Containment Tree? - vb.net

OK thought I understood IDipose but just reading the best practices section of Accelerated VB.NET and it states that "The object doesn't contain any objects that implement iDispose, so you don't need to iterate through the containment tree calling iDispose"
Is this "containment tree" just what the program know's he has used and then distroys, or is there a contaiment class / collection that I should be looking at when I distroy an object ?

I haven't read the book but I've never heard of this “containment tree”. In context, it sounds as if this merely means all fields (of a given class) that also implement IDisposable and consequently have to be disposed in the class’ Dispose method (if the disposing argument is True) – or rather, in your case, since there are no such fields you don’t have to take any further action.

Related

How are objects made to interact in OOP?

I am trying to understand how object interactions are programmed.
I think I understand the basic principle that an object has methods that have access to its data and can change it. But what if two objects interact and something object1 does has to change the state of object2.
Say you have a Person object and a Ball object and the Person has to kick the ball, thus changing the coordinates of the ball.
Would it look something like:
person.kick(ball)
where person.kick looks like
kick(whatToKick) {
whatToKick.changeCoord();
}
Is this at all correct?
Should an objects state only be changed by its own methods?
Is the pattern for object interaction always:
Passing a reference of object1 to object2
Having object2's method call object1's methods to retrieve or change object1's state?
Also if anybody could recommend a book on OOP principles and design patterns that would be very nice.
Thanks.
Basically, what you wrote is correct:
The state of an object should only be modified by that object's methods. Otherwise you would have to make the state public and lose encapsulation.
If object A needs to call a method of object B, it needs a reference of B. How else should the method be called.
But what's more important: You seem to assume that OOP is all about modifying objects' state. Unfortunately this impression is given by many introductions. But it is not true. Mutable state causes lots of issues, making programs harder to read and to test. Fortunately most of what you probably need can be done with immutable objects. Just google for immutability. I also recommend to have a look at functional programming where immutability is standard.
(I won't answer your last question because it is off-topic here.)

Flaw: Constructor does Real Work

I have a class which represents a set of numbers. The constructor takes three arguments: startValue, endValue and stepSize.
The class is responsible for holding a list containing all values between start and end value taking the stepSize into consideration.
Example: startValue: 3, endValue: 1, stepSize = -1, Collection = { 3,2,1 }
I am currently creating the collection and some info strings about the object in the constructor. The public members are read only info strings and the collection.
My constructor does three things at the moment:
Checks the arguments; this could throw an exception from the constructor
Fills values into the collection
Generates the information strings
I can see that my constructor does real work but how can I fix this, or, should I fix this? If I move the "methods" out of the constructor it is like having init function and leaving me with an not fully initialized object. Is the existence of my object doubtful? Or is it not that bad to have some work done in the constructor because it is still possible to test the constructor because no object references are created.
For me it looks wrong but it seems that I just can't find a solution. I also have taken a builder into account but I am not sure if that's right because you can't choose between different types of creations. However single unit tests would have less responsibility.
I am writing my code in C# but I would prefer a general solution, that's why the text contains no code.
EDIT: Thanks for editing my poor text (: I changed the title back because it represents my opinion and the edited title did not. I am not asking if real work is a flaw or not. For me, it is. Take a look at this reference.
http://misko.hevery.com/code-reviewers-guide/flaw-constructor-does-real-work/
The blog states the problems quite well. Still I can't find a solution.
Concepts that urge you to keep your constructors light weight:
Inversion of control (Dependency Injection)
Single responsibility principle (as applied to the constructor rather than a class)
Lazy initialization
Testing
K.I.S.S.
D.R.Y.
Links to arguments of why:
How much work should be done in a constructor?
What (not) to do in a constructor
Should a C++ constructor do real work?
http://misko.hevery.com/code-reviewers-guide/flaw-constructor-does-real-work/
If you check the arguments in the constructor that validation code can't be shared if those arguments come in from any other source (setter, constructor, parameter object)
If you fill values into the collection or generate the information strings in the constructor that code can't be shared with other constructors you may need to add later.
In addition to not being able to be shared there is also being delayed until really needed (lazy init). There is also overriding thru inheritance that offers more options with many methods that just do one thing rather then one do everything constructor.
Your constructor only needs to put your class into a usable state. It does NOT have to be fully initialized. But it is perfectly free to use other methods to do the real work. That just doesn't take advantage of the "lazy init" idea. Sometimes you need it, sometimes you don't.
Just keep in mind anything that the constructor does or calls is being shoved down the users / testers throat.
EDIT:
You still haven't accepted an answer and I've had some sleep so I'll take a stab at a design. A good design is flexible so I'm going to assume it's OK that I'm not sure what the information strings are, or whether our object is required to represent a set of numbers by being a collection (and so provides iterators, size(), add(), remove(), etc) or is merely backed by a collection and provides some narrow specialized access to those numbers (such as being immutable).
This little guy is the Parameter Object pattern
/** Throws exception if sign of endValue - startValue != stepSize */
ListDefinition(T startValue, T endValue, T stepSize);
T can be int or long or short or char. Have fun but be consistent.
/** An interface, independent from any one collection implementation */
ListFactory(ListDefinition ld){
/** Make as many as you like */
List<T> build();
}
If we don't need to narrow access to the collection, we're done. If we do, wrap it in a facade before exposing it.
/** Provides read access only. Immutable if List l kept private. */
ImmutableFacade(List l);
Oh wait, requirements change, forgot about 'information strings'. :)
/** Build list of info strings */
InformationStrings(String infoFilePath) {
List<String> read();
}
Have no idea if this is what you had in mind but if you want the power to count line numbers by twos you now have it. :)
/** Assuming information strings have a 1 to 1 relationship with our numbers */
MapFactory(List l, List infoStrings){
/** Make as many as you like */
Map<T, String> build();
}
So, yes I'd use the builder pattern to wire all that together. Or you could try to use one object to do all that. Up to you. But I think you'll find few of these constructors doing much of anything.
EDIT2
I know this answer's already been accepted but I've realized there's room for improvement and I can't resist. The ListDefinition above works by exposing it's contents with getters, ick. There is a "Tell, don't ask" design principle that is being violated here for no good reason.
ListDefinition(T startValue, T endValue, T stepSize) {
List<T> buildList(List<T> l);
}
This let's us build any kind of list implementation and have it initialized according to the definition. Now we don't need ListFactory. buildList is something I call a shunt. It returns the same reference it accepted after having done something with it. It simply allows you to skip giving the new ArrayList a name. Making a list now looks like this:
ListDefinition<int> ld = new ListDefinition<int>(3, 1, -1);
List<int> l = new ImmutableFacade<int>( ld.buildList( new ArrayList<int>() ) );
Which works fine. Bit hard to read. So why not add a static factory method:
List<int> l = ImmutableRangeOfNumbers.over(3, 1, -1);
This doesn't accept dependency injections but it's built on classes that do. It's effectively a dependency injection container. This makes it a nice shorthand for popular combinations and configurations of the underlying classes. You don't have to make one for every combination. The point of doing this with many classes is now you can put together whatever combination you need.
Well, that's my 2 cents. I'm gonna find something else to obsess on. Feedback welcome.
As far as cohesion is concerned, there's no "real work", only work that's in line (or not) with the class/method's responsibility.
A constructor's responsibility is to create an instance of a class. And a valid instance for that matter. I'm a big fan of keeping the validation part as intrinsic as possible, so that you can see the invariants every time you look at the class. In other words, that the class "contains its own definition".
However, there are cases when an object is a complex assemblage of multiple other objects, with conditional logic, non-trivial validation or other creation sub-tasks involved. This is when I'd delegate the object creation to another class (Factory or Builder pattern) and restrain the accessibility scope of the constructor, but I think twice before doing it.
In your case, I see no conditionals (except argument checking), no composition or inspection of complex objects. The work done by your constructor is cohesive with the class because it essentially only populates its internals. While you may (and should) of course extract atomic, well identified construction steps into private methods inside the same class, I don't see the need for a separate builder class.
The constructor is a special member function, in a way that it constructor, but after all - it is a member function. As such, it is allowed to do things.
Consider for example c++ std::fstream. It opens a file in the constructor. Can throw an exception, but doesn't have to.
As long as you can test the class, it is all good.
It's true, a constructur should do minimum of work oriented to a single aim - successful creaation of the valid object. Whatever it takes is ok. But not more.
In your example, creating this collection in the constructor is perfectly valid, as object of your class represent a set of numbers (your words). If an object is set of numbers, you should clearly create it in the constructor! On the contrary - the constructur does not perform what it is made for - a fresh, valid object construction.
These info strings call my attention. What is their purpose? What exactly do you do? This sounds like something periferic, something that can be left for later and exposed through a method, like
String getInfo()
or similar.
If you want to use Microsoft's .NET Framework was an example here, it is perfectly valid both semantically and in terms of common practice, for a constructor to do some real work.
An example of where Microsoft does this is in their implementation of System.IO.FileStream. This class performs string processing on path names, opens new file handles, opens threads, binds all sorts of things, and invokes many system functions. The constructor is actually, in effect, about 1,200 lines of code.
I believe your example, where you are creating a list, is absolutely fine and valid. I would just make sure that you fail as often as possible. Say if you the minimum size higher than the maximum size, you could get stuck in an infinite loop with a poorly written loop condition, thus exhausting all available memory.
The takeaway is "it depends" and you should use your best judgement. If all you wanted was a second opinion, then I say you're fine.
It's not a good practice to do "real work" in the constructor: you can initialize class members, but you shouldn't call other methods or do more "heavy lifting" in the constructor.
If you need to do some initialization which requires a big amount of code running, a good practice will be to do it in an init() method which will be called after the object was constructed.
The reasoning for not doing heavy lifting inside the constructor is: in case something bad happens, and fails silently, you'll end up having a messed up object and it'll be a nightmare to debug and realize where the issues are coming from.
In the case you describe above I would only do the assignments in the constructor and then, in two separate methods, I would implement the validations and generate the string-information.
Implementing it this way also conforms with SRP: "Single Responsibility Principle" which suggests that any method/function should do one thing, and one thing only.

Where to not use IDisposable implementation?

My question is specific to, why and where not to implement IDisposable interface.
If I am not using & consuming any unmanaged resources, still is it good practice to implement IDisposable interface.
What are the advantages or disadvantages if I do it? or is it good practice to implement it?
Please advise.
You implement IDisposable for one of two reasons:
If you have Unmanaged resources to free.
You do this because this is the only way for the GC to know how to free unmanaged resources which otherwise it doesnt know about. This is about WHAT resources to free. This case is actually quite rare - more often than not you access unmanaged resources through existing managed objects. This case requires a full "official recommended" implementation. Generally you should wrap unmanaged resources in their own separate (managed) class that does the IDisposable implimentation (rather than including unmanaged resources in other larger objects).
If your class contains objects that impliment IDisposable.
You do this not because the objects won't get free if you don't (they will) but because you want to be able to control WHEN those resources are freed. Having a dispose impliementation that disposes disposable members of a class means that consumer can apply a using statement to easily control WHEN resources are freed. In pratice more often than not this is the main reason for implementing IDisposable. Note that if your class is sealed you can get away with a mimimal IDisposable implementation here - I.e just Dispose - there is no need for the full blown "official recommended' implimenation.
It follows that if neither of these cases applies then no need to implement.
If a class implements IDisposable, that will generally impart to any code which creates instances of that class a responsibility to ensure that Dispose gets called on that instance before it is abandoned; it may fulfill this responsibility either by calling Dispose on the object itself when it is no longer needed, or by making sure that some other object that receives a reference accepts "ownership" and responsibility for it. In the majority of cases, when code is written correctly, each IDisposable object upon which Dispose has not yet been called, will at every point in time, have exactly one other entity (object or execution scope) which "owns" it. During the lifetime of the IDisposable object, ownership may get passed among different entities, but when one object receives ownership the former object should relinquish it.
In many cases, objects will be used in such a fashion that tracking ownership is not difficult. Generally, any object whose state is ever going to be modified should have exactly one owner and that owner will know when the object is no longer needed. Additionally, because modification of the owned object's state would constitute modification of the owner's state, the owner itself should have a single owner. In such cases, requiring the owner to call Dispose will not pose any difficulty (the owner's owner should call Dispose on it). There is, however, a 'gotcha' with this principle: it's possible for an object to create an instance of a mutable class but never mutate it nor allow anyone else to do so. If the mutable class in question simply holds values and does not implement IDisposable, objects which hold references to the things that will never actually mutate need not concern themselves with ownership. This can allow some major simplifications, since it will be possible for many objects to hold references to the non-changing object and not have to worry about which of them will use it last. If, however, the mutable class in question implements IDisposable, such simplifications are no longer possible.

is it acceptable to provide an API that is undefined a large part of the time?

Given some type as follows:
class Thing {
getInfo();
isRemoteThing();
getRemoteLocation();
}
The getRemoteLocation() method only has a defined result if isRemoteThing() returns true. Given that most Things are not remote, is this an acceptable API? The other option I see is to provide a RemoteThing subclass, but then the user needs a way to cast a Thing to a RemoteThing if necessary, which just seems to add a level of indirection to the problem.
Having an interface include members which are usable on some objects that implement the interface but not all of them, and also includes a query method to say which interface members will be useful, is a good pattern in cases where something is gained by it.
Examples of reasons where it can be useful:
If it's likely than an interface member will be useful on some objects but not other instances of the same type, this pattern may be the only one that makes sense.
If it's likely that a consumer may hold references to a variety of objects implementing the interface, some of which support a particular member and some of which do not, and if it's likely that someone with such a collection would want to use the member on those instances which support it, such usage will be more convenient if all objects implement an interface including the member, than if some do and some don't. This is especially true for interface members like IDisposable.Dispose whose purpose is to notify the implementation of something it may or may not care about (e.g. that nobody needs it anymore and it may be abandoned without further notice), and ask it to do whatever it needs to as a consequence (in many cases nothing). Blindly calling Dispose on an IEnumerable<T> is faster than checking whether an implementation of IEnumerable also implements IDisposable. Not only the unconditional call faster than checking for IDisposable and then calling it--it's faster than checking whether an object implements IDisposable and finding out that it doesn't.
In some cases, a consumer may use a field to hold different kinds of things at different times. As an example, it may be useful to have a field which at some times will hold the only extant reference to a mutable object, and at other times will hold a possibly-shared reference to an immutable object. If the type of the field includes mutating methods (which may or may not work) as well as a means of creating a new mutable instance with data copied from an immutable one, code which receives an object and might want to mutate the data can store a reference to the passed-in object. If and when it wants to mutate the data, it can overwrite the field with a reference to a mutable copy; if it never ends up having to mutate the data, however, it can simply use the passed-in immutable object and never bother copying it.
The biggest disadvantage of having interfaces include members that aren't always useful is that it imposes more work on the implementers. Thus, people writing interfaces should only include members whose existence could significantly benefit at least some consumers of almost every class implementing the interface.
Why should this not be acceptable? It should, however, be clearly documented. If you look at the .net class libraries or the JDK, there are collection interfaces defining methods to add or delete items, but there are unmodifiable classes implementing these interfaces. It is a good idea in this case - as you did - to provide a method to query the object if it has some capabilities, as this helps you avoid exceptions in the case that the method is not appropriate.
OTOH, if this is an API, it might be more appropriate to use an interface than a class.

Is it poor design to create objects that only execute code during the constructor?

In my design I am using objects that evaluate a data record. The constructor is called with the data record and type of evaluation as parameters and then the constructor calls all of the object's code necessary to evaluate the record. This includes using the type of evaluation to find additional parameter-like data in a text file.
There are in the neighborhood of 250 unique evaluation types that use the same or similar code and unique parameters coming from the text file.
Some of these evaluations use different code so I benefit a lot from this model because I can use inheritance and polymorphism.
Once the object is created there isn't any need to execute additional code on the object (at least for now) and it is used more like a struct; its kept on a list and 3 properties are used later.
I think this design is the easiest to understand, code, and read.
A logical alternative I guess would be using functions that return score structs, but you can't inherit from methods so it would make it kind of sloppy imo.
I am using vb.net and these classes will be used in an asp.net web app as well as in a distributed app.
thanks for your input
Executing code in a constructor is OK; but having only properties with no methods might be a violation of the tell don't ask principle: perhaps instead those properties should be private, and the code which uses ("asks") those properties should become methods of the class (which you can invoke or "tell").
In general, putting code that does anything significant in the constructor a not such a good idea, because you'll eventually get hamstrung on the rigid constructor execution order when you subclass.
Constructors are best used for getting your object to a consistent state. "Real" work is best handled in instance methods. With the work implemented as a method, you gain:
separation of what you want to evaluate from when you want to evaluate it.
polymorphism (if using virtual methods)
the option to split up the work into logical pieces, implementing each piece as a concrete template method. These template methods can be overridden in subclasses, which provides for "do it mostly like my superclass, but do this bit differently".
In short, I'd use methods to implement the main computation. If you're concerned that an object will be created without it's evaluation method being called, you can use a factory to create the objects, which calls the evaluate method after construction. You get the safety of constructors, with the execution order flexibility of methods.