What generic techniques can be applied to optimize SQL queries? - sql

What techniques can be applied effectively to improve the performance of SQL queries? Are there any general rules that apply?

Use primary keys
Avoid select *
Be as specific as you can when building your conditional statements
De-normalisation can often be more efficient
Table variables and temporary tables (where available) will often be better than using a large source table
Partitioned views
Employ indices and constraints

Learn what's really going on under the hood - you should be able to understand the following concepts in detail:
Indexes (not just what they are but actually how they work).
Clustered indexes vs heap allocated tables.
Text and binary lookups and when they can be in-lined.
Fill factor.
How records are ghosted for update/delete.
When page splits happen and why.
Statistics, and how they effect various query speeds.
The query planner, and how it works for your specific database (for instance on some systems "select *" is slow, on modern MS-Sql DBs the planner can handle it).

The biggest thing you can do is to look for table scans in sql server query analyzer (make sure you turn on "show execution plan"). Otherwise there are a myriad of articles at MSDN and elsewhere that will give good advice.
As an aside, when I started learning to optimize queries I ran sql server query profiler against a trace, looked at the generated SQL, and tried to figure out why that was an improvement. Query profiler is far from optimal, but it's a decent start.

There are a couple of things you can look at to optimize your query performance.
Ensure that you just have the minimum of data. Make sure you select only the columns you need. Reduce field sizes to a minimum.
Consider de-normalising your database to reduce joins
Avoid loops (i.e. fetch cursors), stick to set operations.
Implement the query as a stored procedure as this is pre-compiled and will execute faster.
Make sure that you have the correct indexes set up. If your database is used mostly for searching then consider more indexes.
Use the execution plan to see how the processing is done. What you want to avoid is a table scan as this is costly.
Make sure that the Auto Statistics is set to on. SQL needs this to help decide the optimal execution. See Mike Gunderloy's great post for more info. Basics of Statistics in SQL Server 2005
Make sure your indexes are not fragmented. Reducing SQL Server Index Fragmentation
Make sure your tables are not fragmented. How to Detect Table Fragmentation in SQL Server 2000 and 2005

Use a with statment to handle query filtering.
Limit each subquery to the minimum number of rows possible.
then join the subqueries.
WITH
master AS
(
SELECT SSN, FIRST_NAME, LAST_NAME
FROM MASTER_SSN
WHERE STATE = 'PA' AND
GENDER = 'M'
),
taxReturns AS
(
SELECT SSN, RETURN_ID, GROSS_PAY
FROM MASTER_RETURNS
WHERE YEAR < 2003 AND
YEAR > 2000
)
SELECT *
FROM master,
taxReturns
WHERE master.ssn = taxReturns.ssn
A subqueries within a with statement may end up as being the same as inline views,
or automatically generated temp tables. I find in the work I do, retail data, that about 70-80% of the time, there is a performance benefit.
100% of the time, there is a maintenance benefit.

I think using SQL query analyzer would be a good start.

In Oracle you can look at the explain plan to compare variations on your query

Make sure that you have the right indexes on the table. if you frequently use a column as a way to order or limit your dataset an index can make a big difference. I saw in a recent article that select distinct can really slow down a query, especially if you have no index.

The obvious optimization for SELECT queries is ensuring you have indexes on columns used for joins or in WHERE clauses.
Since adding indexes can slow down data writes you do need to monitor performance to ensure you don't kill the DB's write performance, but that's where using a good query analysis tool can help you balanace things accordingly.

Indexes
Statistics
on microsoft stack, Database Engine Tuning Advisor

Some other points (Mine are based on SQL server, since each db backend has it's own implementations they may or may not hold true for all databases):
Avoid correlated subqueries in the select part of a statement, they are essentially cursors.
Design your tables to use the correct datatypes to avoid having to apply functions on them to get the data out. It is far harder to do date math when you store your data as varchar for instance.
If you find that you are frequently doing joins that have functions in them, then you need to think about redesigning your tables.
If your WHERE or JOIN conditions include OR statements (which are slower) you may get better speed using a UNION statement.
UNION ALL is faster than UNION if (And only if) the two statments are mutually exclusive and return the same results either way.
NOT EXISTS is usually faster than NOT IN or using a left join with a WHERE clause of ID = null
In an UPDATE query add a WHERE condition to make sure you are not updating values that are already equal. The difference between updating 10,000,000 records and 4 can be quite significant!
Consider pre-calculating some values if you will be querying them frequently or for large reports. A sum of the values in an order only needs to be done when the order is made or adjusted, rather than when you are summarizing the results of 10,000,000 million orders in a report. Pre-calculations should be done in triggers so that they are always up-to-date is the underlying data changes. And it doesn't have to be just numbers either, we havea calculated field that concatenates names that we use in reports.
Be wary of scalar UDFs, they can be slower than putting the code in line.
Temp table tend to be faster for large data set and table variables faster for small ones. In addition you can index temp tables.
Formatting is usually faster in the user interface than in SQL.
Do not return more data than you actually need.
This one seems obvious but you would not believe how often I end up fixing this. Do not join to tables that you are not using to filter the records or actually calling one of the fields in the select part of the statement. Unnecessary joins can be very expensive.
It is an very bad idea to create views that call other views that call other views. You may find you are joining to the same table 6 times when you only need to once and creating 100,000,00 records in an underlying view in order to get the 6 that are in your final result.
In designing a database, think about reporting not just the user interface to enter data. Data is useless if it is not used, so think about how it will be used after it is in the database and how that data will be maintained or audited. That will often change the design. (This is one reason why it is a poor idea to let an ORM design your tables, it is only thinking about one use case for the data.) The most complex queries affecting the most data are in reporting, so designing changes to help reporting can speed up queries (and simplify them) considerably.
Database-specific implementations of features can be faster than using standard SQL (That's one of the ways they sell their product), so get to know your database features and find out which are faster.
And because it can't be said too often, use indexes correctly, not too many or too few. And make your WHERE clauses sargable (Able to use indexes).

Related

What aspects of a sql query are relatively costly to one another? Joins? Num of records? columns selected?

How costly would SELECT One, Two, Three be compared to SELECT One, Two, Three, ..... N-Column
If you have a sql query that has two or three tables joined together and is retrieving 100 rows of data, does performance have anything to say whether I should be selecting only the number of columns I need? Or should I write a query that just yanks all the columns..
If possible, could you help me understand what aspects of a query would be relatively costly compared to one another? Is it the joins? is it the large number of records pulled? is it the number of columns in the select statement?
Would 1 record vs 10 record vs 100 record matter?
As an extremely generalized version of ranking those factors you mention in terms of performance penalty and occurrence in the queries you write, I would say:
Joins - Especially when joining on tables with no indexes for the fields you're joining on and/or with tables that have a very large amount of data.
# of Rows / Amount of Data - Again, indexes mitigate this quite a bit, just make sure you have the right ones.
# of Fields - I would say the # of fields in the SELECT clause impact performance the least in most situations.
I would say any performance-driving property is always coupled with how much data you have - sure a join might be fast when your tables have 100 rows each, but when millions of rows are in the tables, you have to start thinking about more efficient design.
Several things impact the cost of a query.
First, are there appropriate indexes for it to use. Fields that are used in a join should almost always be indexed and foreign keys are not indexed by default, the designer of the database must create them. Fields used inthe the where clasues often need indexes as well.
Next, is the where clause sargable, in other words can it use the indexes even if you have the correct ones? A bad where clause can hurt a query far more than joins or extra columns. You can't get anything but a table scan if you use syntax that prevents the use of an index such as:
LIKE '%test'
Next, are you returning more data than you need? You should never return more columns than you need and you should not be using select * in production code as it has additional work to look up the columns as well as being very fragile and subject to create bad bugs as the structure changes with time.
Are you joining to tables you don't need to be joining to? If a table returns no columns in the select, is not used in the where and doesn't filter out any records if the join is removed, then you have an unnecessary join and it can be eliminated. Unnecessary joins are particularly prevalant when you use a lot of views, especially if you make the mistake of calling views from other views (which is a buig performance killer for may reasons) Sometimes if you trace through these views that call other views, you will see the same table joined to multiple times when it would not have been necessary if the query was written from scratch instead of using a view.
Not only does returning more data than you need cause the SQL Server to work harder, it causes the query to use up more of the network resources and more of the memory of the web server if you are holding the results in memory. It is an all arouns poor choice.
Finally are you using known poorly performing techniques when a better one is available. This would include the use of cursors when a set-based alternative is better, the use of correlated subqueries when a join would be better, the use of scalar User-defined functions, the use of views that call other views (especially if you nest more than one level. Most of these poor techniques involve processing row-by-agonizing-row which is generally the worst choice in a database. To properly query datbases you need to think in terms of data sets, not processing one row at a time.
There are plenty more things that affect performance of queries and the datbase, to truly get a grip onthis subject you need to read some books onthe subject. This is too complex a subject to fully discuss in a message board.
Or should I write a query that just yanks all the columns..
No. Just today there was another question about that.
If possible, could you help me understand what aspects of a query would be relatively costly compared to one another? Is it the joins? is it the large number of records pulled? is it the number of columns in the select statement?
Any useless join or data retrieval costs you time and should be avoided. Retrieving rows from a datastore is costly. Joins can be more or less costly depending on the context, amount of indexes defined... you can examine the query plan of each query to see the estimated cost for each step.
Selecting more columns/rows will have some performance impacts, but honestly why would you want to select more data than you are going to use anyway?
If possible, could you help me
understand what aspects of a query
would be relatively costly compared to
one another?
Build the query you need, THEN worry about optimizing it if the performance doesn't meet your expectations. You are putting the horse before the cart.
To answer the following:
How costly would SELECT One, Two,
Three be compared to SELECT One, Two,
Three, ..... N-Column
This is not a matter of the select performance but the amount of time it takes to fetch the data. Select * from Table and Select ID from Table preform the same but the fetch of the data will take longer. This goes hand in hand with the number of rows returned from a query.
As for understanding preformance here is a good link
http://www.dotnetheaven.com/UploadFile/skrishnasamy/SQLPerformanceTunning03112005044423AM/SQLPerformanceTunning.aspx
Or google tsql Performance
Joins have the potential to be expensive. In the worst case scenario, when no indexes can be used, they require O(M*N) time, where M and N are the number of records in the tables. To speed things up, you can CREATE INDEX on columns that are part of the join condition.
The number of columns has little effect on the time required to find rows, but slows things down by requiring more data to be sent.
What others are saying is all true.
But typically, if you are working with tables that already have good indexes, what's most important for performance is what goes into the WHERE statement. There you have to worry more about using a field that has no index or using a statement that can't me optimized.
The difference between SELECT One, Two, Three FROM ... and SELECT One,...,N FROM ... could be like the difference between day and night. To understand the problem, you need to understand the concept of a covering index:
A covering index is a special case
where the index itself contains the
required data field(s) and can return
the data.
As you add more unnecessary columns to the projection list you are forcing the query optimizer to lookup the newly added columns in the 'table' (really in the clustered index or in the heap). This can change an execution plan from an efficient narrow index range scan or seek into a bloated clustered index scan, which can result in differences of times from sub-second to +hours, depending on your data. So projecting unnecessary columns is often the most impacting factor of a query.
The number of records pulled is a more subtle issue. With a large number, a query can hit the index tipping point and choose, again, a clustered index scan over narrower index range scan and lookup. Now the fact that lookups into the clustered index are necessary to start with means the narrow index is not covering, which ultimately may be caused by projecting unnecessary column.
And finally, joins. The question here is joins, as opposed to what else? If a join is required, there is no alternative, and that's all there is to say about this.
Ultimately, query performance is driven by one factor alone: amount of IO. And the amount of IO is driven ultimately by the access paths available to satisfy the query. In other words, by the indexing of your data. It is impossible to write efficient queries on bad indexes. It is possible to write bad queries on good indexes, but more often than not the optimizer can compensate and come up with a good plan. You should spend all your effort in better understanding index design:
Designing Indexes
SQL Server Optimization
Short answer: Dont select more fields then you need - Search for "*" in both your sourcecode and your stored procedures ;)
You allways have to consider what parts of the query will cause which costs.
If you have a good DB design, joining a few tables is usually not expensive. (Make sure you have correct indices).
The main issue with "select *" is that it will cause unpredictable behavior in your results. If you write a query like that, AND access the fields with the columnindex, you will be locked into the DB-Schema forever.
Another thing to consider is the amount of data you have to consider. You might think its trivial, but the Version2.0 of your application suddenly adds a ProfilePicture to the User table. And now the query that will select 100 Users will suddenly use up several Megabyte of bandwith.
The second thing you should consider is the number of rows you return. SQL is very powerfull at sorting and grouping, so let SQL do his job, and dont move it to the client. Limit the amount of records you return. In most applications it makes no sense to return more then 100 rows to a user at once. You might let the user choose to load more, but make it a choice he has to make.
Finally, monitor your SQL Server. Run a profiler against it, and try to find your worst queries. A SQL Query should not take longer then half a second, if it does, something is most likely messed up (Yes... there are operation that can take much longer, but those should have a reason)
Edit:
Once you found the slow query, look at the execution plan... You will see which parts of the query are expensive, and which parts work well... The Optimizer is also a tool that can be used.
I suggest you consider your queries in terms of I/O first. Disk I/O on my SATA II system is 6Gb/sec. My DDR3 memory bandwidth is 12GB/sec. I can move items in memory 16 times faster than I can retrieve from disk. (Ref Wikipedia and Tom's hardware)
The difference between getting a few columns and all the columns for your 100 rows could be the dfference in getting a single 8K page from disk to getting two or more pages from disk. When the pages are finally in memory moving two columns or all columns to a hash table is faster than any measuring tool I have.
I value the advice of the others on this topic related to database design. The design of narrow indexes, using included columns to make covering indexes, avoiding table or index scans in favor of seeks by using an appropiate WHERE clause, narrow primary keys, etc is the diffenence between having a DBA title and being a DBA.

Performance Tuning SQL - How?

How does one performance tune a SQL Query?
What tricks/tools/concepts can be used to change the performance of a SQL Query?
How can the benefits be Quantified?
What does one need to be careful of?
What tricks/tools/concepts can be used to change the performance of a SQL Query?
Using Indexes? How do they work in practice?
Normalised vs Denormalised Data? What are the performance vs design/maintenance trade offs?
Pre-processed intermediate tables? Created with triggers or batch jobs?
Restructure the query to use Temp Tables, Sub Queries, etc?
Separate complex queries into multiples and UNION the results?
Anything else?
How can performance be Quantified?
Reads?
CPU Time?
"% Query Cost" when different versions run together?
Anything else?
What does one need to be careful of?
Time to generate Execution Plans? (Stored Procs vs Inline Queries)
Stored Procs being forced to recompile
Testing on small data sets (Do the queries scale linearly, or square law, etc?)
Results of previous runs being cached
Optimising "normal case", but harming "worst case"
What is "Parameter Sniffing"?
Anything else?
Note to moderators:
This is a huge question, should I have split it up in to multiple questions?
Note To Responders:
Because this is a huge question please reference other questions/answers/articles rather than writing lengthy explanations.
I really like the book "Professional SQL Server 2005 Performance Tuning" to answer this. It's Wiley/Wrox, and no, I'm not an author, heh. But it explains a lot of the things you ask for here, plus hardware issues.
But yes, this question is way, way beyond the scope of something that can be answered in a comment box like this one.
Writing sargable queries is one of the things needed, if you don't write sargable queries then the optimizer can't take advantage of the indexes. Here is one example Only In A Database Can You Get 1000% + Improvement By Changing A Few Lines Of Code this query went from over 24 hours to 36 seconds
Of course you also need to know the difference between these 3 join
loop join,
hash join,
merge join
see here: http://msdn.microsoft.com/en-us/library/ms173815.aspx
Here some basic steps that need to follow:
Define business requirements first
SELECT fields instead of using SELECT *
Avoid SELECT DISTINCT
Create joins with INNER JOIN (not WHERE)
Use WHERE instead of HAVING to define filters
Proper indexing
Here are some basic steps which we can follow to increase the performance:
Check for indexes in pk and fk for the tables involved if it is still taking time index the columns present in the query.
All indexes are modified after every operation so kindly do not index each and every column
Before batch insertion delete the indexes and then recreate the indexes.
Select sparingly
Use if exists instead of count
Before accusing dba first check network connections

Does the way you write sql queries affect performance?

say i have a table
Id int
Region int
Name nvarchar
select * from table1 where region = 1 and name = 'test'
select * from table1 where name = 'test' and region = 1
will there be a difference in performance?
assume no indexes
is it the same with LINQ?
Because your qualifiers are, in essence, actually the same (it doesn't matter what order the where clauses are put in), then no, there's no difference between those.
As for LINQ, you will need to know what query LINQ to SQL actually emits (you can use a SQL Profiler to find out). Sometimes the query will be the simplest query you can think of, sometimes it will be a convoluted variety of such without you realizing it, because of things like dependencies on FKs or other such constraints. LINQ also wouldn't use an * for select.
The only real way to know is to find out the SQL Server Query Execution plan of both queries. To read more on the topic, go here:
SQL Server Query Execution Plan Analysis
Should it? No. SQL is a relational algebra and the DBMS should optimize irrespective of order within the statement.
Does it? Possibly. Some DBMS' may store data in a certain order (e.g., maintain a key of some sort) despite what they've been told. But, and here's the crux: you cannot rely on it.
You may need to switch DBMS' at some point in the future. Even a later version of the same DBMS may change its behavior. The only thing you should be relying on is what's in the SQL standard.
Regarding the query given: with no indexes or primary key on the two fields in question, you should assume that you'll need a full table scan for both cases. Hence they should run at the same speed.
I don't recommend the *, because the engine should look for the table scheme before executing the query. Instead use the table fields you want to avoid unnecessary overhead.
And yes, the engine optimizes your queries, but help him :) with that.
Best Regards!
For simple queries, likely there is little or no difference, but yes indeed the way you write a query can have a huge impact on performance.
In SQL Server (performance issues are very database specific), a correlated subquery will usually have poor performance compared to doing the same thing in a join to a derived table.
Other things in a query that can affect performance include using SARGable1 where clauses instead of non-SARGable ones, selecting only the fields you need and never using select * (especially not when doing a join as at least one field is repeated), using a set-bases query instead of a cursor, avoiding using a wildcard as the first character in a a like clause and on and on. There are very large books that devote chapters to more efficient ways to write queries.
1 "SARGable", for those that don't know, are stage 1 predicates in DB2 parlance (and possibly other DBMS'). Stage 1 predicates are more efficient since they're parts of indexes and DB2 uses those first.

How do you optimize tables for specific queries?

What are the patterns you use to determine the frequent queries?
How do you select the optimization factors?
What are the types of changes one can make?
This is a nice question, if rather broad (and none the worse for that).
If I understand you, then you're asking how to attack the problem of optimisation starting from scratch.
The first question to ask is: "is there a performance problem?"
If there is no problem, then you're done. This is often the case. Nice.
On the other hand...
Determine Frequent Queries
Logging will get you your frequent queries.
If you're using some kind of data access layer, then it might be simple to add code to log all queries.
It is also a good idea to log when the query was executed and how long each query takes. This can give you an idea of where the problems are.
Also, ask the users which bits annoy them. If a slow response doesn't annoy the user, then it doesn't matter.
Select the optimization factors?
(I may be misunderstanding this part of the question)
You're looking for any patterns in the queries / response times.
These will typically be queries over large tables or queries which join many tables in a single query. ... but if you log response times, you can be guided by those.
Types of changes one can make?
You're specifically asking about optimising tables.
Here are some of the things you can look for:
Denormalisation. This brings several tables together into one wider table, so in stead of your query joining several tables together, you can just read one table. This is a very common and powerful technique. NB. I advise keeping the original normalised tables and building the denormalised table in addition - this way, you're not throwing anything away. How you keep it up to date is another question. You might use triggers on the underlying tables, or run a refresh process periodically.
Normalisation. This is not often considered to be an optimisation process, but it is in 2 cases:
updates. Normalisation makes updates much faster because each update is the smallest it can be (you are updating the smallest - in terms of columns and rows - possible table. This is almost the very definition of normalisation.
Querying a denormalised table to get information which exists on a much smaller (fewer rows) table may be causing a problem. In this case, store the normalised table as well as the denormalised one (see above).
Horizontal partitionning. This means making tables smaller by putting some rows in another, identical table. A common use case is to have all of this month's rows in table ThisMonthSales, and all older rows in table OldSales, where both tables have an identical schema. If most queries are for recent data, this strategy can mean that 99% of all queries are only looking at 1% of the data - a huge performance win.
Vertical partitionning. This is Chopping fields off a table and putting them in a new table which is joinned back to the main table by the primary key. This can be useful for very wide tables (e.g. with dozens of fields), and may possibly help if tables are sparsely populated.
Indeces. I'm not sure if your quesion covers these, but there are plenty of other answers on SO concerning the use of indeces. A good way to find a case for an index is: find a slow query. look at the query plan and find a table scan. Index fields on that table so as to remove the table scan. I can write more on this if required - leave a comment.
You might also like my post on this.
That's difficult to answer without knowing which system you're talking about.
In Oracle, for example, the Enterprise Manager lets you see which queries took up the most time, lets you compare different execution profiles, and lets you analyze queries over a block of time so that you don't add an index that's going to help one query at the expense of every other one you run.
Your question is a bit vague. Which DB platform?
If we are talking about SQL Server:
Use the Dynamic Management Views. Use SQL Profiler. Install the SP2 and the performance dashboard reports.
After determining the most costly queries (i.e. number of times run x cost one one query), examine their execution plans, and look at the sizes of the tables involved, and whether they are predominately Read or Write, or a mixture of both.
If the system is under your full control (apps. and DB) you can often re-write queries that are badly formed (quite a common occurrance), such as deep correlated sub-queries which can often be re-written as derived table joins with a little thought. Otherwise, you options are to create covering non-clustered indexes and ensure that statistics are kept up to date.
For MySQL there is a feature called log slow queries
The rest is based on what kind of data you have and how it is setup.
In SQL server you can use trace to find out how your query is performing. Use ctrl + k or l
For example if u see full table scan happening in a table with large number of records then it probably is not a good query.
A more specific question will definitely fetch you better answers.
If your table is predominantly read, place a clustered index on the table.
My experience is with mainly DB2 and a smattering of Oracle in the early days.
If your DBMS is any good, it will have the ability to collect stats on specific queries and explain the plan it used for extracting the data.
For example, if you have a table (x) with two columns (date and diskusage) and only have an index on date, the query:
select diskusage from x where date = '2008-01-01'
will be very efficient since it can use the index. On the other hand, the query
select date from x where diskusage > 90
would not be so efficient. In the former case, the "explain plan" would tell you that it could use the index. In the latter, it would have said that it had to do a table scan to get the rows (that's basically looking at every row to see if it matches).
Really intelligent DBMS' may also explain what you should do to improve the performance (add an index on diskusage in this case).
As to how to see what queries are being run, you can either collect that from the DBMS (if it allows it) or force everyone to do their queries through stored procedures so that the DBA control what the queries are - that's their job, keeping the DB running efficiently.
indices on PKs and FKs and one thing that always helps PARTITIONING...
1. What are the patterns you use to determine the frequent queries?
Depends on what level you are dealing with the database. If you're a DBA or a have access to the tools, db's like Oracle allow you to run jobs and generate stats/reports over a specified period of time. If you're a developer writing an application against a db, you can just do performance profiling within your app.
2. How do you select the optimization factors?
I try and get a general feel for how the table is being used and the data it contains. I go about with the following questions.
Is it going to be updated a ton and on what fields do updates occur?
Does it have columns with low cardinality?
Is it worth indexing? (tables that are very small can be slowed down if accessed by an index)
How much maintenance/headache is it worth to have it run faster?
Ratio of updates/inserts vs queries?
etc.
3. What are the types of changes one can make?
-- If using Oracle, keep statistics up to date! =)
-- Normalization/De-Normalization either one can improve performance depending on the usage of the table. I almost always normalize and then only if I can in no other practical way make the query faster will de-normalize. A nice way to denormalize for queries and when your situation allows it is to keep the real tables normalized and create a denormalized "table" with a materialized view.
-- Index judiciously. Too many can be bad on many levels. BitMap indexes are great in Oracle as long as you're not updating the column frequently and that column has a low cardinality.
-- Using Index organized tables.
-- Partitioned and sub-partitioned tables and indexes
-- Use stored procedures to reduce round trips by applications, increase security, and enable query optimization without affecting users.
-- Pin tables in memory if appropriate (accessed a lot and fairly small)
-- Device partitioning between index and table database files.
..... the list goes on. =)
Hope this is helpful for you.

Favourite performance tuning tricks [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
When you have a query or stored procedure that needs performance tuning, what are some of the first things you try?
Here is the handy-dandy list of things I always give to someone asking me about optimisation.
We mainly use Sybase, but most of the advice will apply across the board.
SQL Server, for example, comes with a host of performance monitoring / tuning bits, but if you don't have anything like that (and maybe even if you do) then I would consider the following...
99% of problems I have seen are caused by putting too many tables in a join. The fix for this is to do half the join (with some of the tables) and cache the results in a temporary table. Then do the rest of the query joining on that temporary table.
Query Optimisation Checklist
Run UPDATE STATISTICS on the underlying tables
Many systems run this as a scheduled weekly job
Delete records from underlying tables (possibly archive the deleted records)
Consider doing this automatically once a day or once a week.
Rebuild Indexes
Rebuild Tables (bcp data out/in)
Dump / Reload the database (drastic, but might fix corruption)
Build new, more appropriate index
Run DBCC to see if there is possible corruption in the database
Locks / Deadlocks
Ensure no other processes running in database
Especially DBCC
Are you using row or page level locking?
Lock the tables exclusively before starting the query
Check that all processes are accessing tables in the same order
Are indices being used appropriately?
Joins will only use index if both expressions are exactly the same data type
Index will only be used if the first field(s) on the index are matched in the query
Are clustered indices used where appropriate?
range data
WHERE field between value1 and value2
Small Joins are Nice Joins
By default the optimiser will only consider the tables 4 at a time.
This means that in joins with more than 4 tables, it has a good chance of choosing a non-optimal query plan
Break up the Join
Can you break up the join?
Pre-select foreign keys into a temporary table
Do half the join and put results in a temporary table
Are you using the right kind of temporary table?
#temp tables may perform much better than #table variables with large volumes (thousands of rows).
Maintain Summary Tables
Build with triggers on the underlying tables
Build daily / hourly / etc.
Build ad-hoc
Build incrementally or teardown / rebuild
See what the query plan is with SET SHOWPLAN ON
See what’s actually happenning with SET STATS IO ON
Force an index using the pragma: (index: myindex)
Force the table order using SET FORCEPLAN ON
Parameter Sniffing:
Break Stored Procedure into 2
call proc2 from proc1
allows optimiser to choose index in proc2 if #parameter has been changed by proc1
Can you improve your hardware?
What time are you running? Is there a quieter time?
Is Replication Server (or other non-stop process) running? Can you suspend it? Run it eg. hourly?
Have a pretty good idea of the optimal path of running the query in your head.
Check the query plan - always.
Turn on STATS, so that you can examine both IO and CPU performance. Focus on driving those numbers down, not necessarily the query time (as that can be influenced by other activity, cache, etc.).
Look for large numbers of rows coming into an operator, but small numbers coming out. Usually, an index would help by limiting the number of rows coming in (which saves disk reads).
Focus on the largest cost subtree first. Changing that subtree can often change the entire query plan.
Common problems I've seen are:
If there's a lot of joins, sometimes Sql Server will choose to expand the joins, and then apply WHERE clauses. You can usually fix this by moving the WHERE conditions into the JOIN clause, or a derived table with the conditions inlined. Views can cause the same problems.
Suboptimal joins (LOOP vs HASH vs MERGE). My rule of thumb is to use a LOOP join when the top row has very few rows compared to the bottom, a MERGE when the sets are roughly equal and ordered, and a HASH for everything else. Adding a join hint will let you test your theory.
Parameter sniffing. If you ran the stored proc with unrealistic values at first (say, for testing), then the cached query plan may be suboptimal for your production values. Running again WITH RECOMPILE should verify this. For some stored procs, especially those that deal with varying sized ranges (say, all dates between today and yesterday - which would entail an INDEX SEEK - or, all dates between last year and this year - which would be better off with an INDEX SCAN) you may have to run it WITH RECOMPILE every time.
Bad indentation...Okay, so Sql Server doesn't have an issue with this - but I sure find it impossible to understand a query until I've fixed up the formatting.
Slightly off topic but if you have control over these issues...
High level and High Impact.
For high IO environments make sure your disks are for either RAID 10 or RAID 0+1 or some nested implementation of raid 1 and raid 0.
Don't use drives less than 1500K.
Make sure your disks are only used for your Database. IE no logging no OS.
Turn off auto grow or similar feature. Let the database use all storage that is anticipated. Not necessarily what is currently being used.
design your schema and indexes for the type queries.
if it's a log type table (insert only) and must be in the DB don't index it.
if your doing allot of reporting (complex selects with many joins) then you should look at creating a data warehouse with a star or snowflake schema.
Don't be afraid of replicating data in exchange for performance!
CREATE INDEX
Assure there are indexes available for your WHERE and JOIN clauses. This will speed data access greatly.
If your environment is a data mart or warehouse, indexes should abound for almost any conceivable query.
In a transactional environment, the number of indexes should be lower and their definitions more strategic so that index maintenance doesn't drag down resources. (Index maintenance is when the leaves of an index must be changed to reflect a change in the underlying table, as with INSERT, UPDATE, and DELETE operations.)
Also, be mindful of the order of fields in the index - the more selective (higher cardinality) a field, the earlier in the index it should appear. For example, say you're querying for used automobiles:
SELECT i.make, i.model, i.price
FROM dbo.inventory i
WHERE i.color = 'red'
AND i.price BETWEEN 15000 AND 18000
Price generally has higher cardinality. There may be only a few dozen colors available, but quite possibly thousands of different asking prices.
Of these index choices, idx01 provides the faster path to satisfy the query:
CREATE INDEX idx01 ON dbo.inventory (price, color)
CREATE INDEX idx02 ON dbo.inventory (color, price)
This is because fewer cars will satisfy the price point than the color choice, giving the query engine far less data to analyze.
I've been known to have two very similar indexes differing only in the field order to speed queries (firstname, lastname) in one and (lastname, firstname) in the other.
Assuming MySQL here, use EXPLAIN to find out what is going on with the query, make sure that the indexes are being used as efficiently as possible and try to eliminate file sorts. High Performance MySQL: Optimization, Backups, Replication, and More is a great book on this topic as is MySQL Performance Blog.
A trick I recently learned is that SQL Server can update local variables as well as fields, in an update statement.
UPDATE table
SET #variable = column = #variable + otherColumn
Or the more readable version:
UPDATE table
SET
#variable = #variable + otherColumn,
column = #variable
I've used this to replace complicated cursors/joins when implementing recursive calculations, and also gained a lot in performance.
Here's details and example code that made fantastic improvements in performance:
Link
#Terrapin there are a few other differences between isnull and coalesce that are worth mentioning (besides ANSI compliance, which is a big one for me).
Coalesce vs. IsNull
Sometimes in SQL Server if you use an OR in a where clause it will really jack with performance. Instead of using the OR just do two selects and union them together. You get the same results at 1000x the speed.
Look at the where clause - verify use of indexes / verify nothing silly is being done
where SomeComplicatedFunctionOf(table.Column) = #param --silly
I'll generally start with the joins - I'll knock each one of them out of the query one at a time and re-run the query to get an idea if there's a particular join I'm having a problem with.
On all of my temp tables, I like to add unique constraints (where appropriate) to make indexes, and primary keys (almost always).
declare #temp table(
RowID int not null identity(1,1) primary key,
SomeUniqueColumn varchar(25) not null,
SomeNotUniqueColumn varchar(50) null,
unique(SomeUniqueColumn)
)
#DavidM
Assuming MySQL here, use EXPLAIN to find out what is going on with the query, make sure that the indexes are being used as efficiently as possible...
In SQL Server, execution plan gets you the same thing - it tells you what indexes are being hit, etc.
Not necessarily a SQL performance trick per se but definately related:
A good idea would be to use memcached where possible as it would be much faster just fetching the precompiled data directly from memory rather than getting it from the database. There's also a flavour of MySQL that got memcached built in (third party).
Make sure your index lengths are as small as possible. This allows the DB to read more keys at a time from the file system, thus speeding up your joins. I assume this works with all DB's, but I know it's a specific recommendation for MySQL.
I've made it a habit to always use bind variables. It's possible bind variables won't help if the RDBMS doesn't cache SQL statements. But if you don't use bind variables the RDBMS doesn't have a chance to reuse query execution plans and parsed SQL statements. The savings can be enormous: http://www.akadia.com/services/ora_bind_variables.html. I work mostly with Oracle, but Microsoft SQL Server works pretty much the same way.
In my experience, if you don't know whether or not you are using bind variables, you probably aren't. If your application language doesn't support them, find one that does. Sometimes you can fix query A by using bind variables for query B.
After that, I talk to our DBA to find out what's causing the RDBMS the most pain. Note that you shouldn't ask "Why is this query slow?" That's like asking your doctor to take out you appendix. Sure your query might be the problem, but it's just as likely that something else is going wrong. As developers, we we tend to think in terms of lines of code. If a line is slow, fix that line. But a RDBMS is a really complicated system and your slow query might be the symptom of a much larger problem.
Way too many SQL tuning tips are cargo cult idols. Most of the time the problem is unrelated or minimally related to the syntax you use, so it's normally best to use the cleanest syntax you can. Then you can start looking at ways to tune the database (not the query). Only tweak the syntax when that fails.
Like any performance tuning, always collect meaningful statistics. Don't use wallclock time unless it's the user experience you are tuning. Instead look at things like CPU time, rows fetched and blocks read off of disk. Too often people optimize for the wrong thing.
First step:
Look at the Query Execution Plan!
TableScan -> bad
NestedLoop -> meh warning
TableScan behind a NestedLoop -> DOOM!
SET STATISTICS IO ON
SET STATISTICS TIME ON
Running the query using WITH (NoLock) is pretty much standard operation in my place. Anyone caught running queries on the tens-of-gigabytes tables without it is taken out and shot.
Convert NOT IN queries to LEFT OUTER JOINS if possible. For example if you want to find all rows in Table1 that are unused by a foreign key in Table2 you could do this:
SELECT *
FROM Table1
WHERE Table1.ID NOT IN (
SELECT Table1ID
FROM Table2)
But you get much better performance with this:
SELECT Table1.*
FROM Table1
LEFT OUTER JOIN Table2 ON Table1.ID = Table2.Table1ID
WHERE Table2.ID is null
Index the table(s) by the clm(s) you filter by
Prefix all tables with dbo. to prevent recompilations.
View query plans and hunt for table/index scans.
In 2005, scour the management views for missing indexes.
I like to use
isnull(SomeColThatMayBeNull, '')
Over
coalesce(SomeColThatMayBeNull, '')
When I don't need the multiple argument support that coalesce gives you.
http://blog.falafel.com/2006/04/05/SQLServerArcanaISNULLVsCOALESCE.aspx
I look out for:
Unroll any CURSOR loops and convert into set based UPDATE / INSERT statements.
Look out for any application code that:
Calls an SP that returns a large set of records,
Then in the application, goes through each record and calls an SP with parameters to update records.
Convert this into a SP that does all the work in one transaction.
Any SP that does lots of string manipulation. It's evidence that the data is not structured correctly / normalised.
Any SP's that re-invent the wheel.
Any SP's that I can't understand what it's trying to do within a minute!
SET NOCOUNT ON
Usually the first line inside my stored procedures, unless I actually need to use ##ROWCOUNT.
In SQL Server, use the nolock directive. It allows the select command to complete without having to wait - usually other transactions to finish.
SELECT * FROM Orders (nolock) where UserName = 'momma'
Remove cursors wherever the are not neceesary.
Remove function calls in Sprocs where a lot of rows will call the function.
My colleague used function calls (getting lastlogindate from userid as example) to return very wide recordsets.
Tasked with optimisation, I replaced the function calls in the sproc with the function's code: I got many sprocs' running time down from > 20 seconds to < 1.
Don't prefix Stored Procedure names with "sp_" because system procedures all start with "sp_", and SQL Server will have to search harder to find your procedure when it gets called.
Dirty reads -
set transaction isolation level read uncommitted
Prevents dead locks where transactional integrity isn't absolutely necessary (which is usually true)
I always go to SQL Profiler (if it's a stored procedure with a lot of nesting levels) or the query execution planner (if it's a few SQL statements with no nesting) first. 90% of the time you can find the problem immediately with one of these two tools.