Is there a way to turn off a vehicle signal in SUMO? - sumo

I know that you can turn on a vehicle signal (for example, the left indicator) in traci using:
traci.vehicle.setSignals(vehID, int)
where the integer related to the specific signal can be found using the following link (https://sumo.dlr.de/docs/TraCI/Vehicle_Signalling.html#signaling), but is there a way of turning off a specific signal that would be otherwise turned on by the program (i.e., a setSignalOff)?
I think that there is a function in the underlying C++ code (switchOffSignal() in MSVehicle.h) but there doesn't appear to be a traci command that turns off a specific signal.
I appreciate that it is (generally) a pleasant visual aesthetic and has no impact on vehicle behaviour, but it would be very useful for what I am trying to do!

Switching off signals should work from traci. By using sometihng like traci.vehicle.setSignals("ego", 0), I can switch them off. Be aware that this will be reset after the step, so you may have to do that in every timestep.

So, Michael is right in that:
traci.vehicle.setSignals("ego", 0)
should turn off all signals (although the signals still appeared on for me visually, which confused me initially).
To turn off individual signals but keep the others on you need to:
For all the "on" signals find the value of 2^n, where n is the bit integer (which can be found using the following link: https://sumo.dlr.de/docs/TraCI/Vehicle_Signalling.html)
Sum all these 2^n values (let's call this variable x) and use this value in the setSignals function: traci.vehicle.setSignals("ego", x).
So for example, if we want the brake light, the right indicator and the high beam on (but all the other signals off) we would do:
RightIndicatorValue = pow(2,0)
BrakeLightValue = pow(2,3)
HighBeamValue = (2,6)
SignalValue = RightIndicatorValue + BrakeLightValue + HighBeamValue
traci.vehicle.setSignals(("ego", SignalValue)

Related

Create a Signal from a List

Is it possible to create a Signal from a List? Essentially what I want is something with the signature List a -> Signal a. I know that a Signal represents a time-varying value and so something like this doesn't actually make any sense (i.e. I can't think of a reason to use it in production code).
I could see applications of it for testing though. For example, imagine some function which depended on the past values of a Signal (via foldp for instance) and you wanted to make assertions about the state of the system given the signal had received values x, y, and z.
Note that there wouldn't have to be anything special about the Signal denoting that it only would ever receive a fixed number of values. I'm thinking of it more like: in production you have a Signal of mouse clicks, and you want to test that from a given starting position, after a given set of clicks, the system should be in some other known state. I know you could simulate this by calling the function a fixed number of times and feeding the results back in with new values, I'm just wondering if it is possible.
I guess it's possible. You use a time-based signal, and map the values from the list over it:
import Time
import Graphics.Element exposing (show)
list = [1..10]
signalFromList : List a -> Signal a
signalFromList list =
let
(Just h) =
List.head list
time =
Time.every Time.second
maybeFlatMap =
flip Maybe.andThen
lists =
Signal.foldp (always <| maybeFlatMap List.tail) (Just list) time
in
Signal.filterMap (maybeFlatMap List.head) h lists
main = Signal.map show <| signalFromList list
However!
It shouldn't be hard to do testing without signals. If you have a foldp somewhere, in a test you can use List.foldl over a list [x,y,z] instead. That should give you the ability to look at the state of your program after inputs x, y, z.
I don't think there is any way it can be done synchronously in pure elm (Apanatshka's answer illustrates well how to set up a sequence of events across time and why it's a bad idea). If we look at how most Signals are defined, we'll see they all head down into a native package at some point.
The question then becomes: can we do this natively?
f : List a -> Signal a
I often think of (Signal a) as 'an a that changes over time'. Here we provide a List of as, and want the function to make it change over time for us.
Before we go any further, I recommend a quick look at Native/Signal.js: https://github.com/elm-lang/core/blob/master/src/Native/Signal.js
Let's say we get down to native land with our List of as. We want something a bit like Signal.constant, but with some extra behaviour that 'sends' each a afterwards. When can we do the sending, though? I am guessing we can't do it during the signal construction function, as we're still building the signal graph. This leaves us a couple of other options:
something heinous with setTimeout, scheduling the sending of each 'a' at an appropriate point in the future
engineering a hook into the elm runtime so that we can run an arbitrary callback at the point when the signal graph is fully constructed
To me at least, the former sounds error prone, and I hope the latter doesn't exist (and never does)!
For testing, your suggestion of using a List fold to mimic the behaviour of foldp would be the way I would go.

measuring time between two rising edges in beaglebone

I am reading sensor output as square wave(0-5 volt) via oscilloscope. Now I want to measure frequency of one period with Beaglebone. So I should measure the time between two rising edges. However, I don't have any experience with working Beaglebone. Can you give some advices or sample codes about measuring time between rising edges?
How deterministic do you need this to be? If you can tolerate some inaccuracy, you can probably do it on the main Linux OS; if you want to be fancy pants, this seems like a potential use case for the BBB's PRU's (which I unfortunately haven't used so take this with substantial amounts of salt). I would expect you'd be able to write PRU code that just sits with an infinite outerloop and then inside that loop, start looping until it sees the pin shows 0, then starts looping until the pin shows 1 (this is the first rising edge), then starts counting until either the pin shows 0 again (this would then be the falling edge) or another loop to the next rising edge... either way, you could take the counter value and you should be able to directly convert that into time (the PRU is states as having fixed frequency for each instruction, and is a 200Mhz (50ns/instruction). Assuming your loop is something like
#starting with pin low
inner loop 1:
registerX = loadPin
increment counter
jump if zero registerX to inner loop 1
# pin is now high
inner loop 2:
registerX = loadPin
increment counter
jump if one registerX to inner loop 2
# pin is now low again
That should take 3 instructions per counter increment, so you can get the time as 3 * counter * 50 ns.
As suggested by Foon in his answer, the PRUs are a good fit for this task (although depending on your requirements it may be fine to use the ARM processor and standard GPIO). Please note that (as far as I know) both the regular GPIOs and the PRU inputs are based on 3.3V logic, and connecting a 5V signal might fry your board! You will need an additional component or circuit to convert from 5V to 3.3V.
I've written a basic example that measures timing between rising edges on the header pin P8.15 for my own purpose of measuring an engine's rpm. If you decide to use it, you should check the timing results against a known reference. It's about right but I haven't checked it carefully at all. It is implemented using PRU assembly and uses the pypruss python module to simplify interfacing.

Elm - How to modify the parameterisation of one signal based on another signal

How can I parameterise one signal based on another signal?
e.g. Suppose I wanted to modify the fps based on the x-position of the mouse. The types are:
Mouse.x : Signal Int
fps : number -> Signal Time
How could I make Elm understand something along the lines of this pseudocode:
fps (Mouse.x) : Signal Time
Obviously, lift doesn't work in this case. I think the result would be Signal (Signal Time) (but I'm still quite new to Elm).
Thanks!
Preamble
fps Mouse.x
Results in a type-error that fps requires an Int, not a Signal Int.
lift fps Mouse.x : Signal (Signal Int)
You are correct there. As CheatX's answers mentions, you cannot using these "nested signals" in Elm.
Answer to your question
It seems like you're asking for something that doesn't exist yet in the Standard Libraries. If I understand your question correctly you would like a time (or fps) signal of which the timing can be changed dynamically. Something like:
dynamicFps : Signal Int -> Signal Time
Using the built-in functions like lift does not give you the ability to construct such a function yourself from a function of type Int -> Signal Time.
I think you have three options here:
Ask to have this function added to the Time library on the mailing-list. (The feature request instructions are a little bloated for a request of such a function so you can skip stuff that's not applicable)
Work around the problem, either from within Elm or in JavaScript, using Ports to connect to Elm.
Find a way to not need a dynamically changing Time signal.
I advise option 1. Option 3 is sad, you should be able to what you asked in Elm. Option 2 is perhaps not a good idea if you're new to Elm. Option 1 is not a lot of work, and the folks on the mailing-list don't bite ;)
To elaborate on option 2, should you want to go for that:
If you specify an outgoing port for Signal Int and an incoming port for Signal Time you can write your own dynamic time function in JavaScript. See http://elm-lang.org/learn/Ports.elm
If you want to do this from within Elm, it'll take an uglier hack:
dynamicFps frames =
let start = (0,0)
time = every millisecond -- this strains your program enormously
input = (,) <~ frames ~ time
step (frameTime,now) (oldDelta,old) =
let delta = now - old
in if (oldDelta,old) == (0,0)
then (frameTime,now) -- this is to skip the (0,0) start
else if delta * frameTime >= second
then (delta,now)
else (0,old)
in dropIf ((==) 0) 0 <| fst <~ foldp step start input
Basically, you remember an absolute timestamp, ask for the new time as fast as you can, and check if the time between the remembered time and now is big enough to fit the timeframe you want. If so you send out that time delta (fps gives time deltas) and remember now as the new timestamp. Because foldp sends out everything it is to remember, you get both the new delta and the new time. So using fst <~ you keep only the delta. But the input time is (likely) much faster than the timeframe you want so you also get a lot of (0,old) from foldp. That's why there is a dropIf ((==) 0).
Nested signals are explicitly forbidden by the Elm's type system [part 3.2 of this paper].
As far as I understand FRP, nested signals are only useful when some kind of flattering provided (monadic 'join' function for example). And that operation is hard to be implemented without keeping an entire signal history.

Creating robust real-time monitors for variables

We can create a real-time monitor for a variable like this:
CreatePalette#Panel#Row[{"x = ", Dynamic[x]}]
(This is more interesting and useful if x happens to be something like $Assumptions. It's so easy to set a value and then forget about it.)
Unfortunately this stops working if the kernel is re-launched (Quit[], then evaluate something). The palette won't show changes in the value of x any more.
Is there a way to do this so it keeps working even across kernel sessions? I find myself restarting the kernel quite often. (If the resulting palette causes the kernel to be automatically started after Quit that's fine.)
Update: As mentioned in the comments, it turns out that the palette ceases working only if we quit by evaluating Quit[]. When using Evaluation -> Quit Kernel -> Local, it will keep working.
Link to same question on MathGroup.
I can only guess, because on my Ubuntu here the situations seems buggy. The trick with the Quit from the menu like Leonid suggested did not work here. Another one is: on a fresh Mathematica session with only one notebook open:
Dynamic[x]
x = 1
Dynamic[x]
x = 2
gives as expected
2
1
2
2
Typing in the next line Quit, evaluating and typing then x=3 updates only the first of the Dynamic[x].
Nevertheless, have you checked the command
Internal`GetTrackedSymbols[]
This gives not only the tracked symbols but additionally some kind of ID where the dynamic content belongs. If you can find out, what exactly these numbers are and investigate in the other functions you find in the Internal context, you may be able to add your palette Dynamic-content manually after restarting the kernel.
I thought I had something like that with
Internal`SetValueTrackExtra
but I'm currently not able to reproduce the behavior.
#halirutan's answer jarred my memory...
Have you ever come across: Experimental/ref/ValueFunction? (documentation address)
Although the documentation contains no examples, the 'more information' section provides the following tidbit:
The assignment ValueFunction[symb] = f specifies that whenever
symb gets a new value val, the expression f[symb,val] should be
evaluated.

Objective C - Cross-correlation for audio delay estimation

I would like to know if anyone knows how to perform a cross-correlation between two audio signals on iOS.
I would like to align the FFT windows that I get at the receiver (I am receiving the signal from the mic) with the ones at the transmitter (which is playing the audio track), i.e. make sure that the first sample of each window (besides a "sync" period) at the transmitter will also be the first window at the receiver.
I injected in every chunk of the transmitted audio a known waveform (in the frequency domain). I want estimate the delay through cross-correlation between the known waveform and the received signal (over several consecutive chunks), but I don't know how to do it.
It looks like there is the method vDSP_convD to do it, but I have no idea how to use it and whether I first have to perform the real FFT of the samples (probably yes, because I have to pass double[]).
void vDSP_convD (
const double __vDSP_signal[],
vDSP_Stride __vDSP_signalStride,
const double __vDSP_filter[],
vDSP_Stride __vDSP_strideFilter,
double __vDSP_result[],
vDSP_Stride __vDSP_strideResult,
vDSP_Length __vDSP_lenResult,
vDSP_Length __vDSP_lenFilter
)
The vDSP_convD() function calculates the convolution of the two input vectors to produce a result vector. It’s unlikely that you want to convolve in the frequency domain, since you are looking for a time-domain result — though you might, if you have FFTs already for some other reason, choose to multiply them together rather than convolving the time-domain sequences (but in that case, to get your result, you will need to perform an inverse DFT to get back to the time domain again).
Assuming, of course, I understand you correctly.
Then once you have the result from vDSP_convD(), you would want to look for the highest value, which will tell you where the signals are most strongly correlated. You might also need to cope with the case where the input signal does not contain sufficient of your reference signal, and in that case you may wish to (for example) ignore values in the result vector below a certain level.
Cross-correlation is the solution, yes. But there are many obstacles you need to handle. If you get samples from the audio files, they contain padding which cross-correlation function does not like. It is also very inefficient to perform correlation with all those samples - it takes a huge amount of time. I have made a sample code which demonstrates time shift of two audio files. If you are interested in the sample, look at my Github Project.