Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 12 months ago.
The community reviewed whether to reopen this question yesterday and left it closed:
Original close reason(s) were not resolved
Improve this question
Given that indexing is so important as your data set increases in size, can someone explain how indexing works at a database-agnostic level?
For information on queries to index a field, check out How do I index a database column.
Why is it needed?
When data is stored on disk-based storage devices, it is stored as blocks of data. These blocks are accessed in their entirety, making them the atomic disk access operation. Disk blocks are structured in much the same way as linked lists; both contain a section for data, a pointer to the location of the next node (or block), and both need not be stored contiguously.
Due to the fact that a number of records can only be sorted on one field, we can state that searching on a field that isn’t sorted requires a Linear Search which requires (N+1)/2 block accesses (on average), where N is the number of blocks that the table spans. If that field is a non-key field (i.e. doesn’t contain unique entries) then the entire tablespace must be searched at N block accesses.
Whereas with a sorted field, a Binary Search may be used, which has log2 N block accesses. Also since the data is sorted given a non-key field, the rest of the table doesn’t need to be searched for duplicate values, once a higher value is found. Thus the performance increase is substantial.
What is indexing?
Indexing is a way of sorting a number of records on multiple fields. Creating an index on a field in a table creates another data structure which holds the field value, and a pointer to the record it relates to. This index structure is then sorted, allowing Binary Searches to be performed on it.
The downside to indexing is that these indices require additional space on the disk since the indices are stored together in a table using the MyISAM engine, this file can quickly reach the size limits of the underlying file system if many fields within the same table are indexed.
How does it work?
Firstly, let’s outline a sample database table schema;
Field name Data type Size on disk
id (Primary key) Unsigned INT 4 bytes
firstName Char(50) 50 bytes
lastName Char(50) 50 bytes
emailAddress Char(100) 100 bytes
Note: char was used in place of varchar to allow for an accurate size on disk value.
This sample database contains five million rows and is unindexed. The performance of several queries will now be analyzed. These are a query using the id (a sorted key field) and one using the firstName (a non-key unsorted field).
Example 1 - sorted vs unsorted fields
Given our sample database of r = 5,000,000 records of a fixed size giving a record length of R = 204 bytes and they are stored in a table using the MyISAM engine which is using the default block size B = 1,024 bytes. The blocking factor of the table would be bfr = (B/R) = 1024/204 = 5 records per disk block. The total number of blocks required to hold the table is N = (r/bfr) = 5000000/5 = 1,000,000 blocks.
A linear search on the id field would require an average of N/2 = 500,000 block accesses to find a value, given that the id field is a key field. But since the id field is also sorted, a binary search can be conducted requiring an average of log2 1000000 = 19.93 = 20 block accesses. Instantly we can see this is a drastic improvement.
Now the firstName field is neither sorted nor a key field, so a binary search is impossible, nor are the values unique, and thus the table will require searching to the end for an exact N = 1,000,000 block accesses. It is this situation that indexing aims to correct.
Given that an index record contains only the indexed field and a pointer to the original record, it stands to reason that it will be smaller than the multi-field record that it points to. So the index itself requires fewer disk blocks than the original table, which therefore requires fewer block accesses to iterate through. The schema for an index on the firstName field is outlined below;
Field name Data type Size on disk
firstName Char(50) 50 bytes
(record pointer) Special 4 bytes
Note: Pointers in MySQL are 2, 3, 4 or 5 bytes in length depending on the size of the table.
Example 2 - indexing
Given our sample database of r = 5,000,000 records with an index record length of R = 54 bytes and using the default block size B = 1,024 bytes. The blocking factor of the index would be bfr = (B/R) = 1024/54 = 18 records per disk block. The total number of blocks required to hold the index is N = (r/bfr) = 5000000/18 = 277,778 blocks.
Now a search using the firstName field can utilize the index to increase performance. This allows for a binary search of the index with an average of log2 277778 = 18.08 = 19 block accesses. To find the address of the actual record, which requires a further block access to read, bringing the total to 19 + 1 = 20 block accesses, a far cry from the 1,000,000 block accesses required to find a firstName match in the non-indexed table.
When should it be used?
Given that creating an index requires additional disk space (277,778 blocks extra from the above example, a ~28% increase), and that too many indices can cause issues arising from the file systems size limits, careful thought must be used to select the correct fields to index.
Since indices are only used to speed up the searching for a matching field within the records, it stands to reason that indexing fields used only for output would be simply a waste of disk space and processing time when doing an insert or delete operation, and thus should be avoided. Also given the nature of a binary search, the cardinality or uniqueness of the data is important. Indexing on a field with a cardinality of 2 would split the data in half, whereas a cardinality of 1,000 would return approximately 1,000 records. With such a low cardinality the effectiveness is reduced to a linear sort, and the query optimizer will avoid using the index if the cardinality is less than 30% of the record number, effectively making the index a waste of space.
Classic example "Index in Books"
Consider a "Book" of 1000 pages, divided by 10 Chapters, each section with 100 pages.
Simple, huh?
Now, imagine you want to find a particular Chapter that contains a word "Alchemist". Without an index page, you have no other option than scanning through the entire book/Chapters. i.e: 1000 pages.
This analogy is known as "Full Table Scan" in database world.
But with an index page, you know where to go! And more, to lookup any particular Chapter that matters, you just need to look over the index page, again and again, every time. After finding the matching index you can efficiently jump to that chapter by skipping the rest.
But then, in addition to actual 1000 pages, you will need another ~10 pages to show the indices, so totally 1010 pages.
Thus, the index is a separate section that stores values of indexed
column + pointer to the indexed row in a sorted order for efficient
look-ups.
Things are simple in schools, isn't it? :P
An index is just a data structure that makes the searching faster for a specific column in a database. This structure is usually a b-tree or a hash table but it can be any other logic structure.
The first time I read this it was very helpful to me. Thank you.
Since then I gained some insight about the downside of creating indexes:
if you write into a table (UPDATE or INSERT) with one index, you have actually two writing operations in the file system. One for the table data and another one for the index data (and the resorting of it (and - if clustered - the resorting of the table data)). If table and index are located on the same hard disk this costs more time. Thus a table without an index (a heap) , would allow for quicker write operations. (if you had two indexes you would end up with three write operations, and so on)
However, defining two different locations on two different hard disks for index data and table data can decrease/eliminate the problem of increased cost of time. This requires definition of additional file groups with according files on the desired hard disks and definition of table/index location as desired.
Another problem with indexes is their fragmentation over time as data is inserted. REORGANIZE helps, you must write routines to have it done.
In certain scenarios a heap is more helpful than a table with indexes,
e.g:- If you have lots of rivalling writes but only one nightly read outside business hours for reporting.
Also, a differentiation between clustered and non-clustered indexes is rather important.
Helped me:- What do Clustered and Non clustered index actually mean?
Now, let’s say that we want to run a query to find all the details of any employees who are named ‘Abc’?
SELECT * FROM Employee
WHERE Employee_Name = 'Abc'
What would happen without an index?
Database software would literally have to look at every single row in the Employee table to see if the Employee_Name for that row is ‘Abc’. And, because we want every row with the name ‘Abc’ inside it, we can not just stop looking once we find just one row with the name ‘Abc’, because there could be other rows with the name Abc. So, every row up until the last row must be searched – which means thousands of rows in this scenario will have to be examined by the database to find the rows with the name ‘Abc’. This is what is called a full table scan
How a database index can help performance
The whole point of having an index is to speed up search queries by essentially cutting down the number of records/rows in a table that need to be examined. An index is a data structure (most commonly a B- tree) that stores the values for a specific column in a table.
How does B-trees index work?
The reason B- trees are the most popular data structure for indexes is due to the fact that they are time efficient – because look-ups, deletions, and insertions can all be done in logarithmic time. And, another major reason B- trees are more commonly used is because the data that is stored inside the B- tree can be sorted. The RDBMS typically determines which data structure is actually used for an index. But, in some scenarios with certain RDBMS’s, you can actually specify which data structure you want your database to use when you create the index itself.
How does a hash table index work?
The reason hash indexes are used is because hash tables are extremely efficient when it comes to just looking up values. So, queries that compare for equality to a string can retrieve values very fast if they use a hash index.
For instance, the query we discussed earlier could benefit from a hash index created on the Employee_Name column. The way a hash index would work is that the column value will be the key into the hash table and the actual value mapped to that key would just be a pointer to the row data in the table. Since a hash table is basically an associative array, a typical entry would look something like “Abc => 0x28939″, where 0x28939 is a reference to the table row where Abc is stored in memory. Looking up a value like “Abc” in a hash table index and getting back a reference to the row in memory is obviously a lot faster than scanning the table to find all the rows with a value of “Abc” in the Employee_Name column.
The disadvantages of a hash index
Hash tables are not sorted data structures, and there are many types of queries which hash indexes can not even help with. For instance, suppose you want to find out all of the employees who are less than 40 years old. How could you do that with a hash table index? Well, it’s not possible because a hash table is only good for looking up key value pairs – which means queries that check for equality
What exactly is inside a database index?
So, now you know that a database index is created on a column in a table, and that the index stores the values in that specific column. But, it is important to understand that a database index does not store the values in the other columns of the same table. For example, if we create an index on the Employee_Name column, this means that the Employee_Age and Employee_Address column values are not also stored in the index. If we did just store all the other columns in the index, then it would be just like creating another copy of the entire table – which would take up way too much space and would be very inefficient.
How does a database know when to use an index?
When a query like “SELECT * FROM Employee WHERE Employee_Name = ‘Abc’ ” is run, the database will check to see if there is an index on the column(s) being queried. Assuming the Employee_Name column does have an index created on it, the database will have to decide whether it actually makes sense to use the index to find the values being searched – because there are some scenarios where it is actually less efficient to use the database index, and more efficient just to scan the entire table.
What is the cost of having a database index?
It takes up space – and the larger your table, the larger your index. Another performance hit with indexes is the fact that whenever you add, delete, or update rows in the corresponding table, the same operations will have to be done to your index. Remember that an index needs to contain the same up to the minute data as whatever is in the table column(s) that the index covers.
As a general rule, an index should only be created on a table if the data in the indexed column will be queried frequently.
See also
What columns generally make good indexes?
How do database indexes work
Simple Description!
The index is nothing but a data structure that stores the values for a specific column in a table. An index is created on a column of a table.
Example: We have a database table called User with three columns – Name, Age and Address. Assume that the User table has thousands of rows.
Now, let’s say that we want to run a query to find all the details of any users who are named 'John'.
If we run the following query:
SELECT * FROM User
WHERE Name = 'John'
The database software would literally have to look at every single row in the User table to see if the Name for that row is ‘John’. This will take a long time.
This is where index helps us: index is used to speed up search queries by essentially cutting down the number of records/rows in a table that needs to be examined.
How to create an index:
CREATE INDEX name_index
ON User (Name)
An index consists of column values(Eg: John) from one table, and those values are stored in a data structure.
So now the database will use the index to find employees named John
because the index will presumably be sorted alphabetically by the
Users name. And, because it is sorted, it means searching for a name
is a lot faster because all names starting with a “J” will be right
next to each other in the index!
Just think of Database Index as Index of a book.
If you have a book about dogs and you want to find an information about let's say, German Shepherds, you could of course flip through all the pages of the book and find what you are looking for - but this of course is time consuming and not very fast.
Another option is that, you could just go to the Index section of the book and then find what you are looking for by using the Name of the entity you are looking ( in this instance, German Shepherds) and also looking at the page number to quickly find what you are looking for.
In Database, the page number is referred to as a pointer which directs the database to the address on the disk where entity is located. Using the same German Shepherd analogy, we could have something like this (“German Shepherd”, 0x77129) where 0x77129 is the address on the disk where the row data for German Shepherd is stored.
In short, an index is a data structure that stores the values for a specific column in a table so as to speed up query search.
Related
I'm learning indexing in PostgreSQL now. I started trying to create my index and analyzing how it will affect execution time. I created some tables with such columns:
also, I filled them with data. After that I created my custom index:
create index events_organizer_id_index on events(organizer_ID);
and executed this command (events table contains 148 rows):
explain analyse select * from events where events.organizer_ID = 4;
I was surprised that the search was executed without my index and I got this result:
As far as I know, if my index was used in search there would be the text like "Index scan on events".
So, can someone explain or give references to sites, please, how to use indexes effectively and where should I use them to see differences?
From "Rows removed by filter: 125" I see there are too few rows in the events table. Just add couple of thousands rows and give it another go
from the docs
Use real data for experimentation. Using test data for setting up indexes will tell you what indexes you need for the test data, but that is all.
It is especially fatal to use very small test data sets. While
selecting 1000 out of 100000 rows could be a candidate for an index,
selecting 1 out of 100 rows will hardly be, because the 100 rows probably fit within a single disk page, and there is no plan that can
beat sequentially fetching 1 disk page.
In most cases, when database using an index it gets only address where the row is located. It contains data block_id and the offset because there might be many rows in one block of 4 or 8 Kb.
So, the database first searches index for the block adress, then it looks for the block on disk, reads it and parses the line you need.
When there are too few rows they fit into one on in couple of data blocks which makes it easier and quicker for DB to read whole table without using index at all.
See it the following way:
The database decides which way is faster to find your tuple (=record) with organizer_id 4. There are two ways:
a) Read the index and then skip to the block which contains the data.
b) Read the heap and find the record there.
The information in your screenshot show 126 records (125 skipped + your record) with a length ("width") of 62 bytes. Including overhead these data fit into two database blocks of 8 KB. As a rotating disk or SSD reads a series of blocks anyway - they read always more blocks into the buffer - it's one read operation for these two blocks.
So the database decides that it is pointless to read first the index to find the correct record (of in our case two blocks) and then read the data from the heap with the information from the index. That would be two read operations. Even with modern technology newer than rotating disks this needs more time than just scanning the two blocks. That's why the database doesn't use the index.
Indexes on such small tables aren't good for searching. Nevertheless unique indexes avoid double entries.
I have 2 HBase tables - one with a single column family, and other has 4 column families. Both tables are keyed by same rowkey, and the column families all have a single column qualifier each, with a json string as value (each json payload is about 10-20K in size). All column families use fast-diff encoding and gzip compression.
After loading about 60MM rows to each table, a scan test on any single column family in 2nd table takes 4x the time to scan the single column family from 1st table. Note that the scan on 2nd table uses addFamily to limit scan to only 1 column family, and both tests scan 1MM rows exactly - so the net workload (and hence performance expectation) should be the same in both cases. However, tests show 4x time on any column family in 2nd table vs 1st table. Performance did not change much even after running a major compaction on both tables.
Though HBase doc and other tech forums recommend not using more than 1 column family per table, nothing I have read so far suggests scan performance will linearly degrade based on number of column families. Has anyone else experienced this, and is there a simple explanation for this?
To note, the reason second table has 4 column families is even though I only scan one column family at a time now, there are requirements to scan multiple column families from that table given a set of rowkeys.
Thanks for any insight into the performance question.
That's a normal behavior, if I've got your situation right.
Since each column family represents a separate Store on RegionServer, accessing multiple stores takes more time.
You can limit your scan to specific column families, use
addFamily on your scan object.
Clustering factor - A Awesome Simple Explanation on how it is calculated:
Basically, the CF is calculated by performing a Full Index Scan and
looking at the rowid of each index entry. If the table block being
referenced differs from that of the previous index entry, the CF is
incremented. If the table block being referenced is the same as the
previous index entry, the CF is not incremented. So the CF gives an
indication of how well ordered the data in the table is in relation to
the index entries (which are always sorted and stored in the order of
the index entries). The better (lower) the CF, the more efficient it
would be to use the index as less table blocks would need to be
accessed to retrieve the necessary data via the index.
My Index statistics:
So, here are my indexes(index over just one column) under analysis.
Index starting PK_ is my Primary Key and UI is a Unique key. (Ofcourse both hold unique values)
Query1:
SELECT index_name,
UNIQUENESS,
clustering_factor,
num_rows,
CEIL((clustering_factor/num_rows)*100) AS cluster_pct
FROM all_indexes
WHERE table_name='MYTABLE';
Result:
INDEX_NAME UNIQUENES CLUSTERING_FACTOR NUM_ROWS CLUSTER_PCT
-------------------- --------- ----------------- ---------- -----------
PK_TEST UNIQUE 10009871 10453407 96 --> So High
UITEST01 UNIQUE 853733 10113211 9 --> Very Less
We can see the PK having the highest CF and the other unique index is not.
The only logical explanation that strikes me is, the data beneath is stored actually by order of column over the Unique index.
1) Am I right with this understanding?
2) Is there any way to give the PK , the lowest CF number?
3) Seeing the Query cost using both these index, it is very fast for single selects. But still, the CF number is what baffle us.
The table is relatively huge over 10M records, and also receives real time inserts/updates.
My Database version is Oracle 11gR2, over Exadata X2
You are seeing the evidence of a heap table indexed by an ordered tree structure.
To get extremely low CF numbers you'd need to order the data as per the index. If you want to do this (like SQL Server or Sybase clustered indexes), in Oracle you have a couple of options:
Simply create supplemental indexes with additional columns that can satisfy your common queries. Oracle can return a result set from an index without referring to the base table if all of the required columns are in the index. If possible, consider adding columns to the trailing end of your PK to serve your heaviest query (practical if your query has small number of columns). This is usually advisable over changing all of your tables to IOTs.
Use an IOT (Index Organized Table) - It is a table, stored as an index, so is ordered by the primary key.
Sorted hash cluster - More complicated, but can also yield gains when accessing a list of records for a certain key (like a bunch of text messages for a given phone number)
Reorganize your data and store the records in the table in order of your index. This option is ok if your data isn't changing, and you just want to reorder the heap, though you can't explicitly control the order; all you can do is order the query and let Oracle append it to a new segment.
If most of your access patterns are random (OLTP), single record accesses, then I wouldn't worry about the clustering factor alone. That is just a metric that is neither bad nor good, it just depends on the context, and what you are trying to accomplish.
Always remember, Oracle's issues are not SQL Server's issues, so make sure any design change is justified by performance measurement. Oracle is highly concurrent, and very low on contention. Its multi-version concurrency design is very efficient and differs from other databases. That said, it is still a good tuning practice to order data for sequential access if that is your common use case.
To read some better advice on this subject, read Ask Tom: what are oracle's clustered and nonclustered indexes
This question already has answers here:
Which is faster/best? SELECT * or SELECT column1, colum2, column3, etc
(49 answers)
Closed 8 years ago.
For example there are 20 fields in a record, which includes 5 indexed fields out of 20 fields. Given proper indexes on columns are set up and the data will be retrieved with the indexed field. I want to discuss 2 situations below.
retrieving a field from a record
retrieving a entire record
The only difference I know is that in case 1, the system uses small amount of data, so it spent less on the bus traffic. But when it comes to retrieving time, I'm not sure in these 2 cases if there will be any difference in terms of hardware operation, because I think the main cost on retrieving task on DB is finding the record regardless of how many fields. Is this correct?
Assuming you are retrieving from a heap-based table and your WHERE clause is identical in both cases:
It matters whether the field(s) being retrieved is in the index or not. If it's in the index, the DBMS will not need to access the table heap - this is called index-only scan. If it's not in the index, the DBMS must access the heap page in which the the field resides, possibly requiring additional I/O if not already cached.
If you are reading the whole row, it is less likely all of its fields are covered by the index the DBMS query planner chose to use, so it is more likely you'll pay the I/O cost of the table heap access. This is not so bad for a single row, but can absolutely destroy performance if many rows are retrieved and index's clustering factor is bad1.
The situation is similar but slightly more complicated for clustered tables, since indexes tend to cover PK fields even when not explicitly mentioned in CREATE INDEX, and the "main" portion of the table cannot (typically) be accessed directly, but through an index seek.
On top of that, transferring more data puts more pressure on network bandwidth, as you already noted.
For these reasons, always try to select exactly what you need and no more.
1 A good query optimizer will notice that and perform the full table scan because it's cheaper, even though the index is available.
Reading several material I came to conclusions:
Select only those fields required when performing a query.
If only indexed field will be scanned, the DB will perform index-only searching, which is fast.
When trying to fetch many rows which includes un-indexed fields, the worst case is that the query will perform as many block I/Os as number of rows, which is very expensive cost. So the better way is to perform full table scan because the total number of block I/Os equals to the total number of blocks, which could be much smaller than the number of rows.
I have a device I'm polling for lots of different fields, every x milliseconds
the device returns a list of ids and values which I need to store with a time stamp in a DB of sorts.
Users of the system need to be able to query this DB for historic logs to create graphs, or query the last timestamp for each value.
A simple approach would be to define a MySQL table with
id,value_id,timestamp,value
and let users select
Select value form t where value_id=x order by timestamp desc limit 1
and just push everything there with index on timestamp and id, But my question is what's the best approach performance / size wise for designing the schema? or using nosql? can anyone comment on possible design trade offs. Will such a design scale with millions of records?
When you say "... or query the last timestamp for each value" is this what you had in mind?
select max(timestamp) from T where value = ?
If you have millions of records, and the above is what you meant (i.e. value is alone in the WHERE clause), then you'd need an index on the value column, otherwise you'd have to do a full table scan. But if queries will ALWAYS have [timestamp] column in the WHERE clause, you do not need an index on [value] column if there's an index on timestamp.
You need an index on the timestamp column if your users will issue queries where the timestamp column appears alone in the WHERE clause:
select * from T where timestamp > x and timestamp < y
You could index all three columns, but you want to make sure the writes do not slow down because of the indexing overhead.
The rule of thumb when you have a very large database is that every query should be able to make use of an index, so you can avoid a full table scan.
EDIT:
Adding some additional remarks after your clarification.
I am wondering how you will know the id? Is [id] perhaps a product code?
A single simple index on id might not scale very well if there are not many different product codes, i.e. if it's a low-cardinality index. The rebalancing of the trees could slow down the batch inserts that are happening every x milliseconds. A composite index on (id,timestamp) would be better than a simple index.
If you rarely need to sort multiple products but are most often selecting based on a single product-code, then a non-traditional DBMS that uses a hashed-key sparse-table rather than a b-tree might be a very viable even a superior alternative for you. In such a database, all of the records for a given key would be found physically on the same set of contiguous "pages"; the hashing algorithm looks at the key and returns the page number where the record will be found. There is no need to rebalance an index as there isn't an index, and so you completely avoid the related scaling worries.
However, while hashed-file databases excel at low-overhead nearly instant retrieval based on a key value, they tend to be poor performers at sorting large groups of records on an attribute, because the data are not stored physically in any meaningful order, and gathering the records can involve much thrashing. In your case, timestamp would be that attribute. If I were in your shoes, I would base my decision on the cardinality of the id: in a dataset of a million records, how many DISTINCT ids would be found?
YET ANOTHER EDIT SINCE THE SITE IS NOT LETTING ME ADD ANOTHER ANSWER:
Simplest way is to have two tables, one with the ongoing history, which is always having new values inserted, and the other, containing only 250 records, one per part, where the latest value overwrites/replaces the previous one.
Update latest
set value = x
where id = ?
You have a choice of
indexes (composite; covering value_id, timestamp and value, or some combination of them): you should test performance with different indexes; composite and non-composite, also be aware that there are quite a few significantly different ways to get 'max per group' (search so, especially mysql version with variables)
triggers - you might use triggers to maintain max row values in another table (best performance of further selects; this is redundant and could be kept in memory)
lazy statistics/triggers, since your database is updated quite often you can save cycles if you update your statistics periodically (if you can allow the stats to be y seconds old and if you poll 1000 / x times a second, then you potentially save y * 100 / x potential updates; and this can be noticeable, especially in terms of scalability)
The above is true if you are looking for last bit of performance, if not keep it simple.