Selecting the Correct View for an Object Type - oop

I've had this problem many times before, and I've never had a solution I felt good about.
Let's say I have a Transaction base class and two derived classes AdjustmentTransaction and IssueTransaction.
I have a list of transactions in the UI, and each transaction is of the concrete type AdjustmentTransaction or IssueTransaction.
When I select a transaction, and click an "Edit" button, I need to decide whether to show an AdjustmentTransactionEditorForm or an IssueTransactionEditorForm.
The question is how do I go about doing this in an OO fashion without having to use a switch statement on the type of the selected transaction? The switch statement works but feels kludgy. I feel like I should be able to somehow exploit the parallel inheritance hierarchy between Transactions and TransactionEditors.
I could have an EditorForm property on my Transaction, but that is a horrible mixing of my UI peanut butter with my Model chocolate.
Thanks in advance.

You need to map your "EditorForm" to a transaction at some point. You have a couple options:
A switch statement...like you, I think this stinks, and scales poorly.
An abstract "EditorForm" property in base Transaction class, this scales better, but has poor seperation of concerns.
A Type -> Form mapper in your frontend. This scales fairly well, and keeps good seperation.
In C#, I'd implement a Type -> Form mapper like this:
Dictionary <Type,Type> typeMapper = new Dictionary<Type,Type>();
typeMapper.Add(typeof(AdjustTransaction), typeof(AdjustTransactionForm));
// etc, in this example, I'm populating it by hand,
// in real life, I'd use a key/value pair mapping config file,
// and populate it at runtime.
then, when edit is clicked:
Type formToGet;
if (typeMapper.TryGetValue(CurrentTransaction.GetType(), out formToGet))
{
Form newForm = (Form)Activator.CreateInstance(formToGet);
}

You probably don't want to tie it to the inheritance tree--that will bind you up pretty good later when you get a slight requirements change.
The relationship should be specified somewhere in an external file. Something that describes the relationship:
Editing AdujustmentTransaction = AdjustmentTransactionEditorForm
Editing IssueTransaction = IssueTransactionEditorForm
With a little bit of parsing and some better language than I've used here, this file could become very generalized and reusable--you could reuse forms for different objects if required, or change which form is used to edit an object without too much effort.
(You might want users named "Joe" to use "JoeIssueTransactionEditorForm" instead, this could pretty easily be worked into your "language")
This is essentially Dependency Injection--You can probably use Spring to solve the problem in more general terms.

Do I miss something in the question? I just ask because the obvious OO answer would be: Polymorph
Just execute Transaction.editWindow() (or however you want to call it), and
overwrite the method in AdjustmentTransaction and IssueTrasaction with the required functionality. The call to element.editWindow() then opens the right dialog for you.

An alternative to the Dictionary/Config File approach would be
1) to define a interface for each of the transaction editors.
2) In your EXE or UI assembly have each of the forms register itself with the assembly that creates the individual transaction.
3) The class controlling the registration should be a singleton so you don't have multiple form instances floating around.
3) When a individual transaction is created it pulls out the correct form variable from the registration object and assigns it do an internal variable.
4) When the Edit method is called it just uses the Show method of the internal method to start the chain of calls that will result in the display of that transacton editor.
This eliminates the need for config files and dictionaries. It continues to separate the UI from the object. Plus you don't need any switch statement
The downside is having to write the interface for each every form in addition to the form itself.
If you have a great deal of different types of editors (dozens) then in that case I recommend that you use the Command Pattern
You have a master command that contains the dictonary recommend by Jonathan. That commands in turns will use that dictornary to execute one of a number of other command that calls the correct form with the correct object. The forms continue to be separate from the object themselves. The forms reside in the Command assembly. In addition you don't have to update the EXE to add another editor only the Command assembly. Finally by putting things inside of Command you can implement Undo/Redo a lot easier. (Implement a Unexecute as well as a Execute)

Related

Class with a list of materials: best practice

I've created the custom class ZMaterial that can be instantiated passing an ID to the constructor which sets the properties for a single material using SELECTs and BAPIs. This class is basically used to READ and UPDATE a single material.
Now I need to create a service to return a list of materials. I already have the procedural code for it in a static method (for now actually a function module), but I would like to keep using a full OOP approach and instantiate a list of my custom material object. The first approach I found is to enhance the static method to instantiate a list of my single material object after the selects are executed and I have the data in internal tables, but it does not seem the most OOP.
The second option in my mind is to create a new class ZMaterialList with one property being a list of objects ZMaterial and then a constructor with the necessary input parameters for the database select. The problem I see with this option is that I create a full class just for the constructor.
What do you think is the best way to proceed?
Create a separate class to produce the list of materials. The single responsibility principle says each class should do exactly one thing. In all but the most simple cases, using a thing is a different responsibility than producing it.
Don’t make a ZMaterialList class. A list’s focus would be managing the list items, i.e. adding, removing, iterating, sorting etc. But you should be fine with a regular STANDARD TABLE OF REF TO ZMaterial.
Make a ZMaterialReader, -Repository, -Query or -Factory class or the like, depending on the precise way you want to produce the ZMaterials. Readers read by keys, repositories read and write, queries use varying sets of selection criteria, factories instantiate with possibly different sets of inputs.
You can well let that class use the original FUNCTION underneath. It’s good style to exploit what’s already there. Just make sure you trust that code, put it in a test harness, and keep it afar from the rest of your oo code.
Extract all public interaction of ZMaterial to an interface and use only that interface. That allows you to offer alternative implementations of ZMaterial, ones that differ in the way they are produced or how they store their data.
Split single production from mass production. Reading MARA to retrieve a single material is okay. But you don’t want thousands of ZMaterials reading MARA individually - that wrecks performance.
Now you’ve got the interface, you could offer a second implementation of ZMaterial whose constructor receives all relevant data and relies on it already having been validated to avoid additional SELECTs.
You could also offer an implementation that doesn’t store its data at all but only stores pointers to rows in internal tables somewhere else. See the flyweight pattern for ideas.
If you expect mass updates on the materials, such as “reclassify all of these as B”, consider extracting these list-oriented operations to separate classes as well.

Is it OK to create an object inside a function

I work on a class in VBA, that encapsulates downloading stuff with MSXML2.XmlHttp.
There are three possibilities for the return value: Text, XML and Stream.
Should I create a function for each:
aText=myDownloader.TextSynchronous(URL,formData,dlPost,....)
aXml.load myDownloader.XmlSynchronous(URL,formData,dlPost,....)
Or can I just return the XmlHttpObject I created inside the class and then have
aText=myDownloader.Synchronous(URL,formData,dlPost,.....).ResponseText
aXML=myDownloader.Synchronous(URL,formData,dlPost,.....).ResponseXML
In the former case I can set the obj to nothing in the class but have to write several functions that are more or less the same.
In the latter case, I relay on the "garbage collector" but have a leaner class.
Both should work, but which one is better coding style?
In my opinion, the first way is better because you don't expose low level details to a high level of the abstraction.
I did something similar with a web crawler in Java, so I have a class only to manipulate the URL connection getting all the needed data (low level) and a high level class using the low level class that return an object called Page.
You can have a third method that only execute myDownloader.Synchronous(URL,formData,dlPost,.....) and stores the returned object in a private variable and the others method only manipulate this object. This form, you will only open the connection one time.
After much seeking around in the web (triggered by the comment by EmmadKareem) I found this:
First of all, Dont do localObject=Nothing at the end of a method - the variable goes out of scope anyway and is discarded. see this older but enlightening post on msdn
VBA uses reference counting and apart from some older bugs on ADO this seems to work woute well and (as I understand) immediately discards ressources that are not used anymore. So from a performance/memory usage point of view this seems not to be a problem.
As to the coding style: I think the uncomfortable fdeeling I had when I designed this could go away by simply renaming the function to myDownloader.getSyncDLObj(...) or some such.
There seem to be two camps on codestyle. One promotes clean code, which is easy to read, but uses five lines everytime you use it. Its most important prerogative is "every function should do one thing and one thing only. Their approach would probably look something like
myDownloader.URL="..."
myDownloader.method=dlSync
myDownloader.download
aText=myDownloader.getXmlHttpObj.ResponseText
myDownloader.freeResources
and one is OK with the more cluttered, but less lineconsuming
aText=myDownloader.getSyncObj(...).ResponseText
both have their merits both none is wrong, dangerous or frowned upon. As this is a helper class and I use it to remove the inner workings of the xmlhttp from the main code I am more comfortable with the second approach here. (One line for one goal ;)
I would be very interested on anyones take on that matter

How much responsibility should a method have?

This is most certainly a language agnostic question and one that has bothered me for quite some time now. An example will probably help me explain the dilemma I am facing:
Let us say we have a method which is responsible for reading a file, populating a collection with some objects (which store information from the file), and then returning the collection...something like the following:
public List<SomeObject> loadConfiguration(String filename);
Let us also say that at the time of implementing this method, it would seem infeasible for the application to continue if the collection returned was empty (a size of 0). Now, the question is, should this validation (checking for an empty collection and perhaps the subsequent throwing of an exception) be done within the method? Or, should this methods sole responsibility be to perform the load of the file and ignore the task of validation, allowing validation to be done at some later stage outside of the method?
I guess the general question is: is it better to decouple the validation from the actual task being performed by a method? Will this make things, in general, easier at a later stage to change or build upon - in the case of my example above, it may be the case at a later stage where a different strategy is added to recover from the event of an empty collection being return from the 'loadConfiguration' method..... this would be difficult if the validation (and resulting exception) was being done in the method.
Perhaps I am being overly pedantic in the quest for some dogmatic answer, where instead it simply just relies on the context in which a method is being used. Anyhow, I would be very interested in seeing what others have to say regarding this.
Thanks all!
My recommendation is to stick to the single responsibility principle which says, in a nutshell, that each object should have 1 purpose. In this instance, your method has 3 purposes and then 4 if you count the validation aspect.
Here's my recommendation on how to handle this and how to provide a large amount of flexibility for future updates.
Keep your LoadConfig method
Have it call the a new method for reading the file.
Pass the previous method's return value to another method for loading the file into the collection.
Pass the object collection into some validation method.
Return the collection.
That's taking 1 method initially and breaking it into 4 with one calling 3 others. This should allow you to change pieces w/o having any impact on others.
Hope this helps
I guess the general question is: is it
better to decouple the validation from
the actual task being performed by a
method?
Yes. (At least if you really insist on answering such a general question – it’s always quite easy to find a counter-example.) If you keep both the parts of the solution separate, you can exchange, drop or reuse any of them. That’s a clear plus. Of course you must be careful not to jeopardize your object’s invariants by exposing the non-validating API, but I think you are aware of that. You’ll have to do some little extra typing, but that won’t hurt you.
I will answer your question by a question: do you want various validation methods for the product of your method ?
This is the same as the 'constructor' issue: is it better to raise an exception during the construction or initialize a void object and then call an 'init' method... you are sure to raise a debate here!
In general, I would recommend performing the validation as soon as possible: this is known as the Fail Fast which advocates that finding problems as soon as possible is better than delaying the detection since diagnosis is immediate while later you would have to revert the whole flow....
If you're not convinced, think of it this way: do you really want to write 3 lines every time you load a file ? (load, parse, validate) Well, that violates the DRY principle.
So, go agile there:
write your method with validation: it is responsible for loading a valid configuration (1)
if you ever need some parametrization, add it then (like a 'check' parameter, with a default value which preserves the old behavior of course)
(1) Of course, I don't advocate a single method to do all this at once... it's an organization matter: under the covers this method should call dedicated methods to organize the code :)
To deflect the question to a more basic one, each method should do as little as possible. So in your example, there should be a method that reads in the file, a method that extracts the necessary data from the file, another method to write that data to the collection, and another method that calls these methods. The validation can go in a separate method, or in one of the others, depending on where it makes the most sense.
private byte[] ReadFile(string fileSpec)
{
// code to read in file, and return contents
}
private FileData GetFileData(string fileContents)
{
// code to create FileData struct from file contents
}
private void FileDataCollection: Collection<FileData> { }
public void DoItAll (string fileSpec, FileDataCollection filDtaCol)
{
filDtaCol.Add(GetFileData(ReadFile(fileSpec)));
}
Add validation, verification to each of the methods as appropriate
You are designing an API and should not make any unnecessary assumptions about your client. A method should take only the information that it needs, return only the information requested, and only fail when it is unable to return a meaningful value.
So, with that in mind, if the configuration is loadable but empty, then returning an empty list seems correct to me. If your client has an application specific requirement to fail when provided an empty list, then it may do so, but future clients may not have that requirement. The loadConfiguration method itself should fail when it really fails, such as when it is unable to read or parse the file.
But you can continue to decouple your interface. For example, why must the configuration be stored in a file? Why can't I provide a URL, a row in a database, or a raw string containing the configuration data? Very few methods should take a file path as an argument since it binds them tightly to the local file system and makes them responsible for opening, reading, and closing files in addition to their core logic. Consider accepting an input stream as an alternative. Or if you want to allow for elaborate alternatives -- like data from a database -- consider accepting a ConfigurationReader interface or similar.
Methods should be highly cohesive ... that is single minded. So my opinion would be to separate the responsibilities as you have described. I sometimes feel tempted to say...it is just a short method so it does not matter...then I regret it 1.5 weeks later.
I think this depends on the case: If you could think of a scenario where you would use this method and it returned an empty list, and this would be okay, then I would not put the validation inside the method. But for e.g. a method which inserts data into a database which have to be validated (is the email address correct, has a name been specified, ... ) then it should be ok to put validation code inside the function and throw an exception.
Another alternative, not mentioned above, is to support Dependency Injection and have the method client inject a validator. This would allow the preservation of the "strong" Resource Acquisition Is Initialization principle, that is to say Any Object which Loads Successfully is Ready For Business (Matthieu's mention of Fail Fast is much the same notion).
It also allows a resource implementation class to create its own low-level validators which rely on the structure of the resource without exposing clients to implementation details unnecessarily, which can be useful when dealing with multiple disparate resource providers such as Ryan listed.

Design question: pass the fields you use or pass the object?

I often see two conflicting strategies for method interfaces, loosely summarized as follows:
// Form 1: Pass in an object.
double calculateTaxesOwed(TaxForm f) { ... }
// Form 2: Pass in the fields you'll use.
double calculateTaxesOwed(double taxRate, double income) { ... }
// use of form 1:
TaxForm f = ...
double payment = calculateTaxesOwed(f);
// use of form 2:
TaxForm f = ...
double payment = calculateTaxesOwed(f.getTaxRate(), f.getIncome());
I've seen advocates for the second form, particularly in dynamic languages where it may be harder to evaluate what fields are being used.
However, I much prefer the first form: it's shorter, there is less room for error, and if the definition of the object changes later you won't necessarily need to update method signatures, perhaps just change how you work with the object inside the method.
Is there a compelling general case for either form? Are there clear examples of when you should use the second form over the first? Are there SOLID or other OOP principles I can point to to justify my decision to use one form over the other? Do any of the above answers change if you're using a dynamic language?
In all honesty it depends on the method in question.
If the method makes sense without the object, then the second form is easier to re-use and removes a coupling between the two classes.
If the method relies on the object then fair enough pass the object.
There is probably a good argument for a third form where you pass an interface designed to work with that method. Gives you the clarity of the first form with the flexibility of the second.
It depends on the intention of your method.
If the method is designed to work specifically with that object and only that object, pass the object. It makes for a nice encapsulation.
But, if the method is more general purpose, you will probably want to pass the parameters individually. That way, the method is more likely to be reused when the information is coming from another source (i.e. different types of objects or other derived data).
I strongly recommend the second solution - calculateTaxesOwed() calculates some data, hence needs some numerical input. The method has absolutly nothing to do with the user interface and should in turn not consum a form as input, because you want your business logic separated from your user interface.
The method performing the calculation should (usualy) not even belong to the same modul as the user interface. In this case you get a circular dependency because the user interface requires the business logic and the business logic requires the user interface form - a very strong indication that something is wrong (but could be still solved using interface based programming).
UPDATE
If the tax form is not a user interface form, things change a bit. In this case I suggest to expose the value using a instance method GetOwedTaxes() or instance property OwedTaxes of the TaxForm class but I would not use a static method. If the calculation can be reused elsewhere, one could still create a static helper method consuming the values, not the form, and call this helper method from within the instance method or property.
I don't think it really matters. You open yourself to side effects if you pass in the Object as it might be mutated. This might however be what you want. To mitigate this (and to aid testing) you are probably better passing the interface rather than the concrete type. The benefit is that you don't need to change the method signature if you want to access another field of the Object.
Passing all the parameters makes it clearer what the type needs, and might make it easier to test (though if you use the interface this is less of a benefit). But you will have more refactoring.
Judge each situation on its merits and pick the least painful.
Passing just the arguments can be easier to unit test, as you don't need to mock up entire objects full of data just to test functionality that is essentially just static calculation. If there are just two fields being used, of the object's many, I'd lean towards just passing those fields, all else being equal.
That said, when you end up with six, seven or more fields, it's time to consider passing either the whole object or a subset of the fields in a "payload" class (or struct/dictionary, depending on the language's style). Long method signatures are usually confusing.
The other option is to make it a class method, so you don't have to pass anything. It's less convenient to test, but worth considering when your method is only ever used on a TaxForm object's data.
I realize that this is largely an artifact of the example used and so it may not apply in many real-world cases, but, if the function is tied so strongly to a specific class, then shouldn't it be:
double payment = f.calculateTaxesOwed;
It seems more appropriate to me that a tax document would carry the responsibility itself for calculating the relevant taxes rather than having that responsibility fall onto a utility function, particularly given that different tax forms tend to use different tax tables or calculation methods.
One advantage of the first form is
Abstraction - programming to an interface rather than implementation. It makes the maintainance of your code easier in the long run becuase you may change the implementation of TaxForm without affecting the client code as long as the interface of TaxForm does not change.
This is the same as the "Introduce Parameter Object" from Martin Fowler's book on refactoring. Fowler suggests that you perform this refactoring if there are a group of parameters that tend to be passed together.
If you believe in the Law of Demeter, then you would favor passing exactly what is needed:
http://en.wikipedia.org/wiki/Law_of_Demeter
http://www.c2.com/cgi/wiki?LawOfDemeter
Separation of UI and Data to be manipulated
In your case, you are missing an intermediate class, say, TaxInfo, representing the entity to be taxed. The reason is that UI (the form) and business logic (how tax rate is calculated) are on two different "change tracks", one changes with presentation technology ("the web", "The web 2.0", "WPF", ...), the other changes with legalese. Define a clear interface between them.
General discussion, using an example:
Consider a function to create a bitmap for a business card. Is the purpose of the function
(1) // Formats a business card title from first name and last name
OR
(2) // Formats a businnes card title from a Person record
The first option is more generic, with a weaker coupling, which is generally preferrable. However, In many cases less robust against change requests - e.g. consider "case 2017: add persons Initial to business card".
Changing the implementation (adding person.Initial) is usually easier and faster than changing the interface.
The choice is ultimately what type of changes you expect: is it more likely that more information from a Personrecord is required, or is it more likely that you want to create business card titles for other data structures than Person?
If that is "undecided", anfd you can't opf for purpose (1) or (2) I'd rather go with (2), for syntactic cleanliness.
If I was made to choose one of the two, I'd always go with the second one - what if you find that you (for whatever reason) need to caculate the taxes owed, but you dont have an instance of TaxForm?
This is a fairly trivial example, however I've seen cases where a method doing a relatively simple task had complex inputs which were difficult to create, making the method far more difficult to use than it should have been. (The author simply hadn't considered that other people might want to use that method!)
Personally, to make the code more readable, I would probbaly have both:
double calculateTaxesOwed(TaxForm f)
{
return calculateTaxesOwed(f.getTaxRate(), f.getIncome());
}
double calculateTaxesOwed(double taxRate, double income) { ... }
My rule of thumb is to wherever possible have a method that takes exactly the input it needs - its very easy to write wrapper methods.
Personally, I'll go with #2 since it's much more clear of what it is that the method need. Passing the TaxForm (if it is what I think it is, like a Windows Form) is sort of smelly and make me cringe a little (>_<).
I'd use the first variation only if you are passing a DTO specific to the calculation, like IncomeTaxCalculationInfo object which will contain the TaxRate and Income and whatever else needed to calculate the final result in the method, but never something like a Windows / Web Form.

How can I pass variables from form to form?

When working with a collection of forms that the user must step through, is it better to pass the data foward when creating a new instance of that form, or is it better to call a function from the previous form? I have some code written that calls the previous routine, and it looks ugly, and I can't quite think of a reason why it was done that way. The only reason I could come up with was if the data was large, and there was a good chance that the user wouldn't use the data except in a special case.
If you put all your shared data in a class, and then pass a reference to an instance of that class to the constructor on each form, then it doesn't matter how large the data is as it is only a reference being passed each time.
This has advantage that your forms are not tied to each other.
That's a subjective question for the most part. I personally took a route that seemed easier to maintain for people who will have to deal with my code later. I would instantiate the form, load the public properties with whatever I was trying to pass and then make the form visible. That way, anyone editing the 'new' form knew that all the data was pre-loaded. Anyone editing the 'old' form knew where to load any new properties.
If the new form will need the data immediately then it is probably better to pass it in the constructor of this form.
Use a new form and you can pass the values from form on other using server.transfer
You can read about Server.Transfer here : http://www.dotnet-guide.com/servertransfer.html
You could have a global data variable that stores all your data. Each form could access it independently. If you had a multi-threaded implemenatation, you could simply add thread-safety on the accessors of the global data variable.
The two main options i normally use are to either store the information in a database such as SQLServer or MS-Access if there is alot of information that many forms will use, or if the information is only going to be used in the next form I would pass the information to that form and then store it as appropriate. i.e. if it create a data table for it to use as a source, store the info in a hiddenfield, or even putting the information into the text boxes, labels, combo boxes etc. that they need to go into upon loading.
if you are talking about winforms (not webforms) then you should probably use a static class. Use a static member to hold onto the reference of the context object (or whatever you plan to share with other forms). All static member are guaranteed to be initialized before their first use.
A similar alternative would be to use the singleton design pattern to create a singleton class.
In effect these two solutions just make it possible to access a single reference globally, which is a power that can be over used at times so... be careful.