Why doesn't Keras one-hot encode have not zeroes? - tensorflow

For example:
from tensorflow.keras.preprocessing.text import one_hot
vocab_size = 5
one_hot('good job', vocab_size)
Out[6]: [3, 2]
For each word, it only assigns a single integer '3' and '2', not a vector of size 5 with 1 and 0s? Should one-hot encoding always yield a vector of 1 and 0s?

This is the way this function works. It yields integers instead of OHE. Probably they are also deprecating it because of unnatural usage. Seems like tensorflow.keras.preprocessing.text.one_hot is being deprecated.
Deprecated: tf.keras.text.preprocessing.one_hot does not operate on
tensors and is not recommended for new code. Prefer
tf.keras.layers.Hashing with output_mode='one_hot' which provides
equivalent functionality through a layer which accepts tf.Tensor
input. See the preprocessing layer guide for an overview of
preprocessing layers.
The recommendation is to use :
tf.keras.layers.Hashing(
num_bins,
mask_value=None,
salt=None,
output_mode='int',
sparse=False,
**kwargs
)
If you modify the output_mode from int to multi_hot you will get the one-hot vectors you are looking for.
From the documentation:
Specification for the output of the layer. Defaults to "int". Values
can be "int", "one_hot", "multi_hot", or "count" configuring the layer
as follows:
"int": Return the integer bin indices directly.
"one_hot": Encodes each individual element in the input into an array the same size as num_bins, containing a 1 at the input's bin
index. If the last dimension is size 1, will encode on that dimension.
If the last dimension is not size 1, will append a new dimension for
the encoded output.
"multi_hot": Encodes each sample in the input into a single array the same size as num_bins, containing a 1 for each bin index index
present in the sample. Treats the last dimension as the sample
dimension, if input shape is (..., sample_length), output shape will
be (..., num_tokens).
"count": As "multi_hot", but the int array contains a count of the number of times the bin index appeared in the sample.

Related

TFP Linear Regression yhat=model(x_tst) - doesn't work for other data

I cannot see the difference between what I am doing and the working Google TFP example, whose structure I am following. What am I doing wrong/should I be doing differently?
[Setup: Win 10 Home 64-bit 20H2, Python 3.7, TF2.4.1, TFP 0.12.2, running in Jupyter Lab]
I have been building a model step by step following the example of TFP Probabilistic Layers Regression. The Case 1 code runs fine, but my parallel model doesn't and I cannot see the difference that might cause this
yhat = model(x_tst)
to fail with message Input 0 of layer sequential_14 is incompatible with the layer: : expected min_ndim=2, found ndim=1. Full shape received: (2019,) (which is the correct 1D size of x_tst)
For comparison: Google's load_dataset function for the TFP example returns y, x, x_tst, which are all np.ndarray of size 150, whereas I read data from a csv file with pandas.read_csv, split it into train_ and test_datasets and then take 1 col of data as independent variable 'g' and dependent variable 'redz' from the training dataset.
I know x, y, etc. need to be np.ndarray, but one does not create ndarray directly, so I have...
x = np.array(train_dataset['g'])
y = np.array(train_dataset['redz'])
x_tst = np.array(test_dataset['g'])
where x, y, x_tst are all 1-dimensional - just like the TFP example.
The model itself runs
model = tf.keras.Sequential([
tf.keras.layers.Dense(1),
tfp.layers.DistributionLambda(lambda t: tfd.Normal(loc=t, scale=1)),
])
# Do inference.
model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.01), loss=negloglik)
model.fit(x, y, epochs=1, verbose=False);
(and when plotted gives the expected output for the google data - I don't get this far):
But, per the example when I try to "profit" by doing yhat = model(x_tst) I get the dimensions error given above.
What's wrong?
(If I try mode.predict I think I hit a known bug/gap in TFP; then it fails the assert)
Update - Explicit Reshape Resolves Issue
The hint from Frightera led to further investigation: x_tst had shape (2019,)
Reshaping by x_tst = x_tst.rehape(2019,1) resolved the issue. Is TF inconsistent in its requirements or is there some good reason that the explicit final dimension 1 was required? Who knows. At least predictions can be made now.
In this question Difference between numpy.array shape (R, 1) and (R,), the OP asked for the difference between (R,) and (R,1) but the answers given did not address this specific point.
Similarly in this question Difference between these array shapes in numpy
I believe the answer lies in the numpy glossary, where it says of (n,) that
A parenthesized number followed by a comma denotes a tuple with one
element. The trailing comma distinguishes a one-element tuple from a
parenthesized n.
Which, naturally, echoes the Python statements concerning tuples here
Thus an array of shape (R,) is a tuple describing an array as being 1D of a certain extent R, where the comma is appended to distinguish the tuple (R,) from the non-tuple (R).
However, for a 1D array, there is no sense of row or column ordering; (R,1) is R rows by 1 column, but (1, R) would be 1 row of R columns, and though it shouldn't matter to a 1D iterator either it does or the iterator doesn't correctly recognise ( ,) and thinks it is 2D. (i.e. I don't know the technical details of that part, but these seem to be the only options that account for the behaviour.)
This issue is unrelated to the indeterminacy of size that occurs in tensor definition in Tensorflow. In the context of Tensorflow, Tensors (arrays) may have indeterminate shapes, so that more data may be added along a certain axis as processing occurs, e.g. in batches, in which case the initial Tensor shape includes a leading None to indicate where array expansion is expected to occur. (See e.g. tensor's shape here)

dimension of a tensor created by tf.zeros(n)

I'm confused by the dimension of a tensor created with tf.zeros(n). For instance, if I write: tf.zeros(6).eval.shape, this will return me (6, ). What dimension is this? is this a matrix of 6 rows and arbitrary # of columns? Or is this a matrix of 6 columns with arbitrary # of rows?
weights = tf.random_uniform([3, 6], minval=-1, maxval=1, seed=1)- this is 3X6 matrix
b=tf.zeros(6).eval- I'm not sure what dimension this is.
Why I am able to add the two like weights+b? If I understand correctly, in order for the two to be added, b needs to be 3X1 dimension.
why i am able to add the two like weights+b?
Operator + is the same as using tf.add() (<obj>.__add__() calls the tf.add() or tf.math.add()) and if you read the documentation it says:
NOTE: math.add supports broadcasting. AddN does not. More about broadcasting here
Now I'm quoting from numpy broadcasting rules (which are the same for tensorflow):
When operating on two arrays, NumPy compares their shapes element-wise. It starts with the trailing dimensions, and works its way forward. Two dimensions are compatible when
they are equal, or
one of them is 1
So you're able to add two tensors with different shapes because they have the same trailing dimensions. If you change the dimension of your weights tensor to, let's say [3, 5], you will get InvalidArgumentError exception because trailing dimensions differ.
(6,) is python syntax for a tuple with 6 as a single element. Hence the shape here is a uni-dimensional vector of length 6.

How to train with inputs of variable size?

This question is rather abstract and not necessarily tied to tensorflow or keras. Say that you want to train a language model, and you want to use inputs of different sizes for your LSTMs. Particularly, I'm following this paper: https://www.researchgate.net/publication/317379370_A_Neural_Language_Model_for_Query_Auto-Completion.
The authors use, among other things, word embeddings and one-hot encoding of characters. Most likely, the dimensions of each of these inputs are different. Now, to feed that into a network, I see a few alternatives but I'm sure I'm missing something and I would like to know how it should be done.
Create a 3D tensor of shape (instances, 2, max(embeddings,characters)). That is, padding the smaller input with 0s.
Create a 3D tensor of shape (instances, embeddings+characters, 1)). That is, concatenating inputs.
It looks to me that both alternatives are bad for efficiently training the model. So, what's the best way to approach this? I see the authors use an embedding layer for this purpose, but technically, what does that mean?
EDIT
Here are more details. Let's call these inputs X (character-level input) and E (word-level input). On each character of a sequence (a text), I compute x, e and y, the label.
x: character one-hot encoding. My character index is of size 38, so this is a vector filled with 37 zeros and one 1.
e: precomputed word embedding of dimension 200. If the character is a space, I fetch the word embedding of the previous word in the sequence, Otherwise, I assign the vector for incomplete word (INC, also of size 200). Real example with the sequence "red car": r>INC, e>INC, d>INC, _>embeddings["red"], c>INC, a>INC, r>INC.
y: the label to be predicted, which is the next character, one-hot encoded. This output is of the same dimension as x because it uses the same character index. In the example above, for "r", y is the one-hot encoding of "e".
According to keras documentation, the padding idea seems to be the one. There is the masking parameter in the embedding layer, that will make keras skip these values instead of processing them. In theory, you don't lose that much performance. If the library is well built, the skipping is actually skipping extra processing.
You just need to take care not to attribute the value zero to any other character, not even spaces or unknown words.
An embedding layer is not only for masking (masking is just an option in an embedding layer).
The embedding layer transforms integer values from a word/character dictionary into actual vectors of a certain shape.
Suppose you have this dictionary:
1: hey
2: ,
3: I'm
4: here
5: not
And you form sentences like
[1,2,3,4,0] -> this is "hey, I'm here"
[1,2,3,5,4] -> this is "hey, I'm not here"
[1,2,1,2,1] -> this is "hey, hey, hey"
The embedding layer will tranform each of those integers into vectors of a certain size. This does two good things at the same time:
Transforms the words in vectors because neural networks can only handle vectors or intensities. A list of indices cannot be processed by a neural network directly, there is no logical relation between indices and words
Creates a vector that will be a "meaningful" set of features for each word.
And after training, they become "meaningful" vectors. Each element starts to represent a certain feature of the word, although that feature is obscure to humans. It's possible that an embedding be capable of detecting words that are verbs, nouns, feminine, masculine, etc, everything encoded in a combination of numeric values (presence/abscence/intensity of features).
You may also try the approach in this question, which instead of using masking, needs to separate batches by length, so each batch can be trained at a time without needing to pad them: Keras misinterprets training data shape

Setting up the input on an RNN in Keras

So I had a specific question with setting up the input in Keras.
I understand that the sequence length refers to the window length of the longest sequence that you are looking to model with the rest being padded by 0's.
However, how do I set up something that is already in a time series array?
For example, right now I have an array that is 550k x 28. So there are 550k rows each with 28 columns (27 features and 1 target). Do I have to manually split the array into (550k- sequence length) different arrays and feed all of those to the network?
Assuming that I want to the first layer to be equivalent to the number of features per row, and looking at the past 50 rows, how do I size the input layer?
Is that simply input_size = (50,27), and again do I have to manually split the dataset up or would Keras automatically do that for me?
RNN inputs are like: (NumberOfSequences, TimeSteps, ElementsPerStep)
Each sequence is a row in your input array. This is also called "batch size", number of examples, samples, etc.
Time steps are the amount of steps for each sequence
Elements per step is how much info you have in each step of a sequence
I'm assuming the 27 features are inputs and relate to ElementsPerStep, while the 1 target is the expected output having 1 output per step.
So I'm also assuming that your output is a sequence with also 550k steps.
Shaping the array:
Since you have only one sequence in the array, and this sequence has 550k steps, then you must reshape your array like this:
(1, 550000, 28)
#1 sequence
#550000 steps per sequence
#28 data elements per step
#PS: this sequence is too long, if it creates memory problems to you, maybe it will be a good idea to use a `stateful=True` RNN, but I'm explaining the non stateful method first.
Now you must split this array for inputs and targets:
X_train = thisArray[:, :, :27] #inputs
Y_train = thisArray[:, :, 27] #targets
Shaping the keras layers:
Keras layers will ignore the batch size (number of sequences) when you define them, so you will use input_shape=(550000,27).
Since your desired result is a sequence with same length, we will use return_sequences=True. (Else, you'd get only one result).
LSTM(numberOfCells, input_shape=(550000,27), return_sequences=True)
This will output a shape of (BatchSize, 550000, numberOfCells)
You may use a single layer with 1 cell to achieve your output, or you could stack more layers, considering that the last one should have 1 cell to match the shape of your output. (If you're using only recurrent layers, of course)
stateful = True:
When you have sequences so long that your memory can't handle them well, you must define the layer with stateful=True.
In that case, you will have to divide X_train in smaller length sequences*. The system will understand that every new batch is a sequel of the previous batches.
Then you will need to define batch_input_shape=(BatchSize,ReducedTimeSteps,Elements). In this case, the batch size should not be ignored like in the other case.
* Unfortunately I have no experience with stateful=True. I'm not sure about whether you must manually divide your array (less likely, I guess), or if the system automatically divides it internally (more likely).
The sliding window case:
In this case, what I often see is people dividing the input data like this:
From the 550k steps, get smaller arrays with 50 steps:
X = []
for i in range(550000-49):
X.append(originalX[i:i+50]) #then take care of the 28th element
Y = #it seems you just exclude the first 49 ones from the original

Variable length dimension in tensor

I'm trying to implement the paper "End-to-End memory networks" (http://arxiv.org/abs/1503.08895)
Each training example consists of a number of phrases, a question and then the answer. The number of sentences is variable, as is the number of words in each sentence and the question. Each word is encoded as an integer. So my input would have the form [batch size, # of sentences, # words in sentence].
Now my problem is that the second and third dimension are unknown for each mini-batch. Can I still somehow represent this input as a single tensor or do I have to use lists of tensors, so that I have a list of length batch_size, and then a sublist of length number of sentences and then for each sentence a tensor, whose size is also not known in advance, corresponding to the words encoded as integers.
Can I use this second approach or will tensorflow then not be able to backpropagate, e.g. I have an operation where I have to calculate the following sum: \sum_i tf.scalar_mul(p_i, c_i), where p_i is a scalar and c_i is an embedding vector that was previously calculated. The tensors for the p and c values are then stored in a list, so I would have to sum over the elements in the two lists in a loop. I'm assuming that tensorflow would not be able to incoorporate this loop in the computation graph, correct? I'm sceptical since theano has a special scan function that allows one to loop over input, so I'm assuming that a regular loop would cause problems in the computation graph. How does tensorflow handle this?
Moving Yaroslav's comment to an answer:
TensorFlow has tf.scan. Dimensions may also be dynamic as in Theano.