Related
I have created views on the SQL Server 2005 database and this view is based on views provided by a third party. I'm displaying them in our application via JDBC connection and they seems to be very slow. I tried another method and created them as a table by using SQL (select into) command in this case viewing the data in the application is fast. Can you advise me please about the best approach.
How can I improve the application performance?
Indexed view.
Use SSIS to get them into our database which is also an SQL Server 2008 R2.
What else?
The best way I have to found to improve the performance of queries (including views) is to take a look at the generated query plans produced by SSMS. The first thing I look for is Index or Table scans. When you see any of those, there is a good chance an index is needed, and often times you'll need to INCLUDE columns in the index for the index to actually get used.
Indexed views can give a tremendous performance boost. However, Microsoft has laid so many restrictions on them it's often very difficult to actually use them. They will also affect insert / update / delete performance on the base tables. So there is a trade-off.
I doubt that creating a separate table is a viable long-term and scaleable approach unless the plan is to execute these queries a very small number of times. The process of copying this data can be extremely resource intensive.
You should understand where the slowness is first.
Materializing the data into a table obviously means later selects can be faster, but the copying may be slow. If the data is slowly changing, that is certainly a design approach which can work.
Indexed views have restrictions and all indexes will affect write performance, since they need to be updated when data changes.
It sounds like two servers could be in play here. It's not clear if the views you created are on your server or the 2005 server. If you create a view in one server on views in another linked server, it is possible that more data is being pulled between the servers than is strictly necessary (compared to all the views being on the same server and being able to be optimized together).
How can I improve the application performance?
Indexed view.
Use SSIS to get them into our database which is also an SQL Server 2008 R2.
What else?
Another option not mentioned is
Don't use views
My experience is that non-indexed views typically make things slower and indexed views are difficult to create due to restrictions.
If you encounter some problem where you think you need to use a View try using a CTE or inline view instead.
I have recently noticed that nobody uses views in my company (and it's a big company).
I want to create a few views largely because they make my queries simpler to the eye, and these views are on somewhat big tables that don't get very frequent updates (once a day).
My alternative is to create a type table of type record an populate it each time a SP is called. Is this better than using a view? (my guess is no)
PS: database is oracle 10g and
EDIT:
- yes i have asked around but no one could give me a reason.
- both the views and the queries that will be using them are heavy on joins.
Aesthetics doesn't have a place in SQL, or coding in general, when there's performance implications.
If the optimizer determines that predicate pushing can occur, a view will be as good as directly querying the table(s) the view represents. And as Justin mentions, because a view is a macro that expands into the underlying query the view represents -- a soft parse (re-use of the query from cache) is very likely because the cache check needs to match queries exactly.
But be aware of the following:
layering views (one view based on another) is a bad practice -- errors won't be encountered until the view is run
joining views to other tables and or views is highly suspect -- the optimizer might not see things as well if the underlying query is in place of the view reference. I've had such experiences, because the views joined to were doing more than what the query needed -- sometimes, the queries from all the views used were condensed into a single query that ran much better.
I recommend creating your views, and comparing the EXPLAIN plans to make sure that you are at least getting identical performance. I'd need to see your code for populating a TYPE before commenting on the approach, but it sounds like a derived table in essence...
It's possible you would benefit from using materialized views, but they are notorious restricted in what they support.
It certainly sounds like creating some views would be helpful in this case.
Have you asked around to see why no one uses views? That seems quite odd and would certainly tend to indicate that you're not reusing your SQL very efficiently. Without views, you'd tend to put the same logic in many different SQL statements rather than in a single view which would make maintenance a pain.
One reason not to use views which may or may not be valid... is that they have the potential to create complexity where there isn't any
For example I could write
CREATE VIEW foo as <SOME COMPLEX QUERY>
then later I could write
CREATE Procedure UseFoo as
BEGIN
SELECT
somefields
FROM
x
INNER JOIN foo
.....
So now I'm creating to objects that need to be deployed, maintained, version controlled etc...
Or I could write either
CREATE Procedure UseFoo as
BEGIN
WITH foo as (<SOME COMPLEX QUERY>)
SELECT
somefields
FROM
x
INNER JOIN foo
.....
or
CREATE Procedure UseFoo as
BEGIN
SELECT
somefields
FROM
x
INNER JOIN <SOME COMPLEX QUERY> foo
.....
And now I only need to deploy, maintain, and version control a single object.
If <SOME COMPLEX QUERY> only exists in one context maintaining two separate objects creates an unnecessary burden. Also after deployment any changes to requires evaluating things that rely on UseFoo. When two object you need to visit anything that evaluating on UseFoo and Foo
Of course on the other hand if Foo represents some shared logic the evaluation is required anyway but you only have to find and change a single object.
It has been my experience that when you have a large/complex database and some complex queries and no views, it is just because the users just don't know what views are, or how to use them. Once I explained the benifits of using a view, most people used them with out any problems.
From your description, I would just make a view, not a new table.
Views are great for hiding complexity -- if your users can just run the views you create as-is (as opposed to writing a query against the view), this is good.
But views also come with performance issues -- if your users know how to write sql, and they understand the tables they're using, it might be better to let them keep doing that.
Consider also that stored procedures are less prone to (the same) performance issues that views are.
here is a link to and a snippet from a nice article that describes views as well as how to tune them for better peformance.
Uses of Views
Views are useful for providing a horizontal or vertical subset of data
from a table (possibly for security reasons) ; for hiding the
complexity of a query; for ensuring that exactly the same SQL is used
throughout your application; and in n-tier applications to retrieve
supplementary information about an item from a related table......
http://www.smart-soft.co.uk/Oracle/oracle-tuning-part4-vw-use.htm
I'm just trying to get a general idea of what views are used for in RDBMSes. That is to say, I know what a view is and how to make one. I also know what I've used them for in the past.
But I want to make sure I have a thorough understanding of what a view is useful for and what a view shouldn't be useful for. More specifically:
What is a view useful for?
Are there any situations in which it is tempting to use a view when you shouldn't use one?
Why would you use a view in lieu of something like a table-valued function or vice versa?
Are there any circumstances that a view might be useful that aren't apparent at first glance?
(And for the record, some of these questions are intentionally naive. This is partly a concept check.)
In a way, a view is like an interface. You can change the underlying table structure all you want, but the view gives a way for the code to not have to change.
Views are a nice way of providing something simple to report writers. If your business users want to access the data from something like Crystal Reports, you can give them some views in their account that simplify the data -- maybe even denormalize it for them.
1) What is a view useful for?
IOPO In One Place Only•Whether you consider the data itself or the queries that reference the joined tables, utilizing a view avoids unnecessary redundancy. •Views also provide an abstracting layer preventing direct access to the tables (and the resulting handcuffing referencing physical dependencies). In fact, I think it's good practice1 to offer only abstracted access to your underlying data (using views & table-valued functions), including views such as CREATE VIEW AS SELECT * FROM tblData1I hafta admit there's a good deal of "Do as I say; not as I do" in that advice ;)
2) Are there any situations in which it is tempting to use a view when you shouldn't use one?
Performance in view joins used to be a concern (e.g. SQL 2000). I'm no expert, but I haven't worried about it in a while. (Nor can I think of where I'm presently using view joins.)Another situation where a view might be overkill is when the view is only referenced from one calling location and a derived table could be used instead. Just like an anonymous type is preferable to a class in .NET if the anonymous type is only used/referenced once. • See the derived table description in http://msdn.microsoft.com/en-us/library/ms177634.aspx
3) Why would you use a view in lieu of something like a table-valued function or vice versa?
(Aside from performance reasons) A table-valued function is functionally equivalent to a parameterized view. In fact, a common simple table-valued function use case is simply to add a WHERE clause filter to an already existing view in a single object.
4) Are there any circumstances that a view might be useful that aren't apparent at first glance?
I can't think of any non-apparent uses of the top of my head. (I suppose if I could, that would make them apparent ;)
Views can be used to provide security (ie: users can have access to views that only access certain columns in a table), views can provide additional security for updates, inserts, etc. Views also provide a way to alias column names (as do sp's) but views are more of an isolation from the actual table.
In a sense views denormalize. Denormalization is sometimes necessary to provide data in a more meaningful manner. This is what a lot of applications do anyway by way of domain modeling in their objects. They help present the data in a way that more closely matches a business' perspective.
In addition to what the others have stated, views can also be useful for removing more complecated SQL queries from the application.
As an example, instead of in an application doing:
sql = "select a, b from table1 union
select a, b from table2";
You could abstract that to a view:
create view union_table1_table2_v as
select a,b from table1
union
select a,b from table2
and in the app code, simply have:
sql = "select a, b from union_table1_table2_v";
Also if the data structures ever change, you won't have to change the app code, recompile, and redeploy. you would just change the view in the db.
Views hide the database complexity. They are great for a lot of reasons and are useful in a lot of situations, but if you have users that are allowed to write their own queries and reports, you can use them as a safeguard to make sure they don't submit badly designed queries with nasty cartesian joins that take down your database server.
The OP asked if there were situations where it might be tempting to use a view, but it's not appropriate.
What you don't want to use a view for is a substitute for complex joins. That is, don't let your procedural programming habit of breaking a problem down into smaller pieces lead you toward using several views joined together instead of one larger join. Doing so will kill the database engine's efficiency since it's essentially doing several separate queries rather than one larger one.
For example, let's say you have to join tables A, B, C, and D together. You may be tempted to make a view out of tables A & B and a view out of C & D, then join the two views together. It's much better to just join A, B, C, and D in one query.
Views can centralize or consolidate data. Where I'm at we have a number of different databases on a couple different linked servers. Each database holds data for a different application. A couple of those databases hold information that are relavent to a number of different applications. What we'll do in those circumstances is create a view in that application's database that just pulls data from the database where the data is really stored, so that the queries we write don't look like they're going across different databases.
The responses so far are correct -- views are good for providing security, denormalization (although there is much pain down that road if done wrong), data model abstraction, etc.
In addition, views are commonly used to implement business logic (a lapsed user is a user who has not logged in in the last 40 days, that sort of thing).
Views save a lot of repeated complex JOIN statements in your SQL scripts. You can just encapsulate some complex JOIN in some view and call it in your SELECT statement whenever needed. This would sometimes be handy, straight forward and easier than writing out the join statements in every query.
A view is simply a stored, named SELECT statement. Think of views like library functions.
I wanted to highlight the use of views for reporting. Often, there is a conflict between normalizing the database tables to speed up performance, especially for editing and inserting data (OLTP uses), and denormalizing to reduce the number of table joins for queries for reporting and analysis (OLAP uses). Of necessity, OLTP usually wins, because data entry must have optimal performance. Creating views, then, for optimal reporting performance, can help to satisfy both classes of users (data entry and report viewers).
I remember a very long SELECT which involved several UNIONs. Each UNION included a join to a price table which was created on the fly by a SELECT that was itself fairly long and hard to understand. I think it would have been a good idea to have a view that to create the price table. It would have shortened the overall SELECT by about half.
I don't know if the DB would evaluate the view once, or once each time in was invoked. Anyone know? If the former, using a view would improved performance.
Anytime you need [my_interface] != [user_interface].
Example:
TABLE A:
id
info
VIEW for TABLE A:
Customer Information
this is a way you might hide the id from the customer and rename the info to a more verbose name both at once.
The view will use underlying index for primary key id, so you won't see a performance loss, just better abstraction of the select query.
Is a
select * from myView
faster than the query itself to create the view (in order to have the same resultSet):
select * from ([query to create same resultSet as myView])
?
It's not totally clear to me if the view uses some sort of caching making it faster compared to a simple query.
Yes, views can have a clustered index assigned and, when they do, they'll store temporary results that can speed up resulting queries.
Microsoft's own documentation makes it very clear that Views can improve performance.
First, most views that people create are simple views and do not use this feature, and are therefore no different to querying the base tables directly. Simple views are expanded in place and so do not directly contribute to performance improvements - that much is true. However, indexed views can dramatically improve performance.
Let me go directly to the documentation:
After a unique clustered index is created on the view, the view's result set is materialized immediately and persisted in physical storage in the database, saving the overhead of performing this costly operation at execution time.
Second, these indexed views can work even when they are not directly referenced by another query as the optimizer will use them in place of a table reference when appropriate.
Again, the documentation:
The indexed view can be used in a query execution in two ways. The query can reference the indexed view directly, or, more importantly, the query optimizer can select the view if it determines that the view can be substituted for some or all of the query in the lowest-cost query plan. In the second case, the indexed view is used instead of the underlying tables and their ordinary indexes. The view does not need to be referenced in the query for the query optimizer to use it during query execution. This allows existing applications to benefit from the newly created indexed views without changing those applications.
This documentation, as well as charts demonstrating performance improvements, can be found here.
Update 2: the answer has been criticized on the basis that it is the "index" that provides the performance advantage, not the "View." However, this is easily refuted.
Let us say that we are a software company in a small country; I'll use Lithuania as an example. We sell software worldwide and keep our records in a SQL Server database. We're very successful and so, in a few years, we have 1,000,000+ records. However, we often need to report sales for tax purposes and we find that we've only sold 100 copies of our software in our home country. By creating an indexed view of just the Lithuanian records, we get to keep the records we need in an indexed cache as described in the MS documentation. When we run our reports for Lithuanian sales in 2008, our query will search through an index with a depth of just 7 (Log2(100) with some unused leaves). If we were to do the same without the VIEW and just relying on an index into the table, we'd have to traverse an index tree with a search depth of 21!
Clearly, the View itself would provide us with a performance advantage (3x) over the simple use of the index alone. I've tried to use a real-world example but you'll note that a simple list of Lithuanian sales would give us an even greater advantage.
Note that I'm just using a straight b-tree for my example. While I'm fairly certain that SQL Server uses some variant of a b-tree, I don't know the details. Nonetheless, the point holds.
Update 3: The question has come up about whether an Indexed View just uses an index placed on the underlying table. That is, to paraphrase: "an indexed view is just the equivalent of a standard index and it offers nothing new or unique to a view." If this was true, of course, then the above analysis would be incorrect! Let me provide a quote from the Microsoft documentation that demonstrate why I think this criticism is not valid or true:
Using indexes to improve query performance is not a new concept; however, indexed views provide additional performance benefits that cannot be achieved using standard indexes.
Together with the above quote regarding the persistence of data in physical storage and other information in the documentation about how indices are created on Views, I think it is safe to say that an Indexed View is not just a cached SQL Select that happens to use an index defined on the main table. Thus, I continue to stand by this answer.
Generally speaking, no. Views are primarily used for convenience and security, and won't (by themselves) produce any speed benefit.
That said, SQL Server 2000 and above do have a feature called Indexed Views that can greatly improve performance, with a few caveats:
Not every view can be made into an indexed view; they have to follow a specific set of guidelines, which (among other restrictions) means you can't include common query elements like COUNT, MIN, MAX, or TOP.
Indexed views use physical space in the database, just like indexes on a table.
This article describes additional benefits and limitations of indexed views:
You Can…
The view definition can reference one or more tables in the
same database.
Once the unique clustered index is created, additional nonclustered
indexes can be created against the view.
You can update the data in the underlying tables – including inserts,
updates, deletes, and even truncates.
You Can’t…
The view definition can’t reference other views, or tables
in other databases.
It can’t contain COUNT, MIN, MAX, TOP, outer joins, or a few other
keywords or elements.
You can’t modify the underlying tables and columns. The view is
created with the WITH SCHEMABINDING option.
You can’t always predict what the query optimizer will do. If you’re
using Enterprise Edition, it will automatically consider the unique
clustered index as an option for a query – but if it finds a “better”
index, that will be used. You could force the optimizer to use the
index through the WITH NOEXPAND hint – but be cautious when using any
hint.
EDIT: I was wrong, and you should see Marks answer above.
I cannot speak from experience with SQL Server, but for most databases the answer would be no. The only potential benefit that you get, performance wise, from using a view is that it could potentially create some access paths based on the query. But the main reason to use a view is to simplify a query or to standardize a way of accessing some data in a table. Generally speaking, you won't get a performance benefit. I may be wrong, though.
I would come up with a moderately more complicated example and time it yourself to see.
In SQL Server at least, Query plans are stored in the plan cache for both views and ordinary SQL queries, based on query/view parameters. For both, they are dropped from the cache when they have been unused for a long enough period and the space is needed for some other newly submitted query. After which, if the same query is issued, it is recompiled and the plan is put back into the cache. So no, there is no difference, given that you are reusing the same SQL query and the same view with the same frequency.
Obviously, in general, a view, by it's very nature (That someone thought it was to be used often enough to make it into a view) is generally more likely to be "reused" than any arbitrary SQL statement.
Definitely a view is better than a nested query for SQL Server. Without knowing exactly why it is better (until I read Mark Brittingham's post), I had run some tests and experienced almost shocking performance improvements when using a view versus a nested query. After running each version of the query several hundred times in a row, the view version of the query completed in half the time. I'd say that's proof enough for me.
It may be faster if you create a materialized view (with schema binding). Non-materialized views execute just like the regular query.
My understanding is that a while back, a view would be faster because SQL Server could store an execution plan and then just use it instead of trying to figure one out on the fly. I think the performance gains nowadays is probably not as great as it once was, but I would have to guess there would be some marginal improvement to use the view.
I would expect the two queries to perform identically. A view is nothing more than a stored query definition, there is no caching or storing of data for a view. The optimiser will effectively turn your first query into your second query when you run it.
It all depends on the situation. MS SQL Indexed views are faster than a normal view or query but indexed views can not be used in a mirrored database invironment (MS SQL).
A view in any kind of a loop will cause serious slowdown because the view is repopulated each time it is called in the loop. Same as a query. In this situation a temporary table using # or # to hold your data to loop through is faster than a view or a query.
So it all depends on the situation.
There should be some trivial gain in having the execution plan stored, but it will be negligible.
In my finding, using the view is a little bit faster than a normal query. My stored procedure was taking around 25 minutes (working with a different larger record sets and multiple joins) and after using the view (non-clustered), the performance was just a little bit faster but not significant at all. I had to use some other query optimization techniques/method to make it a dramatic change.
Select from a View or from a table will not make too much sense.
Of course if the View does not have unnecessary joins, fields, etc. You can check the execution plan of your queries, joins and indexes used to improve the View performance.
You can even create index on views for faster search requirements. http://technet.microsoft.com/en-us/library/cc917715.aspx
But if you are searching like '%...%' than the sql engine will not benefit from an index on text column. If you can force your users to make searches like '...%' than that will be fast
referred to answer on asp forums :
https://forums.asp.net/t/1697933.aspx?Which+is+faster+when+using+SELECT+query+VIEW+or+Table+
Against all expectation, views are way slower in some circumstances.
I discovered this recently when I had problems with data which was pulled from Oracle which needed to be massaged into another format. Maybe 20k source rows. A small table. To do this we imported the oracle data as unchanged as I could into a table and then used views to extract data.
We had secondary views based on those views. Maybe 3-4 levels of views.
One of the final queries, which extracted maybe 200 rows would take upwards of 45 minutes! That query was based on a cascade of views. Maybe 3-4 levels deep.
I could take each of the views in question, insert its sql into one nested query, and execute it in a couple of seconds.
We even found that we could even write each view into a temp table and query that in place of the view and it was still way faster than simply using nested views.
What was even odder was that performance was fine until we hit some limit of source rows being pulled into the database, performs just dropped off a cliff over the space of a couple of days - a few more source rows was all it took.
So, using queries which pull from views which pull from views is much slower than a nested query - which makes no sense for me.
There is no practical different and if you read BOL you will find that ever your plain old SQL SELECT * FROM X does take advantage of plan caching etc.
The purpose of a view is to use the query over and over again. To that end, SQL Server, Oracle, etc. will typically provide a "cached" or "compiled" version of your view, thus improving its performance. In general, this should perform better than a "simple" query, though if the query is truly very simple, the benefits may be negligible.
Now, if you're doing a complex query, create the view.
No. view is just a short form of your actual long sql query. But yes, you can say actual query is faster than view command/query.
First view query will tranlate into simple query then it will execute, so view query will take more time to execute than simple query.
You can use sql views when you are using joins b/w multiple tables, to reuse complicated query again and again in simple manners.
I ran across this thread and just wanted to share this post from Brent Ozar as something to consider when using availability groups.
Brent Ozar bug report
I've been reading a little about temporary tables in MySQL but I'm an admitted newbie when it comes to databases in general and MySQL in particular. I've looked at some examples and the MySQL documentation on how to create a temporary table, but I'm trying to determine just how temporary tables might benefit my applications and I guess secondly what sorts of issues I can run into. Granted, each situation is different, but I guess what I'm looking for is some general advice on the topic.
I did a little googling but didn't find exactly what I was looking for on the topic. If you have any experience with this, I'd love to hear about it.
Thanks,
Matt
Temporary tables are often valuable when you have a fairly complicated SELECT you want to perform and then perform a bunch of queries on that...
You can do something like:
CREATE TEMPORARY TABLE myTopCustomers
SELECT customers.*,count(*) num from customers join purchases using(customerID)
join items using(itemID) GROUP BY customers.ID HAVING num > 10;
And then do a bunch of queries against myTopCustomers without having to do the joins to purchases and items on each query. Then when your application no longer needs the database handle, no cleanup needs to be done.
Almost always you'll see temporary tables used for derived tables that were expensive to create.
First a disclaimer - my job is reporting so I wind up with far more complex queries than any normal developer would. If you're writing a simple CRUD (Create Read Update Delete) application (this would be most web applications) then you really don't want to write complex queries, and you are probably doing something wrong if you need to create temporary tables.
That said, I use temporary tables in Postgres for a number of purposes, and most will translate to MySQL. I use them to break up complex queries into a series of individually understandable pieces. I use them for consistency - by generating a complex report through a series of queries, and I can then offload some of those queries into modules I use in multiple places, I can make sure that different reports are consistent with each other. (And make sure that if I need to fix something, I only need to fix it once.) And, rarely, I deliberately use them to force a specific query plan. (Don't try this unless you really understand what you are doing!)
So I think temp tables are great. But that said, it is very important for you to understand that databases generally come in two flavors. The first is optimized for pumping out lots of small transactions, and the other is optimized for pumping out a smaller number of complex reports. The two types need to be tuned differently, and a complex report run on a transactional database runs the risk of blocking transactions (and therefore making web pages not return quickly). Therefore you generally don't want to avoid using one database for both purposes.
My guess is that you're writing a web application that needs a transactional database. In that case, you shouldn't use temp tables. And if you do need complex reports generated from your transactional data, a recommended best practice is to take regular (eg daily) backups, restore them on another machine, then run reports against that machine.
The best place to use temporary tables is when you need to pull a bunch of data from multiple tables, do some work on that data, and then combine everything to one result set.
In MS SQL, Temporary tables should also be used in place of cursors whenever possible because of the speed and resource impact associated with cursors.
If you are new to databases, there are some good books by Joe Kelko that review best practices for ANSI SQL. SQL For Smarties will describe in great detail the use of temp table, impact of indexes, where clauses, etc. It's a great reference book with in depth detail.
I've used them in the past when I needed to create evaluated data. That was before the time of views and sub selects in MySQL though and I generally use those now where I would have needed a temporary table. The only time I might use them is if the evaluated data took a long time to create.
I haven't done them in MySQL, but I've done them on other databases (Oracle, SQL Server, etc).
Among other tasks, temporary tables provide a way for you to create a queryable (and returnable, say from a sproc) dataset that's purpose-built. Let's say you have several tables of figures -- you can use a temporary table to roll those figures up to nice, clean totals (or other math), then join that temp table to others in your schema for final output. (An example of this, in one of my projects, is calculating how many scheduled calls a given sales-related employee must make per week, bi-weekly, monthly, etc.)
I also often use them as a means of "tilting" the data -- turning columns to rows, etc. They're good for advanced data processing -- but only use them when you need to. (My golden rule, as always, applies: If you don't know why you're using x, and you don't know how x works, then you probably shouldn't use it.)
Generally, I wind up using them most in sprocs, where complex data processing is needed. I'd love to give a concrete example, but mine would be in T-SQL (as opposed to MySQL's more standard SQL), and also they're all client/production code which I can't share. I'm sure someone else here on SO will pick up and provide some genuine sample code; this was just to help you get the gist of what problem domain temp tables address.