When should we create a static class? - oop

How can we distinguish to create a class which is static?

A static class forces all of its methods to be static and prohibits an instance constructor therefor can't be instantiated. If your question extends to WHEN to use static and WHEN instance, please do a search on StackOverflow (or check out the Related box on this page)

At least in C#,
static classes and class members are used to create data and functions that can be accessed without creating an instance of the class.

If you want the class to be static in nature i.e. have only 1 copy within the program (VM) then there are two obvious mechanisms:
1. Make all members and methods of the class static (Java/C#).
2. Use Singleton design pattern.
For this case (static in nature), we don't have a language construct and hence one of the above technique is used.
As to your question for this case, such classes should be created if you want your functionality to be accessible globally, unchanged and instantly accessible e.g. utility methods, global constants etc.
Secondly, the keyword 'static' is used with classes to increase their visibility in the package. This keyword can only be applied on inner classes and allows the access to inner classes without the context of their parent class.
Such kind of static classes should be used only for those inner classes that serve their purpose within the parent class as well as are useful outside the class or the package e.g. Key of a POJO.

Related

Is there a solution to "Cannot access '<init>': it is private in XYZ?

I included a library I'd like to use, but in accessing to one of its classes I get the error message,
"Cannot access '<init>': it is private in [class name]
Is there something I can do to rectify this on my side, or am I just stuck to not use the package?
The error means the constructor is private. Given your comment, I'm assuming you're using a library. If this is the case, you'll have to find a different way to initialize it. Some libraries have factories or builders for classes, so look up any applicable documentation (if it is a library or framework). Others also use the singleton pattern, or other forms of initialization where you, the developer, don't use the constructor directly.
If, however, it is your code, remove private from the constructor(s). If it's internal and you're trying to access it outside the module, remove internal. Remember, the default accessibility is public. Alternatively, you can use the builder pattern, factory pattern, or anything similar yourself if you want to keep the constructor private or internal.
I came across this issue when trying to extend a sealed class in another file. Without seeing the library code it is hard to know if that is also what you are attempting to do.
The sealed classes have the following unique features:
A sealed class can have subclasses, but all of them must be declared in the same file as the sealed class itself.
A sealed class is abstract by itself, it cannot be instantiated directly and can have abstract members.
Sealed classes are not allowed to have non-private constructors (their constructors are private by default).
Classes that extend subclasses of a sealed class (indirect inheritors) can be placed anywhere, not necessarily in the same file.
For more info, have a read at https://www.ericdecanini.com/2019/10/14/kotlins-sealed-class-enums-on-steroids/
Hopefully, this will help others new to Kotlin who are also encountering this issue.
Class constructors are package-private by default. Just add the public keyword before declaring the constructor.
By default constructor is public so need to remove internal keyword.

How jvm classloader loads class that is defined inside another class?

How does JVM loads class that are defined inside another class?
Example: Lets say, there is a class B that is defined inside class A
package test.sample;
Class A {
// some instructions
Class B {
// few more instructions
}
}
In this case,
How does classloader load the class B? (i.e., How does it identify class B?)
What will be the fully qualified name of class B?
Inner classes are a Java language feature, not a JVM feature. That is, Java compilers "flatten" the class structure, so the JVM just sees regular classes, usually with $ in their names. In this case, there would be classes test.sample.A and test.sample.A$B (the latter being the fully qualified name of B). Anonymous inner classes get compiler-defined names, typically starting at 1 and counting up: test.sample.A$6, for example. The compiler may add methods with names like access$200 to allow the enclosing class and inner class to access each others' private members. (Note that $ is legal, though discouraged, in user-defined class and method names, so the presence of a $ in a name does not mean it is compiler-generated; for that, there's the Synthetic attribute and ACC_SYNTHETIC modifier bit, exposed reflectively via methods like Class.isSynthetic().)
The JVM loads these classes just like any other class, typically looking for a file test/sample/A$B.class in some JAR file, but also possibly loading them across a network, generating them on-the-fly with a bytecode manipulation library, etc.
When generating class files that reference an inner class (defining, containing, or simply using), Java compilers emit InnerClasses attributes specifying the containment relationships, for the aid of separate compilation and reflection (Class.getDeclaringClass() and Class.getEnclosingClass()). Class files for classes defined inside a method also contain an EnclosingMethod attribute referring to the enclosing method, for reflection (Class.getEnclosingMethod() and Class.getEnclosingConstructor()). However, these attributes are only checked for syntactic well-formedness by the JVM during loading and linking; inconsistencies are not reported until the reflective methods are actually called.

specific questions about scope and property reference in actionscript 3

I've been battling with AS3 for a little while now, and I'm working on a simple application using only actionscript and the FlashDevelop/flex-compiler combo. I've hit a bit of a wall in my fledgling OOP understanding, and I'm wondering whether someone might be able to point me in the right direction. I have genuinely read several books, and spent many hours reading online tutorials etc, but something's just not clicking!
What's baffling me is this: When something is declared 'public', according to what I read, it is therefore available anywhere in the application (and should therfore be used with care!) However, when I try to use public properties and methods in my program, they most definitely are not available anywhere other than from the class/object that instantiated them.
This leads me to conclude that even if objects (of different class) are instantiated from the same (say 'main') class, they are not able to communicate with each other at all, even through public members.
If so, then fair enough, but I've honestly not seen this explained properly anywhere. More to the point, how do different objects communicate with other then? and what does Public actually mean then, if it only works through a direct composition hierarchy? If one has to write applications based only on communication from composer class to it's own objects (and presumably use events for, er, everything else?) - isn't this incredibly restrictive?
I'm sure this is basic OOP stuff, so my apologies in advance!
Any quick tips or links would be massively appreciated.
There are different topics you are covering in your question. Let me clarify:
What does the modifier public mean?
How can instances of the same class communicate to each other?
--
1.
In OOP you organize your code with objects. An object needs to be instantiated to provide its functionality. The place where you instantiate the object can be considered as the "context". In Flash the context might be the first frame, in a pure AS3 movie, it might be the main class, in Flex it could be the main mxml file. In fact, the context is always an object, too. Class modifier of your object public class MyClass tells your context whether it is allowed to instantiate the object or not. If set to internal, the context must live in the same directory as the class of the object. Otherwise it is not allowed to create a new object of the class. Private or protected are not valid class modifiers. Public class ... means that any context may create an object of that class. Next: Not only instantiation is controlled by these modifiers but also the visibility of a type. If set to internal, you cannot use an expression like var obj : InternalType in a context that does not live in the same directory as Internal type.
What about methods and properties? Even if your context is allowed to access a type, certain properties and methods might be restricted internal/protected/private var/method and you perhaps are not able to invoke them.
Why we're having such restrictions? Answer is simple: Differnent developers may develop different parts of the same software. These parts should communicate only over defined interfaces. These interfaces should be as small as possible. The developer therefore declares as much code as possible to be hidden from outside and only the necessary types and properties publicly available.
Don't mix up with modifiers and global properties. The modifier only tells you if a context is allowed to see a type or method. The global variable is available throughout the code. So even if a class is declared to be public, instances of that class do not know each other by default. You can let them know by:
storing the instances in global variables
providing setter such as set obj1(obj1 : OBJ1) : void where each object needs to store the reference in an instance variable
passing the object as method arguments: doSomething(obj1 : OBJ1)
Hope this helps you to more understand OOP. I am happy to answer your follow up questions.
Jens
#Jens answer (disclaimer: I skimmed) appears to be completely correct.
However, I'm not sure it answers your question very directly, so I'll add a bit here.
A public property is a property of that class instance that is available for other objects to use(function: call, variable: access, etc). However, to use them you must have a reference (like a very basic pointer, if that helps?) to that object instance. The object that instantiates (creates, new ...) that object can take that reference by assigning it to a variable of that class type.
// Reference is now stored in 's'
public ExampleClass s = new ExampleClass();
If you'd like to, you do have the option of making a static property, which is available just by knowing the class name. That property will be shared by all instances of that class, and any external class can refer to it (assuming it's public static) by referring to the class name.
A public property is referred to by the reference you stored.
//public property access
s.foo
s.bar(var)
A static property is referred to by the class name.
//static property access
ExampleClass.foo
ExampleClass.bar(var)
Once you've created the instance, and stored the reference, to an object, you can pass it around as you'd like. The below object of type OtherExampleClass would receive the reference to 's' in its constructor, and would have to store it in a local variable of its own to keep the reference.
public OtherExampleClass s2 = new OtherExampleClass(s);

Is it bad practice for a class to have only static fields and methods?

I have a class that consists only of static member variables and static methods. Essentially, it is serving as a general-purpose utility class.
Is it bad practice for a class to contain only static member variables and static methods?
No, I don't think so at all. It is worse practice to have a class full of instance methods which don't actually depend on a particular instance. Making them static tells the user exactly how they are intended to be used. Additionally, you avoid unnecessary instantiations this way.
EDIT: As an afterthought, in general I think its nice to avoid using language features "just because", or because you think that that is the "Java way to do it". I recall my first job where I had a class full of static utility methods and one of the senior programmers told me that I wasn't fully harnessing the OO power of Java by making all of my methods "global". She was not on the team 6 months later.
As long as the class has no internal state and is essentially what is known as a leaf class (utility classes fall into this category), in other words it is independent of other classes. It is fine.
The Math class being a prime example.
Sounds reasonable.
Note: Classes that do this often have a private no-arg constructor just so that the compiler yields an error if a programmer tries to create an instance of the static class.
Static methods don't worry me much (except for testing).
In general, static members are a concern. For example, what if your app is clustered? What about start-up time -- what kind of initialization is taking place? For a consideration of these issues and more, check out this article by Gilad Bracha.
It's perfectly reasonable. In fact, in C# you can define a class with the static keyword specifically for this purpose.
Just don't get carried away with it. Notice that the java.lang.Math class is only about math functions. You might also have a StringUtilities class which contains common string-handling functions which aren't in the standard API, for example. But if your class is named Utilities, for example, that's a hint that you might want to split it up.
Note also that Java specifically introduced the static import: (http://en.wikipedia.org/wiki/Static_import)
Static import is a feature introduced
in the Java programming language that
members (fields and methods) defined
in a class as public static to be used
in Java code without specifying the
class in which the field is defined.
This feature was introduced into the
language in version 5.0.
The feature provides a typesafe
mechanism to include constants into
code without having to reference the
class that originally defined the
field. It also helps to deprecate the
practice of creating a constant
interface: an interface that only
defines constants then writing a class
implementing that interface, which is
considered an inappropriate use of
interfaces[1].
The mechanism can be used to reference
individual members of a class:
import static java.lang.Math.PI;
import static java.lang.Math.pow;
or all the static members of a class:
import static java.lang.Math.*;
While I agree with the sentiment that it sounds like a reasonable solution (as others have already stated), one thing you may want to consider is, from a design standpoint, why do you have a class just for "utility" purposes. Are those functionals truly general across the entire system, or are they really related to some specific class of objects within your architecture.
As long as you have thought about that, I see no problem with your solution.
The Collections class in Java SDK has static members only.
So, there you go, as long as you have proper justification -- its not a bad design
Utility methods are often placed in classes with only static methods (like StringUtils.) Global constants are also placed in their own class so that they can be imported by the rest of the code (public final static attributes.)
Both uses are quite common and have private default constructors to prevent them from being instantiated. Declaring the class final prevents the mistake of trying to override static methods.
If by static member variables you did not mean global constants, you might want to place the methods accessing those variables in a class of their own. In that case, could you eleborate on what those variables do in your code?
This is typically how utility classes are designed and there is nothing wrong about it. Famous examples include o.a.c.l.StringUtils, o.a.c.d.DbUtils, o.s.w.b.ServletRequestUtils, etc.
According to a rigid interpretation of Object Oriented Design, a utility class is something to be avoided.
The problem is that if you follow a rigid interpretation then you would need to force your class into some sort object in order to accomplish many things.
Even the Java designers make utility classes (java.lang.Math comes to mind)
Your options are:
double distance = Math.sqrt(x*x + y*y); //using static utility class
vs:
RootCalculator mySquareRooter = new SquareRootCalculator();
mySquareRooter.setValueToRoot(x*x + y*y);
double distance;
try{
distance = mySquareRooter.getRoot();
}
catch InvalidParameterException ......yadda yadda yadda.
Even if we were to avoid the verbose method, we could still end up with:
Mathemetician myMathD00d = new Mathemetician()
double distance = myMathD00d.sqrt(...);
in this instance, .sqrt() is still static, so what would the point be in creating the object in the first place?
The answer is, create utility classes when your other option would be to create some sort of artificial "Worker" class that has no or little use for instance variables.
This link http://java.dzone.com/articles/why-static-bad-and-how-avoid seems to go against most of the answers here. Even if it contains no member variables (i.e. no state), a static class can still be a bad idea because it cannot be mocked or extended (subclassed), so it is defeating some of the principles of OO
I wouldn't be concerned over a utility class containing static methods.
However, static members are essentially global data and should be avoided. They may be acceptable if they are used for caching results of the static methods and such, but if they are used as "real" data that may lead to all kinds of problems, such as hidden dependencies and difficulties to set up tests.
From TSLint’s docs:
Users who come from a Java-style OO language may wrap their utility functions in an extra class, instead of putting them at the top level.
The best way is to use a constant, like this:
export const Util = {
print (data: string): void {
console.log(data)
}
}
Examples of incorrect code for this rule:
class EmptyClass {}
class ConstructorOnly {
constructor() {
foo();
}
}
// Use an object instead:
class StaticOnly {
static version = 42;
static hello() {
console.log('Hello, world!');
}
}
Examples of correct code for this rule:
class EmptyClass extends SuperClass {}
class ParameterProperties {
constructor(public name: string) {}
}
const StaticOnly = {
version: 42,
hello() {
console.log('Hello, world!');
},
};

When should I use static methods in a class and what are the benefits?

I have concept of static variables but what are the benefits of static methods in a class. I have worked on some projects but I did not make a method static. Whenever I need to call a method of a class, I create an object of that class and call the desired method.
Q: Static variable in a method holds it's value even when method is executed but accessible only in its containing method but what is the best definition of static method?
Q: Is calling the static method without creating object of that class is the only benefit of static method?
Q: What is the accessible range for static method?
Thanks
Your description of a static variable is more fitting to that found in C. The concept of a static variable in Object Oriented terms is conceptually different. I'm drawing from Java experience here. Static methods and fields are useful when they conceptually don't belong to an instance of something.
Consider a Math class that contains some common values like Pi or e, and some useful functions like sin and cos. It really does not make sense to create separate instances to use this kind of functionality, thus they are better as statics:
// This makes little sense
Math m = new Math();
float answer = m.sin(45);
// This would make more sense
float answer = Math.sin(45);
In OO languages (again, from a Java perspective) functions, or better known as methods, cannot have static local variables. Only classes can have static members, which as I've said, resemble little compared to the idea of static in C.
Static methods don't pass a "this" pointer to an object, so they can't reference non-static variables or methods, but may consequently be more efficient at runtime (fewer parameters and no overhead to create and destroy an object).
They can be used to group cohesive methods into a single class, or to act upon objects of their class, such as in the factory pattern.
Syntax (php) for static methods:
<?php
class Number {
public static function multiply($a, $b) {
return $a * $b;
}
}
?>
Client code:
echo Number::multiply(1, 2);
Which makes more sense than:
$number = new Number();
echo $number->multiply(1, 2);
As the multiply() method does not use any class variables and as such does not require an instance of Number.
Essentially, static methods let you write procedural code in an object oriented language. It lets you call methods without having to create an object first.
The only time you want to use a static method in a class is when a given method does not require an instance of a class to be created. This could be when trying to return a shared data source (eg a Singleton) or performing an operation that doesn't modify the internal state of the object (String.format for example).
This wikipedia entry explains static methods pretty well: http://en.wikipedia.org/wiki/Method_(computer_science)#Static_methods
Static variables and static methods are bound to the class, and not an instance of the class.
Static methods should not contain a "state". Anything related to a state, should be bound to an instantiated object, and not the class.
One common usage of static methods is in the named constructor idiom. See: http://www.parashift.com/c++-faq-lite/ctors.html#faq-10.8.
Static Methods in PHP:
Can be called without creating a class object.
Can only call on static methods and function.
Static variable is used when you want to share some info between different objects of the class.As variable is shared each object can update it and the updated value be available for all other objects as well.
As static variable can be shared,these are often called as class variable.
static elements are accessible from any context (i.e. anywhere in your script), so you can access these methods without needing to pass an instance of the class from object to object.
Static elements are available in every instance of a class, so you can set values that you want to be available to all members of a type.
for further reading a link!