Dynamic lower/upper bound of Pyomo Variable for every iteration - optimization

I want to adjust the lower and upper bound of three pyo.Var() depending on the outcome of another variable.
the variable model.inverter_power should be in the i-th iteration bigger than model.inverter_power[i].lb + model.fcr_power[i] but also smaller than model.inverter_power[i].ub - model.fcr_power[i])
How can i implement this? Unfortuntately my idea is not working....
def fcr_inverter_reduction(model, i):
return (model.inverter_power[i] >= model.inverter_power[i].lb + model.fcr_power[i],
model.inverter_power[i] <= model.inverter_power[i].ub - model.fcr_power[i])
model.fcr_inverter_rule = pyo.Constraint(model.i, rule = fcr_inverter_reduction)
I tried various versions of this code, not only is this code not linear anymore, so I used ipopt as a solver but no solution can be found, i got this error message:
File "D:\.conda\envs\PythonEnviromentV2\lib\site-packages\pyomo\opt\base\solvers.py", line 596, in solve
raise ApplicationError(
pyomo.common.errors.ApplicationError: Solver (ipopt) did not exit normally

This is very doable if you reformulate just a bit. Also, I don't think it is possible to return a tuple of 2 constraints like you are doing with that function, so you should break it up... it is clearer as well.
You probably could access the upper/lower bound and use that within the constraint because they are fixed/constant with respect to the solver, but I think it is probably clearer to break out your min/max values as parameters. Some variation of this works.
(also, in the future, you are more likely to get better help/results if you post a fully minimal-reproducible example instead of just 1-line.)
Code:
import pyomo.environ as pyo
model = pyo.ConcreteModel()
model.I = pyo.Set(initialize=[1,2,3])
# power parameters...
model.min_inverter = pyo.Param(model.I, initialize={1:10, 2:15, 3:22})
model.max_inverter = pyo.Param(model.I, initialize={1:55, 2:45, 3:80})
# vars...
model.inverter_power = pyo.Var(model.I)
model.fcr_power = pyo.Var(model.I)
def fcr_inverter_min(model, i):
return model.inverter_power[i] >= model.min_inverter[i] + model.fcr_power[i]
model.fcr_inverter_rule_min = pyo.Constraint(model.I, rule=fcr_inverter_min)
def fcr_inverter_max(model, i):
return model.inverter_power[i] <= model.max_inverter[i] - model.fcr_power[i]
model.fcr_inverter_rule_max = pyo.Constraint(model.I, rule=fcr_inverter_max)
model.pprint()
Output:
1 Set Declarations
I : Size=1, Index=None, Ordered=Insertion
Key : Dimen : Domain : Size : Members
None : 1 : Any : 3 : {1, 2, 3}
2 Param Declarations
max_inverter : Size=3, Index=I, Domain=Any, Default=None, Mutable=False
Key : Value
1 : 55
2 : 45
3 : 80
min_inverter : Size=3, Index=I, Domain=Any, Default=None, Mutable=False
Key : Value
1 : 10
2 : 15
3 : 22
2 Var Declarations
fcr_power : Size=3, Index=I
Key : Lower : Value : Upper : Fixed : Stale : Domain
1 : None : None : None : False : True : Reals
2 : None : None : None : False : True : Reals
3 : None : None : None : False : True : Reals
inverter_power : Size=3, Index=I
Key : Lower : Value : Upper : Fixed : Stale : Domain
1 : None : None : None : False : True : Reals
2 : None : None : None : False : True : Reals
3 : None : None : None : False : True : Reals
2 Constraint Declarations
fcr_inverter_rule_max : Size=3, Index=I, Active=True
Key : Lower : Body : Upper : Active
1 : -Inf : inverter_power[1] - (55 - fcr_power[1]) : 0.0 : True
2 : -Inf : inverter_power[2] - (45 - fcr_power[2]) : 0.0 : True
3 : -Inf : inverter_power[3] - (80 - fcr_power[3]) : 0.0 : True
fcr_inverter_rule_min : Size=3, Index=I, Active=True
Key : Lower : Body : Upper : Active
1 : -Inf : 10 + fcr_power[1] - inverter_power[1] : 0.0 : True
2 : -Inf : 15 + fcr_power[2] - inverter_power[2] : 0.0 : True
3 : -Inf : 22 + fcr_power[3] - inverter_power[3] : 0.0 : True

Related

How to extract variables that equal a certain value in pyomo?

I am building a linear optimization model and trying to extract key information from my decision variable values. instance.x.display() displays the following sample
x : Size=121, Index=x_index
Key : Lower : Value : Upper : Fixed : Stale : Domain
(1, 1) : 0 : None : 1 : False : True : Binary
(1, 2) : 0 : 0.0 : 1 : False : False : Binary
(1, 3) : 0 : 0.0 : 1 : False : False : Binary
(1, 4) : 0 : 1.0 : 1 : False : False : Binary
(1, 5) : 0 : 0.0 : 1 : False : False : Binary
(1, 6) : 0 : 0.0 : 1 : False : False : Binary
(1, 7) : 0 : 0.0 : 1 : False : False : Binary
(1, 8) : 0 : 0.0 : 1 : False : False : Binary
(1, 9) : 0 : 0.0 : 1 : False : False : Binary
(1, 10) : 0 : 0.0 : 1 : False : False : Binary
(1, 11) : 0 : 0.0 : 1 : False : False : Binary
(2, 1) : 0 : 0.0 : 1 : False : False : Binary
(2, 2) : 0 : None : 1 : False : True : Binary
(2, 3) : 0 : 0.0 : 1 : False : False : Binary
(2, 4) : 0 : 0.0 : 1 : False : False : Binary
(2, 5) : 0 : 0.0 : 1 : False : False : Binary
I want to extract the values that are equal to 1, such as x(1,4) which is equal to 1.
I have tried the following code: instance.x.display(value(model.x[i,j] == 1)) which gives me the error message ValueError: Error retrieving component x[11,11]: The component has not been constructed. I am thinking that this is because the value for this is 'None' just like x(1,1) and x(2,2) above.
Any ideas on how to code this to display something like this:
(1,4) -- 1
(2,3) -- 1
(3,5) -- 1
(4,2) -- 1
(5,4) -- 1
(6,7) -- 1
You can extract all values to a more user-friendly format by:
x_dic = x.get_values()
for i in x_dic.keys():
if r[i]==1:
print(i)
I am sure there is a nicer way but this should do the trick :)
Cheers

Mixed Integer Linear Programming with pyomo or PuLP

I am new to optimization programming using python and I have a problem with defining a variable in both pyomo and PuLP for a MILP problem. I am using gene expression data and I am confused about how to define a variable as a MXN matrix. I am trying to use either pyomo or PuLP. I know how to use MATLAB and define it so I am putting it make it more helpful to anyone to understand.
y = optimvar('y',M,N,'Type','integer','LowerBound',0,'UpperBound',1)
Also If you think there are better python package please give me your suggestion.
Thank you very much in advance !!
I'd pick pyomo. I think it is more expressive and easier to read/work with. You'll need to install a solver separately. If that is daunting, pulp comes with CBC built in.
This should get you started. There are a decent number of examples in the pyomo documentation to get you started.
import pyomo.environ as pe
m = pe.ConcreteModel('example')
m.M = pe.Set(initialize=[1, 2, 3], name='the M set')
m.N = pe.Set(initialize=['A', 'B', 'C'], name='the N set')
m.X = pe.Var(m.M, m.N, domain=pe.NonNegativeReals)
m.pprint()
Yields:
3 Set Declarations
M : Size=1, Index=None, Ordered=Insertion
Key : Dimen : Domain : Size : Members
None : 1 : Any : 3 : {1, 2, 3}
N : Size=1, Index=None, Ordered=Insertion
Key : Dimen : Domain : Size : Members
None : 1 : Any : 3 : {'A', 'B', 'C'}
X_index : Size=1, Index=None, Ordered=True
Key : Dimen : Domain : Size : Members
None : 2 : M*N : 9 : {(1, 'A'), (1, 'B'), (1, 'C'), (2, 'A'), (2, 'B'), (2, 'C'), (3, 'A'), (3, 'B'), (3, 'C')}
1 Var Declarations
X : Size=9, Index=X_index
Key : Lower : Value : Upper : Fixed : Stale : Domain
(1, 'A') : 0 : None : None : False : True : NonNegativeReals
(1, 'B') : 0 : None : None : False : True : NonNegativeReals
(1, 'C') : 0 : None : None : False : True : NonNegativeReals
(2, 'A') : 0 : None : None : False : True : NonNegativeReals
(2, 'B') : 0 : None : None : False : True : NonNegativeReals
(2, 'C') : 0 : None : None : False : True : NonNegativeReals
(3, 'A') : 0 : None : None : False : True : NonNegativeReals
(3, 'B') : 0 : None : None : False : True : NonNegativeReals
(3, 'C') : 0 : None : None : False : True : NonNegativeReals
4 Declarations: M N X_index X
[Finished in 1.5s]
================
Edit: Making crossed sets
Some variation of below should work fine. You can either make a full x-set by initializing to the cross of two sets, or if your model is sparse, and it makes sense, I'd encourage you to use the within keyword to control the domain and only populated necessary pairs with initialize as shown.
import pyomo.environ as pe
m = pe.ConcreteModel('example')
m.M = pe.Set(initialize=[1, 2, 3], name='the M set')
m.N = pe.Set(initialize=['A', 'B', 'C'], name='the N set')
m.cross = pe.Set(within=m.M*m.N, initialize = [(1,'A'), (3,'B')])

is pyomo constraint with multiple indexes of one variable possible?

Is there a way to set multiple indexes to a set value within one constraint without having to type out the same variable for each indexed time. I have provided an example, imagine that you want to optimize when to charge your electric vehicle but you don't want it to charge at certain hours in a day. The example below works to avoid charging at the 4th and 5th hour. However, what if I want it to not charge for 15 hours of the day but don't feel like writing m.EVcharge[0]+m.EVcharge[1]+... putting m.EVcharge[:15] == 0 will not work because the constraints don't handle slices that well in pyomo.
def time_rule(m):
return m.EVcharge[4]+m.EVcharge[5] == 0
m.time_rule = Constraint(time, rule=time_rule)
Yes. There are a variety of ways to do this. You could make a subset of m.time and only pass that subset in to the constraint rule, which would constrain them to zero, or sum across the subset and make constrain it to zero (both assume negative charging is not possible.)
Or, you could do it more cleanly with data or a parameter that holds the limit for any arbitrary time block and use that, which keeps the data separate from the model, which is generally a good idea...
import pyomo.environ as pyo
# some background data on limits...
use_limit = { 0:3, # limited juice avial
1:3,
2:0, # no juice avail. :)
3:0}
m = pyo.ConcreteModel('EV Charge')
m.T = pyo.Set(initialize=range(6))
m.EV_charge = pyo.Var(m.T, domain=pyo.NonNegativeReals)
# Constraints
def charge_limit(m, time):
return m.EV_charge[time] <= use_limit[time]
m.C1 = pyo.Constraint(use_limit.keys(), rule=charge_limit)
m.pprint()
Yields:
2 Set Declarations
C1_index : Size=1, Index=None, Ordered=False
Key : Dimen : Domain : Size : Members
None : 1 : Any : 4 : {0, 1, 2, 3}
T : Size=1, Index=None, Ordered=Insertion
Key : Dimen : Domain : Size : Members
None : 1 : Any : 6 : {0, 1, 2, 3, 4, 5}
1 Var Declarations
EV_charge : Size=6, Index=T
Key : Lower : Value : Upper : Fixed : Stale : Domain
0 : 0 : None : None : False : True : NonNegativeReals
1 : 0 : None : None : False : True : NonNegativeReals
2 : 0 : None : None : False : True : NonNegativeReals
3 : 0 : None : None : False : True : NonNegativeReals
4 : 0 : None : None : False : True : NonNegativeReals
5 : 0 : None : None : False : True : NonNegativeReals
1 Constraint Declarations
C1 : Size=4, Index=C1_index, Active=True
Key : Lower : Body : Upper : Active
0 : -Inf : EV_charge[0] : 3.0 : True
1 : -Inf : EV_charge[1] : 3.0 : True
2 : -Inf : EV_charge[2] : 0.0 : True
3 : -Inf : EV_charge[3] : 0.0 : True

Possibility of indexing decision variables with 2 indices using a set of tuples in Pyomo

I am currently attempting to solve a network problem that is not fully connected.Thus,I have attempted to do some preprocessing of data so as to form a set of tuples, e.g. {(a,b , (c,e)}..., i.e. from a to b, from c to e.
I am able to declare binary decision variables with keys such as (a,b), (c,e), via using the set of tuples for indexing.
However, when I tried to use rules to declare constraints, with decision variables such as x[i][j], errors are thrown stating that (a,b) is an invalid index.
Hence, I would like to ask if tuples can be used as indices for decision variables.
If not, is there a way to only declare the only decision variables that are needed, rather than declaring all, and then setting those unneeded to 0.
Thank you!
Welcome to the site.
You certainly CAN index variables with tuples of arbitrary dimensionality. The code I have below shows an example of indexing bad_X with a tuple of nodes. This makes sense when you have a variable that has a logical representation for all combinations of your indices or you control the indices somehow with smart set notation or you risk a whole bunch of nonsense variables as you can see in my example below with bad_X in the printout.
For your network, I would suggest just making a set of ARCS that are the valid combination of the NODES. This set would just contain the tuples of the valid connections. Note in my example below, the set of NODES could be blown away as it is not needed. You could just create ARCS directly. Sometimes it is handy to have both if you have some node-based data like supply/demand.
import pyomo.environ as pyo
mdl = pyo.ConcreteModel()
arc_data = { ('a', 'b'): 10,
('c', 'd'): 5,
('e', 'j'): 44,
('a', 'j'): 2,
('j', 'e'): 12}
# collapse the nodes into a set from the keys of the arc data
node_set = set()
for k in arc_data.keys():
node_set.update(*k)
# Sets
mdl.NODES = pyo.Set(initialize=node_set)
mdl.ARCS = pyo.Set(within=mdl.NODES * mdl.NODES, initialize=arc_data.keys())
# Params
mdl.cost = pyo.Param(mdl.NODES, mdl.NODES, initialize=arc_data)
# Selection Variable: poor choice...
mdl.bad_X = pyo.Var(mdl.NODES, mdl.NODES, domain=pyo.Binary)
# some examples of using this "bad X"
print('printing just to show how to access...this will produce a None')
print(mdl.bad_X['a', 'e'].value)
print(mdl.bad_X[('c', 'd')].value) # also valid
# Better selection variable
mdl.X = pyo.Var(mdl.ARCS, domain=pyo.Binary)
# toy constraint...ensure at least 3 are selected
mdl.c1 = pyo.Constraint(expr=sum(mdl.X[arc] for arc in mdl.ARCS) >= 3)
# Objective: Minimize cost of 3 selected arcs
mdl.OBJ = pyo.Objective(expr=sum(mdl.X[arc] * mdl.cost[arc] for arc in mdl.ARCS))
# to show the difference between the choices of variables
mdl.pprint()
# solve and show results
solver = pyo.SolverFactory('cbc')
results = solver.solve(mdl)
for arc in mdl.ARCS:
print(arc, mdl.X[arc].value)
Output:
printing just to show how to access...this will produce a None
None
None
5 Set Declarations
ARCS : Dim=0, Dimen=2, Size=5, Domain=ARCS_domain, Ordered=False, Bounds=None
[('a', 'b'), ('a', 'j'), ('c', 'd'), ('e', 'j'), ('j', 'e')]
ARCS_domain : Dim=0, Dimen=2, Size=36, Domain=None, Ordered=False, Bounds=None
Virtual
NODES : Dim=0, Dimen=1, Size=6, Domain=None, Ordered=False, Bounds=None
['a', 'b', 'c', 'd', 'e', 'j']
bad_X_index : Dim=0, Dimen=2, Size=36, Domain=None, Ordered=False, Bounds=None
Virtual
cost_index : Dim=0, Dimen=2, Size=36, Domain=None, Ordered=False, Bounds=None
Virtual
1 Param Declarations
cost : Size=5, Index=cost_index, Domain=Any, Default=None, Mutable=False
Key : Value
('a', 'b') : 10
('a', 'j') : 2
('c', 'd') : 5
('e', 'j') : 44
('j', 'e') : 12
2 Var Declarations
X : Size=5, Index=ARCS
Key : Lower : Value : Upper : Fixed : Stale : Domain
('a', 'b') : 0 : None : 1 : False : True : Binary
('a', 'j') : 0 : None : 1 : False : True : Binary
('c', 'd') : 0 : None : 1 : False : True : Binary
('e', 'j') : 0 : None : 1 : False : True : Binary
('j', 'e') : 0 : None : 1 : False : True : Binary
bad_X : Size=36, Index=bad_X_index
Key : Lower : Value : Upper : Fixed : Stale : Domain
('a', 'a') : 0 : None : 1 : False : True : Binary
('a', 'b') : 0 : None : 1 : False : True : Binary
('a', 'c') : 0 : None : 1 : False : True : Binary
('a', 'd') : 0 : None : 1 : False : True : Binary
('a', 'e') : 0 : None : 1 : False : True : Binary
('a', 'j') : 0 : None : 1 : False : True : Binary
('b', 'a') : 0 : None : 1 : False : True : Binary
('b', 'b') : 0 : None : 1 : False : True : Binary
('b', 'c') : 0 : None : 1 : False : True : Binary
('b', 'd') : 0 : None : 1 : False : True : Binary
('b', 'e') : 0 : None : 1 : False : True : Binary
('b', 'j') : 0 : None : 1 : False : True : Binary
('c', 'a') : 0 : None : 1 : False : True : Binary
('c', 'b') : 0 : None : 1 : False : True : Binary
('c', 'c') : 0 : None : 1 : False : True : Binary
('c', 'd') : 0 : None : 1 : False : True : Binary
('c', 'e') : 0 : None : 1 : False : True : Binary
('c', 'j') : 0 : None : 1 : False : True : Binary
('d', 'a') : 0 : None : 1 : False : True : Binary
('d', 'b') : 0 : None : 1 : False : True : Binary
('d', 'c') : 0 : None : 1 : False : True : Binary
('d', 'd') : 0 : None : 1 : False : True : Binary
('d', 'e') : 0 : None : 1 : False : True : Binary
('d', 'j') : 0 : None : 1 : False : True : Binary
('e', 'a') : 0 : None : 1 : False : True : Binary
('e', 'b') : 0 : None : 1 : False : True : Binary
('e', 'c') : 0 : None : 1 : False : True : Binary
('e', 'd') : 0 : None : 1 : False : True : Binary
('e', 'e') : 0 : None : 1 : False : True : Binary
('e', 'j') : 0 : None : 1 : False : True : Binary
('j', 'a') : 0 : None : 1 : False : True : Binary
('j', 'b') : 0 : None : 1 : False : True : Binary
('j', 'c') : 0 : None : 1 : False : True : Binary
('j', 'd') : 0 : None : 1 : False : True : Binary
('j', 'e') : 0 : None : 1 : False : True : Binary
('j', 'j') : 0 : None : 1 : False : True : Binary
1 Objective Declarations
OBJ : Size=1, Index=None, Active=True
Key : Active : Sense : Expression
None : True : minimize : 10*X[a,b] + 5*X[c,d] + 44*X[e,j] + 2*X[a,j] + 12*X[j,e]
1 Constraint Declarations
c1 : Size=1, Index=None, Active=True
Key : Lower : Body : Upper : Active
None : 3.0 : X[a,b] + X[c,d] + X[e,j] + X[a,j] + X[j,e] : +Inf : True
10 Declarations: NODES ARCS_domain ARCS cost_index cost bad_X_index bad_X X c1 OBJ
('a', 'b') 1.0
('c', 'd') 1.0
('e', 'j') 0.0
('a', 'j') 1.0
('j', 'e') 0.0
[Finished in 4.3s]
Second answer to get at your second point about indexing in constraints...
This shows some variations of the concept you asked about. Note that because I built params for every possible combination of city-year, that I needed to supply a default value for the ones that were not in my sparse data.
import pyomo.environ as pyo
mdl = pyo.ConcreteModel()
demand_data = { ('LA', 1999): 500,
('LA', 2001): 700,
('NY', 2001): 600,
('Pheonix', 2000): 300,
('Pheonix', 2001): 400 }
my_favorites = {'LA'} # a subset for example use
# Sets
mdl.CITIES = pyo.Set(initialize= {k[0] for k in demand_data.keys()})
mdl.YEARS = pyo.Set(initialize= {k[1] for k in demand_data.keys()})
# Params
mdl.demand = pyo.Param(mdl.CITIES, mdl.YEARS, initialize=demand_data, default=0)
mdl.cost = pyo.Param(mdl.YEARS, initialize={1999: 5, 2000: 10, 2001: 15}, default=0)
# Variable for supply
mdl.supply = pyo.Var(mdl.CITIES, mdl.YEARS, domain=pyo.NonNegativeReals)
#### Constraints ####
#ensure 1/2 of demand in each city-year pair
def half_demand(self, city, year):
return mdl.supply[city, year] >= 0.5 * mdl.demand[city, year]
mdl.c1 = pyo.Constraint(mdl.CITIES, mdl.YEARS, rule=half_demand)
# ensure favorite cities get all demand every year
def all_demand(self, city, year):
return mdl.supply[city, year] >= mdl.demand[city, year]
mdl.c2 = pyo.Constraint(my_favorites, mdl.YEARS, rule=all_demand)
# ensure all demand is eventually met over all years
def eventually_met(self, city):
return sum(mdl.supply[city, year] for year in mdl.YEARS) >= \
sum(mdl.demand[city, year] for year in mdl.YEARS)
mdl.c3 = pyo.Constraint(mdl.CITIES, rule=eventually_met)
#### OBJECTIVE ####
def objective(self):
return sum(mdl.supply[city, year] * mdl.cost[year]
for year in mdl.YEARS
for city in mdl.CITIES)
mdl.OBJ = pyo.Objective(rule=objective)
# solve and show results
solver = pyo.SolverFactory('cbc')
results = solver.solve(mdl)
mdl.supply.display()
Output:
supply : Size=9, Index=supply_index
Key : Lower : Value : Upper : Fixed : Stale : Domain
('LA', 1999) : 0 : 500.0 : None : False : False : NonNegativeReals
('LA', 2000) : 0 : 0.0 : None : False : False : NonNegativeReals
('LA', 2001) : 0 : 700.0 : None : False : False : NonNegativeReals
('NY', 1999) : 0 : 300.0 : None : False : False : NonNegativeReals
('NY', 2000) : 0 : 0.0 : None : False : False : NonNegativeReals
('NY', 2001) : 0 : 300.0 : None : False : False : NonNegativeReals
('Pheonix', 1999) : 0 : 350.0 : None : False : False : NonNegativeReals
('Pheonix', 2000) : 0 : 150.0 : None : False : False : NonNegativeReals
('Pheonix', 2001) : 0 : 200.0 : None : False : False : NonNegativeReals
[Finished in 3.1s]
I think I manage to solve it, please refer to the example below
##First, create the set of tuples needed for filtering
#Op_Machine: set of (operation, machine) tuples created to avoid redundancy in decision variable declaration
Op_Machine=list()
for machine_id, op_proctime in Machine_Op_Time.items():
for op in op_proctime.keys():
print(Op_Machine)
print((op,machine_id))
Op_Machine.append((op,machine_id))
print(Op_Machine)
##Next, invoke the rule using the if statement to filter across all possible indices accepting those combinations that are aligned with the tuples within the set
##Use Constraint.Skip to Skip creating constraints that do not belong to the set of tuples
def F1_rule(model,i,k):
if (i,k) in Op_Machine:
##print(i,k)
return model.Cmax>=model.completion_time[i,k]
else:
return Constraint.Skip
#model.makespan= Constraint(model.op_set, model.mach_set, rule=Cmax_rule)
model.F1= Constraint(Operation_Set, Machine_Set, rule=F1_rule)
Note that the sets Operation_Set, Machine_Set function as the universal set as it comprises all combinations of operations and machines. Hence the statement model.F1= Constraint(Operation_Set, Machine_Set, rule=F1_rule) can be thought a for loop that iterates over all combinations while the if statement within the def function acts a filter to generate the needed constraints.

unit commitment constraint pyomo

I currently try to use this unit commitment example to build my own model with pyomo. After defining switch-on and switch-off variables I struggle to implement the following equation:Equation
The yalmip example is pretty straight forward:
for k = 2:Horizon
for unit = 1:Nunits
% indicator will be 1 only when switched on
indicator = onoff(unit,k)-onoff(unit,k-1);
range = k:min(Horizon,k+minup(unit)-1);
% Constraints will be redundant unless indicator = 1
Constraints = [Constraints, onoff(unit,range) >= indicator];
end
end
Right now I am only looking into one unit, which gives me this model.
model = ConcreteModel()
p = prices
ts = timesteps
ut = min_uptime1
model.x = Var(ts, within = Binary) #onoff
model.v = Var(ts, within = Binary) #switch_on
model.w = Var(ts, within = Binary) #switch_off
def obj_rule(model):
return sum(p[t] * model.x[t] - 0.001 * (model.v[t] + model.w[t]) for t in ts)
model.revenue = Objective(rule = obj_rule, sense = maximize)
#start-up, shut-down costs will be added
def daily_uptime_rule (model):
return sum(model.x[t] for t in ts) == 12
model.daily_uptime_rule = \
Constraint(rule = daily_uptime_rule)
def switch_on(model, t):
if t == ts[0]:
return model.v[t] >= 1 - (1 - model.x[t])
else:
return model.v[t] >= 1 - model.x[t-1] - (1 - model.x[t])
model.switch_on = \
Constraint(ts, rule = switch_on)
def switch_off(model, t):
if t == ts[23]:
return model.w[t] >= model.x[t]
else:
return model.w[t] >= 1 - model.x[t+1] + (model.x[t] - 1)
model.switch_off = \
Constraint(ts, rule = switch_off)
def min_ut(model, t):
a = list(range(t, (min(ts[23], t+ut-1)+1)))
for i in a:
return model.x[i] >= model.v[t]
model.min_ut = \
Constraint(ts, rule = min_ut)
My problem here is, that i can't access the variable x the same way in pyomo. For every timestep t we need constraints for t+1, t+2, .. t+min_up -1, but I can't use ranges with variables (model.x). Can I use the yalmip example in pyomo or do i need a new formulation?
Ok, so it seems the fundamental issue here is that the index of summation that you would like to do is dependent on the RHS of the inequality. You can construct the indices of the summation in a couple ways. You just need to be careful that the values you construct are valid. Here is an idea that might help you. This toy model tries to maximize the sum of x[t], but limits x[t] <= x[t-1] + x[t-2] just for giggles. Note the construction of the summation range "on the fly" from the passed value of t:
from pyomo.environ import *
m = ConcreteModel()
m.t = Set(initialize=range(5))
m.x = Var(m.t)
# constrain x_t to be less than the sum of x_(t-1), x_(t-2)
def x_limiter(m, t):
if t==0:
return m.x[t] <= 1 # limit the first value
# upperlimit on remainder is sum of previous 2
return sum(m.x[i] for i in range(t-2, t) if i in m.t) >= m.x[t]
m.c1 = Constraint(m.t, rule=x_limiter)
# try to maximize x
m.OBJ = Objective(expr=sum(m.x[t] for t in m.t), sense=maximize)
solver = SolverFactory('glpk')
m.pprint()
solver.solve(m)
m.display()
It gets the job done:
Variables:
x : Size=5, Index=t
Key : Lower : Value : Upper : Fixed : Stale : Domain
0 : None : 1.0 : None : False : False : Reals
1 : None : 1.0 : None : False : False : Reals
2 : None : 2.0 : None : False : False : Reals
3 : None : 3.0 : None : False : False : Reals
4 : None : 5.0 : None : False : False : Reals
Objectives:
OBJ : Size=1, Index=None, Active=True
Key : Active : Value
None : True : 12.0
This recent post also has a similar idea:
Pyomo creating a variable time index