How to create a pipeline with multiple TF models? - tensorflow

I need to create a pipeline with two independently trained models for inference. The same set of serving features will pass through both of these and provide predictions
tf.saved_model.save( model, export_dir=SERIALIZED_MODEL_PATH, signatures={"serving_default": serving, "predict": serving}, )
However, this does not work for two models

Related

Training a keras model on pretrained weights using load_weights()

I am using a custom keras model in Databricks environment.
For a custom keras model, model.save(model.h5) does not work, because custom model is not serializable. Instead it is recommended to use model.save_weights(path) as an alternate.
model.save_weights(pathDirectory) works. This yields 3 files checkpoint,.data-00000-of-00001,.index in the pathDirectory
For loading weights, Following mechanism is working fine.
model = Model()
model.load_weights(path)
But I want to train my model on pretrained weights I just saved. Like I saved model weights, and continue training on these saved weights afterwards.
So, when I load model weights and apply training loop, I get this error, TypeError: 'CheckpointLoadStatus' object is not callable
After much research, I have found a workaround,
we can also save model using
model.save("model.hpy5") and read it the saved model in databricks.
model.h5 not work for customized models, but it works for standard models.

Adding Batch Dimension to tensorflow graph which was trained without batching support

I trained the network without batching, hence the input dimension of graph is (H,W,C) (not even [1,H,W,C]).
But during inference, I need predictions for multiple images (batched inference).
How can we achieve this

Freezing BERT layers after importing via TF-hub and training them?

I will describe my intention here. I want to import BERT pretrained model via tf-hub function hub.module(bert_url, trainable = True) and utilize it for text classification task. I plan to use a large corpus to fine-tune weights of BERT as well as a few dense layers whose inputs are the BERT outputs. I would then like to freeze layers of BERT and train only the dense layers following BERT. How can I do this efficiently?
You mention Hub's TF1 API hub.Module, so I suppose you are writing TF1 code and using the TF1-compatible Hub assets google/bert/..., such as https://tfhub.dev/google/bert_cased_L-12_H-768_A-12/1
Are you going to have separate run of your program for the two phases of training? If so, maybe you can just drop trainable=True from the hub.Module call in the second run. This doesn't affect variable names, so you can restore the training result from the first run, including BERT's adjusted weights. (To be clear: the pre-trained weights shipped with the hub.Module are only used for initialization at the very start of training; restoring a checkpoint overrides them.)

TensorFlow Graph to Keras Model?

Is it possible to define a graph in native TensorFlow and then convert this graph to a Keras model?
My intention is simply combining (for me) the best of the two worlds.
I really like the Keras model API for prototyping and new experiments, i.e. using the awesome multi_gpu_model(model, gpus=4) for training with multiple GPUs, saving/loading weights or whole models with oneliners, all the convenience functions like .fit(), .predict(), and others.
However, I prefer to define my model in native TensorFlow. Context managers in TF are awesome and, in my opinion, it is much easier to implement stuff like GANs with them:
with tf.variable_scope("Generator"):
# define some layers
with tf.variable_scope("Discriminator"):
# define some layers
# model losses
G_train_op = ...AdamOptimizer(...)
.minimize(gloss,
var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope="Generator")
D_train_op = ...AdamOptimizer(...)
.minimize(dloss,
var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope="Discriminator")
Another bonus is structuring the graph this way. In TensorBoard debugging complicated native Keras models are hell since they are not structured at all. With heavy use of variable scopes in native TF you can "disentangle" the graph and look at a very structured version of a complicated model for debugging.
By utilizing this I can directly setup custom loss function and do not have to freeze anything in every training iteration since TF will only update the weights in the correct scope, which is (at least in my opinion) far easier than the Keras solution to loop over all the existing layers and set .trainable = False.
TL;DR:
Long story short: I like the direct access to everything in TF, but most of the time a simple Keras model is sufficient for training, inference, ... later on. The model API is much easier and more convenient in Keras.
Hence, I would prefer to set up a graph in native TF and convert it to Keras for training, evaluation, and so on. Is there any way to do this?
I don't think it is possible to create a generic automated converter for any TF graph, that will come up with a meaningful set of layers, with proper namings etc. Just because graphs are more flexible than a sequence of Keras layers.
However, you can wrap your model with the Lambda layer. Build your model inside a function, wrap it with Lambda and you have it in Keras:
def model_fn(x):
layer_1 = tf.layers.dense(x, 100)
layer_2 = tf.layers.dense(layer_1, 100)
out_layer = tf.layers.dense(layer_2, num_classes)
return out_layer
model.add(Lambda(model_fn))
That is what sometimes happens when you use multi_gpu_model: You come up with three layers: Input, model, and Output.
Keras Apologetics
However, integration between TensorFlow and Keras can be much more tighter and meaningful. See this tutorial for use cases.
For instance, variable scopes can be used pretty much like in TensorFlow:
x = tf.placeholder(tf.float32, shape=(None, 20, 64))
with tf.name_scope('block1'):
y = LSTM(32, name='mylstm')(x)
The same for manual device placement:
with tf.device('/gpu:0'):
x = tf.placeholder(tf.float32, shape=(None, 20, 64))
y = LSTM(32)(x) # all ops / variables in the LSTM layer will live on GPU:0
Custom losses are discussed here: Keras: clean implementation for multiple outputs and custom loss functions?
This is how my model defined in Keras looks in Tensorboard:
So, Keras is indeed only a simplified frontend to TensorFlow so you can mix them quite flexibly. I would recommend you to inspect source code of Keras model zoo for clever solutions and patterns that allows you to build complex models using clean API of Keras.
You can insert TensorFlow code directly into your Keras model or training pipeline! Since mid-2017, Keras has fully adopted and integrated into TensorFlow. This article goes into more detail.
This means that your TensorFlow model is already a Keras model and vice versa. You can develop in Keras and switch to TensorFlow whenever you need to. TensorFlow code will work with Keras APIs, including Keras APIs for training, inference and saving your model.

TensorFlow: load checkpoint, but only parts of it (convolutional layers)

Is it possible to only load specific layers (convolutional layers) out of one checkpoint file?
I've trained some CNNs fully-supervised and saved my progress (I'm doing object localization). To do auto-labelling I thought of building a weakly-supervised CNNs out of my current model...but since the weakly-supervised version has different fully-connected layers, I would like to select only the convolutional filters of my TensorFlow checkpoint file.
Of course I could manually save the weights of the corresponding layers, but due to the fact that they're already included in TensorFlow's checkpoint file I would like to extract them there, in order to have one single storing file.
TensorFlow 2.1 has many different public facilities for loading checkpoints (model.save, Checkpoint, saved_model, etc), but to the best of my knowledge, none of them has filtering API. So, let me suggest a snippet for hard cases which uses tooling from the TF2.1 internal development tests.
checkpoint_filename = '/path/to/our/weird/checkpoint.ckpt'
model = tf.keras.Model( ... ) # TF2.0 Model to initialize with the above checkpoint
variables_to_load = [ ... ] # List of model weight names to update.
from tensorflow.python.training.checkpoint_utils import load_checkpoint, list_variables
reader = load_checkpoint(checkpoint_filename)
for w in model.weights:
name=w.name.split(':')[0] # See (b/29227106)
if name in variables_to_load:
print(f"Updating {name}")
w.assign(reader.get_tensor(
# (Optional) Handle variable renaming
{'/var_name1/in/model':'/var_name1/in/checkpoint',
'/var_name2/in/model':'/var_name2/in/checkpoint',
# ... and so on
}.get(name,name)))
Note: model.weights and list_variables may help to inspect variables in Model and in the checkpoint
Note also, that this method will not restore model's optimizer state.