible to distinguish and this could lead to some tough to find bugs.

Related

What are the pros to using "option explict"?

All it really does is make me have to dim each variable, making it compile badly if I forget to dim a variable.
Are there ANY pros to using it?
Yes, it will prevent some types of mistakes.
One of the most obvious ones is if you make a typo and spell the variable name incorrectly, it will flag that the mistyped variable doesn't exist.
If you do not use the Option Explicit statement, all undeclared
variables are of Object type.
ref: http://msdn.microsoft.com/en-us/library/y9341s4f(v=vs.80).aspx
Think about how this will affect the GC, all your value types that should be stored on the thread stack are now stored on the managed heap and subject to garbage collection. This may not sound huge but the GC would have to check if value types have root references as well as all the reference types. It would have a significant perf impact on the GC as all your value types would be getting promoted up the generations 0,1,2 not just referenced types.
I see having to dim each variable as a big pro. I can't tell you how many times I tried to run down a bug to find out that I incorrectly spelled a variable that would have been found if "Option Explicit" had been turned on.
P.S. Always use Option Explicit.

What's the benefit of case-sensitivity in a program language? [duplicate]

This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
Is there any advantage of being a case-sensitive programming language?
My first programming experiences where with the Basic family (MSX Basix, Q-basic, VB).
These are all not case-sensitive. Now, it might be because of these first experiences, but I've never grasped the benefit of a language being case sensitive. On the contrary, I think it is a source of unneeded overhead and bugs, and it still annoys me when I use e.g. Java or C.
Now, I just read on Clojure (a Lisp-dialect) and noticed - to my surprise - that one of the differences with Lisp is case-sensitivity.
So: what is actually the benefit (to the programmer) of having a case-sensitive language?
The only things I can think of are:
double the number of symbols
visual feedback and easier reading for complex variables using techniques like CamelCase, e.g. HopCount
However, the first argument doesn't hold because of being a major source for bugs (bad practice to use hopcount and HopCount in one method).
The second argument doesn't hold either, as a decent IDE can provide this also in an other way. A good example is the VBA IDE, which has a very good approach: the langauge is case-insensitive but as soon as you type a variable it will change it to the case used in its definition. For example, if you defined Dim thisIsMyVariable as string, it will change any occurrence of thisismyvariable into thisIsMyVariable). That provides the programmer with an immediate clue that the variable was actually typed-in correctly (because it changed appearance).
Edit: added ... benefit to the programmer ...
One point is, like you said, visual aid. Most programming languages (and even frameworks) have conventions on how to capitalize variables, names, etc.
Also, it enforces using uniform names everywhere, so you don't have a mess with the same variable referred to as "var", "Var" or even "VaR".
I can't remember of ever having bugs related to capitalization, so that point seems kind of contrived to me.
Using 2 variables of the same name but different capitalization to me sounds like a conscious attempt to shoot yourself in the foot. Different capitalization conventions almost everywhere signify objects of completely different type (classes, variables, methods and so on), so it's pretty hard to make such a mistake due to the completely different semantics.
I'd like to think of it in this way: what do we gain by NOT having case-sensitivity?
We introduce ambiguity, we encourage sloppiness and poor style.
This is a slightly subjective matter of course.
Many naming conventions demand that symbols denoting objects from different semantic classes (types, functions, variables) have their own name casing rules. In Java, for example, types names always begin with a upper case letter, while variables, member function names etc. begin with a lower case letter. This effectively puts type names in a different namespace and gives a visual clue what a statement actually means.
// declare and initialize a new Point
Point point=new Point();
// calls a static member function of type Point
Point.fooBar();
// calls a member function of Point
point.moveTo(x,y);

Requesting a check in my understanding of Objective-C

I have been learning Objective-C as my first language and understand Classes, Objects, instances, methods, OOP in general, etc enough to use the language and make simple applications work, but I wanted to check on a few fundamental questions that have never been explained in examples I followed.
I think the questions are so simple that they will confuse a lot of people, but I hope it will make sense to someone out there.
(While learning Objective-C the authors are assuming I have a basic computer programming background, yet I have found that a basic computer programming background is hard to come by since everyone teaching computer programming assumes you already have one to start teaching you something else. Hence the help with the fundamentals)
Passing and Returning:
When declaring methods with parameters how is the parameter stuff actually working if the arguments being passed into the parameters can have different names then the parameter names? I hope that makes sense. I know parameter names are variables for that very reason, but...
are the arguments themselves getting mapped to a look up table or something?
Second the argument "types" (int for example) have to match the parameter return types in order for them to be passed into the method, and you always have to make your arguments values equal the parameter names somewhere else in your code listing before passing them into the method?
Is the following correct: After a method gets executed it returns a particular value (if it is not void) to the class or instances that is calling the method in the first place.
Is object oriented programming really just passing "your" Objects instance methods around with the system generated classes and methods to produce a result? If we are passing things to methods so they can do some work to them and then return something back why not do the work in the first place eliminating the need to pass anything? Theoretical question I guess? I assume the answer would be: Because that would be a crazy big tangled mess of a method with everything happening all at once, but I wanted to ask anyway.
Thank you for your time.
Variables are just places where values are stored. When you pass a variable as an argument, you aren't actually passing the variable itself — you're passing the value of the variable, which is copied into the argument. There's no mapping table or anything — it just takes the value of the variable and sticks it in the argument.
In the case of objects, the variable is a pointer to an object that exists somewhere in the program's memory space. In this case, the value of the pointer is copied just like any other variable, but it still points to the same object.
(the argument "types" … have to match the parameter return types…) It isn't technically true that the types have to be the same, though they usually should be. Some types can be automatically converted to another type. For example, a char or short will be promoted to an int if you pass them to a function or method that takes an int. There's a complicated set of rules around type conversions. One thing you usually should not do is use casts to shut up compiler warnings about incompatible types — the compiler takes that to mean, "It's OK, I know what I'm doing," even if you really don't. Also, object types cannot ever be converted this way, since the variables are just pointers and the objects themselves live somewhere else. If you assign the value of an NSString*variable to an NSArray* variable, you're just lying to the compiler about what the pointer is pointing to, not turning the string into an array.
Non-void functions and methods return a value to the place where they're called, yes.
(Is object-oriented programming…) Object-oriented programming is a way of structuring your program so that it can be conceptually described as a collection of objects sending messages to each other and doing things in response to those messages.
(why not do the work in the first place eliminating the need to pass anything) The primary problem in computer programming is writing code that humans can understand and improve later. Functions and methods allow us to break our code into manageable chunks that we can reason about. They also allow us to write code once and reuse it all over the place. If we didn't factor repeated code into functions, then we'd have to repeat the code every time it is needed, which both makes the program code much longer and introduces thousands of new opportunities for bugs to creep in. 50,000-line programs would become 500 million-line programs. Not only would the program be horrendously bug-ridden, but it would be such a huge ball of spaghetti that finding the bugs would be a Herculean task.
By the way, I think you might like Uli Kusterer's Masters of the Void. It's a programming tutorial for Mac users who don't know anything about programming.
"If we are passing things to methods so they can do some work to them and then return something back why not do the work in the first place eliminating the need to pass anything?"
In the beginning, that's how it was done.
But then smart programers noticed that they were repeating copies of some work and also running out of memory, so they decided to put that chunk of work in one central place to save memory, and then call it by passing in the data from where it was before.
They gave the locations, where the data was stuffed, names, because the programs were big enough that nobody memorized all the numerical address for every bit of data any more.
Then really really big computers finally got more 16k of memory, and the programs started to become big unmanageable messes, so they codified the practice as part of structured programming. It's now a religious tenet.
But it's still done, by compilers when the inline flag is set, and also sometimes by hand on code that has to be really really fast on some very constrained processors by programmers who know when and where to make targeted trade-offs.
A little reading on the History of Computers is quite informative about how we got to where we are today, and why we do such strange things.
All that type checks used (at most) only during compilation stage, to fix errors in code.
Actually, during execution, all variables are just a block of memory, which is sent somewhere. For example, 'id' type and 'int' are both represented as 4-byte raw value, and you can write (int)id and (id)int to convert those type one to another.
And, about parameters names - they are used by compiler only to let it know, to which memory area send some data.
That's easy explanation, actually all that stuff is complicated, but I think you'll get the main idea - during execution there are no variable names/types, everything is done via operations over memory blocks.

Does over-using function calls affect performance? Specifically in Fortran

I habitually write code with lots of functions, I find it makes it clearer. But now I'm writing some code in Fortran which needs to be very efficient, and I'm wondering whether over-using functions will slow it down, or whether the compiler will work out what's going on and optimise?
I know in Java/Python etc each function is an object, and so creating lots of functions would require them to be created in memory. I also know that in Haskell the functions are reduced into each other, so it makes little difference there.
Does anyone know about the case with Fortran? Is there a difference with using intent/pure functions/declaring fewer local variables/anything else?
Function calls carry a performance cost for stack based languages, like Fortran. They have to add on to the stack and such.
Because of this, most compilers will try to inline function calls aggressively, if it is possible. Most of the time the compiler will make the right choice on whether or not to inline certain functions in your program.
This automatic inlining process will mean that there is no extra cost for writing your function (at all).
This means that you should write your code as cleanly and organized as possible, and it is likely that the compiler will do these optimizations for you. It is more important that your overall strategy for solving the problem is the most efficient than worry about performance of function calls.
Just write the code in the simplest and most well-structured way you can, then when you have it written and tested you can profile it to see if there are any hotspots which require optimisation. Only at that point should you concern yourself with micro-optimisations, and this may not even be necessary if your compiler is doing its job.
I've just spent all morning tuning an app consisting of mixed C and Fortran, and of course it uses a lot of functions. What I found (and what I usually find) is not that functions are slow, but that certain function calls (and very few of them) don't really have to be done at all. For example, clearing memory blocks, just to be neat, but doing it at high frequency.
This is not a function of language, and not really a function of inlining either. Function calls could be free and you would still have the problem that the call tree tends to be more bushy than necessary. You need to find out where to prune it. This is the "profiling" method I rely on.
Whatever you do, find out what needs to be fixed. Don't Guess. Many people don't think of this kind of question as guessing, but when they find themselves asking "Will this work, will that help?", they're poking in the dark, rather than finding out where the problems are. Once they know where the problems are, the fix is obvious.
Typically subroutine / function calls in Fortran will have very little overhead. While the language standard doesn't specify argument passing mechanisms, the typical implementation is "by reference" so no copying is involved, only setting up a new procedure. On most modern architectures this has little overhead. Selecting good algorithms is generally far more important than micro-optimizations.
An exception about calling be quick could be case in which the compiler has to create temporary arrays, for example, if the actual argument is a non-contiguous array subsection and the called procedure argument is a plain contiguous array. Suppose that the dummy argument is dimension (:). Calling it with an array of dimension (:) is simple. If you request a non-unit stride in the call, e.g., array (1:12:3), then the array is non-contiguous and the compiler may need to create a temporary copy. Suppose that the actual argument is dimension (:,:). If the call has array (:,j), the sub-array is contiguous since in Fortran the first index varies fastest in memory and shouldn't need a copy. But array (i,:) is non-contiguous and might require a temporary copy.
Some compilers have options to warn you when temporary array copies are needed so that you can change your code, if you wish.

When should weak types be discouraged?

When should weak types be discouraged? Are weak types discouraged in big projects? If the left side is strongly typed like the following would that be an exception to the rule?
int i = 5
string sz = i
sz = sz + "1"
i = sz
Does any languages support similar syntax to the above? Tell me more about pros and cons to weak types and situations related.
I think you are confusing "weak typing" with "dynamic typing".
The term "weak typing" means "not strongly typed", which means that the value of a memory location is allowed to vary from what it's type indicates it should be.
C is an example of a weakly typed language. It allows code like this to be written:
typedef struct
{
int x;
int y;
} FooBar;
FooBar foo;
char * pStr = &foo;
pStr[0] = 'H';
pStr[1] = 'i';
pStr[2] = '\0';
That is, it allows a FooBar instance to be treated as if it was an array of characters.
In a strongly typed language, that would not be allowed. Either a compiler error would be generated, or a run time exception would be thrown, but never, at any time, would a FooBar memory address contain data that was not a valid FooBar.
C#, Java, Lisp, Java Script, and Ruby are examples of languages where this type of thing would not be allowed. They are strongly typed.
Some of those languages are "statically typed", which means that variable types are assigned at compile time, and some are "dynamically typed", which means that variable types are not known until runtime. "Static vs Dynamic" and "Weak vs Strong" are orthogonal issues. For example, Lisp is a "strong dynamically typed" language, whereas "C" is a "weak statically typed language".
Also, as others have pointed out, there is a distinction between "inferred types" and types specified by the programmer. The "var" keyword in C# is an example of type inference. However, it's still a statically typed construct because the compiler infers the type of a variable at compile time, rather than at runtime.
So, what your question really is asking is:
What are the relative merits and
drawbacks of static typing, dynamic
typing, weak typing, stong typing,
inferred static types, and user
specified static types.
I provide answers to all of these below:
Static typing
Static typing has 3 primary benefits:
Better tooling support
A Reduced likely hood of certain types of bugs
Performance
The user experience and accuracy of things like intellisence, and refactoring is improved greatly in a statically typed language because of the extra information that the static types provide. If you type "a." in a code editor and "a" has a static type then the compiler knows everything that could legally come after the "." and can thus show you an accurate completion list. It's possible to support some scenarios in a dynamically typed language, but they are much more limited.
Also, in a program without compiler errors a refactoring tool can identify every place a particular method, variable, or type is used. It's not possible to do that in a dynamically typed language.
The second benefit is somewhat controversial. Proponents of statically typed languages like to make that claim. Opponents of statically typed languages, however, contend that the bugs they catch are trivial, and that they would get caught by testing anyways. But, you do get notification of things like misspelled variable or method names up front, which can be helpful.
Statically typed languages also enable better "data flow analysis", which when combined with things like Microsoft's SAL (or similar tools) can help find potential security problems.
Finally, with static typing, compilers can do a lot more optimization, and so can produce faster code.
Drawbacks:
The main drawback for static typing is that it restricts the things you can do. You can write programs in dynamically typed languages that you can't write in statically typed languages. Ruby on Rails is a good example of this.
Dynamic Typing
The big advantage of dynamic typing is that it's much more powerful than static typing. You can do a lot of really cool stuff with it.
Another one is that it requires less typing. You don't have to specify types all over the place.
Drawbacks:
Dynamic typing has 2 main draw backs:
You don't get as much "hand holding" from the compiler or IDE
It's not suitable for critical performance scenarios. For example, no one writes OS Kernels in Ruby.
Strong typing:
The biggest benefit of strong typing is security. Enforcing strong typing usually requires some type of runtime support. If a program can proove type safety then a lot of security issues, such as buffer overuns, just go away.
Weak typing:
The big drawback of strong typing, and the big benefit of weak typing, is performance.
When you can access memory any way you like, you can write faster code. For example a database can swap objects out to disk just by writing out their raw bytes, and not needing to resort to things like "ISerializable" interfaces. A video game can throw away all the data associated with one level by just running a single free on a large buffer, rather than running destructors for many small objects.
Being able to do those things requires weak typing.
Type inference
Type inference allows a lot of the benefits of static typing without requiring as much typing.
User specified types
Some people just don't like type inference because they like to be explicit. This is more of a style thing.
Weak typing is an attempt at language simplification. While this is a worthy goal, weak typing is a poor solution.
Weak typing such as is used in COM Variants was an early attempt to solve this problem, but it is fraught with peril and frankly causes more trouble than it's worth. Even Visual Basic programmers, who will put up with all sorts of rubbish, correctly pegged this as a bad idea and backronymed Microsoft's ETC (Extended Type Conversion) to Evil Type Cast.
Do not confuse inferred typing with weak typing. Inferred typing is strong typing inferred from context at compile time. A good example is the var keyword, used in C# to declare a variable suitable to receive the value of a LINQ expression.
By contrast, weak typing is inferred each and every time an expression is evaluated. This is illustrated in the question's sample code. Another example would be use of untyped pointers in C. Very handy yet begging for trouble.
Inferred typing addresses the same issue as weak typing, without introducing the problems associated with weak typing. It is therefore a preferred alternative whenever the host language makes it available.
They should almost always be discouraged. The only type of code that I can think of where it would be required is low-level code that requires some pointer voodoo.
And to answer your question, C supports code like that (except of course for not having a string type), and that sounds like something PHP or Perl would have (but I could be totally wrong on that).
"
When should weak types be discouraged? Are weak types discouraged in
big projects? If the left side is strongly typed like the following
would that be an exception to the rule?
int i = 5 string sz = i sz = sz + "1" i = sz
Does any languages support similar syntax to the above? Tell me more
about pros and cons to weak types and situations related.
"
Perhaps you could program your own library to do that.
In C++ you can use something called an "operator overload", which means that you can declare a variable of one type to be initialized as a variable of another type. That is what makes the statement:
[std::string str = "Hello World";][1]
specifically you would define a function (where the variable's type is T and B is the type you want to set it as)
work, even though any text between quotes is interpreted as an array of chars.
T& T::operator= ( const B s );
Please note that this is a class's member function
Also note that you will probably want to have some sort of function that reverses this manipulation if you want to use it liberally - something like
B& T::operator= ( const T s);
C++ is powerful enough to allow you to make an object generally weakly typed, but if you want to treat it purely weakly typed, you will want to make just a single variable type that can be used as any primitive, and use only functions that take a pointer to void.
Believe me, it is a lot easier to use strongly typed programming when it is available.
I personally prefer strongly typed, because I don't need to worry about the errors that come when I don't know what a variable is meant to do. For example, if I wanted to write a function to talk to a person - and that function used the person's height, weight, name, number of children, etc. - but you gave me a color, I would get an error because you can't really determine most of these things for a color using an algorithm that is very simple.
As far as the pros of weakly typed, you might want to get used to loosely typed programming if you are programming something to be run within a program(i.e. a web browser or a UNIX shell). JavaScript and Shell Script are weakly typed.
I would suggest that a programming language like assembly language is one of the only harware-level weakly typed languages, but the flavor of Assembly language I've seen attaches a type to each variable depending on the allocated size, i.e. word, dword, qword.
I hope I gave you a good explanation and did not put any words in your mouth.
Weak types are by their very nature less robust than strong types, because you don't tell the machine exactly what to do - instead the machine has to figure out what you meant. This often works quite adequately, but in general it is not clear what the result should be. What is, for example, a string multiplied by float?
Does any languages support similar syntax to the above?
Perl allows you to treat some numbers and strings interchangeably. For example, "5" + "1" will give you 6. The problem with this sort of thing in general is that it can be hard to avoid ambiguity: should "5" + 1 be "51" or "6"? Perl gets around this by having a separate operator for string concatenation, and reserving + for numeric addition.
Other languages would have to sort out whether you mean to do a concatenation or an addition, and (if relevant) what type or representation the result will be.
I did ASP/VBScript coding and work with legacy code without "option strict" which allows weak typing.
It was a hell in many times, especially in the hands of less experienced programmers. We got all stupid errors takes ages to diagnose.
One of the stupid examples was like this:
'Config
Dim pass
pass = "asdasd"
If NOT pass = Request("p") Then
Response.Write "login failed"
REsponse.End()
End If
So far so good but if the user changes pass to an integer password, guess what it won't work anymore because int pass != string pass (from querystring). I thought it supposed to work but it didn't I can't remember the exact piece of code.
I hate weak typing, instead of stupid debugging session I can spend extra seconds for typing exact type of a variable.
Simply put, in my experience especially in the big projects and especially with unexperienced developers it's just trouble.