Pseudocode system that connects Humans, Devices, and Remote Control - oop

In one scenario, the problem is solved by making pseudocode or actual code that shows a connection between Humans, Devices, and Remote Control.
I'm thinking about doing the ER diagram first and then making it on OOP based. I'm not actually sure what will be the best approach.

Start from the actual UI. UI/UX Prototyping of the features you want for this interaction will help you see what is important and what's not. From there move to the ER diagram.
Creating the ER diagram you should keep in mind what is important for your app's features and how data will be combined together. Also think about the code, no need to write it nor write pseudocode. Just think about it, whether it's possible or not to accomplish a certain demand. In the case you have doubts, write pseudocode to see it through a bit better.
Then, in the end comes the actual study for the exact techstack you're going to use. SQL or NoSQL or both, and the languages different modules and functionalities might need.
Best of luck!!! And also, don't post all your creative ideas on the internet, since other people might steal them ;)

Related

Fastest way to understand business logic in a new project

I would like to know the fastest/best way to learn the business logic in a new project.
Most projects have been running for years, some of them are poorly documented, but you still need to know how to work with them. What is the best way to do this? (Use Case Diagram / support from colleagues / code analysis etc.)
The problem with verbose logging is that you may be overloaded with details that do not help, and even if you have the right details, you may misunderstand the big picture.
Moreover, if projects run for years, and are poorly documented, chances are the little available documentation is already obsolete. And chances are, the team did not invest heavily in logging either.
Reverse engineering the code is another approach, but where to start if there are millions of lines of code in the legacy system? Some things can be easily read in code, but many more complex, emergent behavior comes from the interactions between many classes, and this kind of knowledge is the most difficult to extract.
So here is the way to go:
Talk to colleagues. The best approach to move knowledge from one brain to another is direct conversation. It works much better than any formal diagram or any documentation. Unfortunately this is not always possible (e.g. team left)
If 1 is not possible, understand the business user's point of view. May be there is a user manual? Maybe some colleagues of the user-support? if none of those are possible, the ultimate way is to spend some time in the day of the user's life. You will not understand how the system works, but at least you'll get a quick intro in what the system is supposed to do, what matters to the users, and maybe some business rules.
Check for automated test cases. In fact, such test cases are a hidden and up-to date documentation resource.
Check for non-automated test cases, in particular use acceptance tests, and integration tests. If these are not automated, there are chances that they are already obsolete. But it's better than nothing.
Reverse engineer the code. Identify the main classes and how they interact. And yes, some simplified class diagrams will help you to understand how classes are related (no need to document properties and methods: these can be found back in the code). And some sequence diagram will help you to get a picture of the more complex interactions.
Run server, log verbose everywhere. Follow code flow and dig in.

Where to start when doing a Domain Model?

Let's say I've made a list of concepts I'll use to draw my Domain Model. Furthermore, I have a couple of Use Cases from which I did a couple of System Sequence Diagrams.
When drawing the Domain Model, I never know where to start from:
Designing the model as I believe the system to be. This is, if I am modelling a the human body, I start by adding the class concepts of Heart, Brain, Bowels, Stomach, Eyes, Head, etc.
Start by designing what the Use Cases need to get done. This is, if I have a Use Case which is about making the human body swallow something, I'd first draw the class concepts for Mouth, Throat, Stomatch, Bowels, etc.
The order in which I do things is irrelevant? I'd say probably it'd be best to try to design from the Use Case concepts, as they are generally what you want to work with, not other kind of concepts that although help describe the whole system well, much of the time might not even be needed for the current project. Is there any other approach that I am not taking in consideration here? How do you usually approach this?
Thanks
Whether DDD, or not, I would recommend with determining the ubiquitous language (UL) by interviewing the product owner(s). Establishing communication in a way that will have you and the product owners speaking the same language not only aides in communication, but being able to discuss the project in common terms tends to help the domain model define itself.
So, my answer is basically to discuss, listen, and learn. Software serves a need. Understanding the model from the viewpoint of the experts will lay the solid groundwork for the application.
I'd start by a drawing a class diagram with all the relationships and implement only the classes that are necessary according to the requirements of your application.
You can use an anemic approach (attributes plus getters and setters) to keep things simple and avoid the step of writing business logic in the same step. With an anemic model, the logic would go into a corresponding Service class. That way you can consider Use Cases later on.
I know some people don't appreciate this way of doing things but it does help with maintenance and avoids some dependency issues.
Answer to devoured elysium's question below:
In terms of analysis, starting with Use cases (What) and then proceeding to the class diagram (How) sounds like a good rule of thumb. Personally, I'd do the Sequence diagram (When and Who?) afterwards, as you'd need to know between which processes/objects messages need to be sent.
Beyond that my take on things is that UML is simply a way to model a system/project and not a methodology by itself (unlike Merise, RAD, RUP, Scrum, etc.). There is nothing stopping someone starting off with any diagram as long as they have the sufficient information to complete it. In fact, they should be done simultaneously since each of the diagrams is a different perspective of the same system/project.
So, all in all it depends on how you go about the analysis. During my studies I was taught the rigid waterfall approach, where you do a complete analysis from start to finish before producing some code. However, things can be different in practice, as the imperative might be to produce a working application in the least time possible.
For example, I was introduced to the Scrum methodology recently for an exercise involving the creation of a web site where people can post their fictions. As there was a time constraint and a clear vision of what should be achieved, we started right away with a bare bones class diagram to represent the domain model. The Use cases were then deduced from a series of mock screens we'd produced.
From memory, the classes were Story, Chapter, User and Category. This last class was phased out in favour of a more flexible Tag class. As you'd imagine, the complete class diagram of the existing project would be much more complex due to applying domain driven design and the specificities of the Java programming language.
This approach could be viewed as sloppy. However, a web site like this could easily be made in a couple of weeks using an iterative process and still be well designed. The advantage an iterative process has over the waterfall approach is that you can continually adjust requirements as you go. Frequent requirements changing is a reality, as people will often change their minds and the possibility of producing a working application after each iteration allows one to stay on course so to speak.
Of course, when you're presenting a project to a client, a complete analysis with UML diagrams and some mock screens would be preferable so they have an idea of what you're offering. This is where the UML comes in. Once you've explained some of the visual conventions, an individual should be able to understand the diagrams.
To finish off, if you're in the situation where you're trying to determine what a client wants, it's probably a good idea to gradually build up a questionnaire you can bring with you. Interviewing a person is the only way you can determine what concepts/features are really needed for an application, and you should expect to go back in order to clarify certain aspects. Another tip would be to do some quick research on the web when you're confronted with a subject matter you're unfamiliar with.
In your example, this would be to go through the basics of anatomy. Among other things, this will help you decide what the model should contain and what granularity it should have (What group of organs should be considered? How precise does it need to be? Do only the organs need to modeled or should they be decomposed into their constituents like tissues, cells, chemical composition, etc. ?).
I think the place to start would be whatever feels logical and comfortable. It's probably best to start with the use cases, as they give you clear direction and goals, and help you avoid YAGNI situations. Given that you should be trying to develop a strong domain model, it shouldn't really matter, as the whole picture of the domain is important.
I would like to share my experience for such type of situations. I usually start with writing tests and code. And try to cover one end to end use case. This gives me fair enough idea about problem and at the end I also have something working with me which I can show case to my client. Most of the time subsequent stories build on top of previous one, but it also happens to me that subsequent stories require changes in the previous model I came up with. But this does not impact me as I already have good test coverage. In this way I came up with the model which fits for the current problem, not the model which maps the real world.
You start with Business Requirements which can be formalized or not. If formalized you would use Use Case Diagrams.
For example here are use case diagrams for an e-commerce app:
http://askuml.com/blog/e-commerce/
http://askuml.com/files/2010/07/e-commerce-use-case.jpg
http://askuml.com/files/2010/07/e-commerce-use-case2b.jpg
From these use cases, you can naturally deduce the business entities: product, category of product, shopping cart, ... that is start to prepare class diagrams.
This is best practice in many methodologies but this is also just common sense and natural.
Short answer
Pick a use case, draw some collaboration diagram (and a class diagram) to realize the domain objects involved. Concentrate only on those objects participated in order to accomplish use case goal. Write TDD test case to set the expectation and gradually model your domain classes to meet the expectations. TDD is very helpful to understand the expected behaviors and it helps to get the cleaner domain model. You will see your domain evolve gradually along with the TDD expectations.
Long answer
My personal experience with DDD was not easy. That was because we didn't have necessary foundations in the first place. Our team had many weak points in different areas; requirements were not captured properly and we only had a customer representative who was not really helpful (not involved). We didn't have a proper release plan and developers had a lack of Object Oriented concepts, best principles and so on. The major problem we had was spending so much time on trying to understand the domain logic. We sketched many class diagrams and we never got the domain model right, so we stopped doing that and found out what went wrong. The problem was that we tried too hard to understand the domain logic and instead of communicating we made assumptions on the requirements. We decided to change our approach, we applied TDD, we started writing the expected behavior and coded the domain model to meet the TDD's expectations. Sometimes we got stuck writing TDD test cases because we didn't understand the domain. We straight away talked to the customer representative and tried to get more input. We changed our release strategy; applied agile methodology and release frequently so that we got real feedback from the end user. However, needed to ensure the end user expectation was set at the right level. We refactored based on the feedback, and in that way the domain model evolved gradually. Subsequently, we applied design patterns to improve reusability and maintainability. My point here is that DDD alone cannot survive, we have to build the ecosystem that embraces the domain, developers must have strong OOP concepts and must appreciate TDD and unit test. I would say DDD sits on top of all the OOP techniques and practices.

What should a developer know about interface design, usability and user psychology to create great software? [duplicate]

This question already has answers here:
Closed 12 years ago.
Possible Duplicate:
Human factors design (meeting psychological needs in UI design)
What should a developer know about user interface design, usability and less technical aspects of human computer interaction?
What knowledge of usage scenarios, user behavior patterns and the psychology of user to computer interaction should we embrace to design effective software that helps users solve their problems in a natural and uncomplicated way without building barriers and creating obstacles?
There is much more to design of software than building the architecture, implementing the requirements and creating a nice-looking interface. A beautiful interface may not necessarily be useful and effective, and vice versa, an ugly software utility can become a favorite tool for many users. What at least basic knowledge should a decent developer or designer have to smooth the user experience?
Please focus on one issue per answer, describe a problem, bring examples, how the user experience is impaired and what are the ways to address the situation.
I will start:
PROBLEM: Interfaces with lots of controls and options immediately on one screen can be overwhelming to users. They will have to waste time looking through all of them trying to locate the one option they need. They'll also get distracted in the process, see one more feature, go there to learn about it and maybe read help to see if it can solve their problems, then another one and so on until they are completely lost.
EXAMPLE: As a good example I will cite the Microsoft Word (as well as other Office applications) of pre-2007 version. The sheer amount of menus and options has always scared me. I managed to remember where were the options I needed most often but that's it. Everything extra, I tend to google for things I need to learn where this particular feature is located in the forest of options.
SOLUTION: Hide out all extra options behind a few menus and submenus logically structured for the user to be able to locate them through the process of logical thinking. The 2007 redesign has obviously taken the problem into account by grouping the options into tabs. I found many new options I needed without googling but just by thinking where it could belong and looking there. Not that it has always worked, but the improvement can be felt.
Now, what are your ideas?
Useful and effective interfaces are beautiful. Look at them as a UI designer, not as an art major. :-)
Simplicity; as few choices as can accomplish the needs.
Convention; follow patterns the users are already familiar with.
Observation; watch the users, and smooth the places they have problems.
Gentleness; write human-readable errors. Don't upset the users.
Consistency; do things the same way everywhere in the application. Have one person write all of your text, or write a standard that text must meet.
Learn to listen.
Users will tell what they want but not in the words that you're used to. Socialize, sit down, take your time and listen. Watch them work, ask questions. Bring up some ideas "How would you like...?" and listen to the replies. Don't assume that something would be better for them, ask them. Don't force them down a certain path because it's more simple to code.
Interfaces with lots of controls and
options immediately on one screen can
be overwhelming to users.
GMail has this slogan "Search, don't sort". The same principle can be applied to user interfaces. As you mentioned, users are already doing this themselves by googling for features.
Now the next step is to build support for feature search right into the application. Hit a keyboard shortcut, type a few keywords, and click on the feature you want to use. The IDE Insight feature in the upcoming RAD Studio 2010 does exactly that.
Problem: user interfaces often don't have a 1-to-1 correspondence to the domain model:
There are communication problems
because programmers talk about the
hidden domain model while users talk
about the GUI.
There are maintenance problems
because users are constrained by the
task-based user interface. They regularly need
to ask for "a new screen to do this" even
if the domain model may already
support it.
Solution: the naked objects architectural design pattern. To take this to the extreme you might even generate the GUI automatically from the domain model.
I know the question is a bit old, but I'm surprised to see that no one mentioned Joel Spolsky's excellent article : User Interface Design For Programmers. It's definitely something every developer should read. There are no especially brilliant or original ideas in it, it's mostly common sense, but it did open my eyes on some not so obvious points...
I suggest reading "The Design of Everyday Things" by Donald Norman.
I use to think asthetics were useless until I tried to sell my house. Sturdy foundation, 3 brms, 2 baths, 2 car garage, fenced yard, blah, blah blah - until I got rid of the stink from my 3 dogs nobody would touch it.
The more visually pleasing the app/site is, the more chance it will get used. Now a user will give it a try and determine if it does anything they want. Finally, how usable is it? This is a point when you will probably get more feedback.
Just like the house: get rid of the clutter, clean everything, start with a general color pallette and let the user add the crazy colors if the want them.
If you really want your eyes opened, take a course in Human Factors Engineering.
I have worked at a pharmaceutical company for the past two years and I think that the design of the interface is nearly as important as the functionality. Watching users struggle with old complicated legacy code is the primary reason for re-designing it. Functionality is seldom the primary reason for redeveloping code or replacing it.
Usability studies
Watching people use your code
Extreme programming (Delivering preview code intermittently throughout design process)
Are all essential to delivering code that not only meets the users needs but makes them happy and productive. At the end of the day, programs will only be used if they make you happy and productive.

What techniques do you use when you are designing an Object Model alone?

So no doubt that building a domain model is something that I think happens best when you approach it as as team. Even going so far as to involve someone who is not technical and a member of the 'business' in the modeling sessions. So much can get done quickly when you put the right people in a room and hammer out things on a whiteboard. But what about the times that you don't have that luxury? What about when you have to build a complex domain model alone? I have been doing this for the past month or so and have done the following:
Start off by Noun Idendtification, then use Class-Role-Collaborations to analyze relationships
Look for analysis patterns that can be used to refine the model, Party, etc..
As soon as I have a handle on the basics, I'll bust out an IDE and start writing XUnit tests to show that the model let's me do the things that I want
While these techniques have worked well, I'm not sure they are as efficient as a truely collaborative effort. I think it is easy to get carried away with a concept only to realize later that it violates x or y requirement. What techniques have you used when working in isolation to ensure that your object/domain model is on target?
Everyone does it differently, I think, but...
I almost always start with a Class diagram (usually UML-like and on paper), paying special attention to relationships between classes and their arity. Validation at this stage is mostly trying to understand if the high-level semantics of the entities make sense together.
Then start sketching in the key functions, especially those involved in collaborations. Make sure objects in a collaboration can reach each other through the relationships. At this stage I'll be using a drawing tool (StarUML).
Then come the gedanken experiments. I mentally walk through the trickiest use cases I can think of and see if I can envision a way to address them with the given design. This isn't psuedocode, just stepping through each of the major tasks/functions and following the lines of the diagram to make sure I'm not missing callbacks, circular dependencies, etc.
I think one key is to not get too married to any particular aspect of the design until you've satisfied yourself that it will probably work reasonably well. In my mind, if you can't step through a design mentally to evaluate/validate it you either lack some understanding of the problem, or the design on paper isn't complete enough...
Then, time permitting, set that one aside and see if you can come up with something really different...
If you're building it all on your own, just make sure it's adaptable, because there's no way you'll think of everything on the first shot.
Get some big paper. Draw everything out, and be messy. Don't worry about making it perfect. Put everything down that you think of, cross out stuff as it proves to not be useful. The paper will look like your mind threw up pieces of an object model all over the place. As you think of things that have already been written down, make those things stand out. At the end of this process, you'll have a mess, but for sure you'll have a lot of good ideas. At this point, I would recommend showing this to people, but since you said that's out of the question, we'll move on.
Now sit down in front of a computer with a UML tool and map out something that resembles the highlights of your brain dump. Think of the major pieces of the object model and then think of the more minor things that enable those pieces to work together. Once you have settled on something, turn that UML into code and go about writing some tests to see if it works. Rinse and repeat.

How to convince my co-workers not to use datasets for enterprise development (.NET 2.0+)

Everyone I work with is obsessed with the data-centric approach to enterprise development and hates the idea of using custom collections/objects. What is the best way to convince them otherwise?
Do it by example and tread lightly. Anything stronger will just alienate you from the rest of the team.
Remember to consider the possibility that they're onto something you've missed. Being part of a team means taking turns learning & teaching.
No single person has all the answers.
If you are working on legacy code (e.g., apps ported from .NET 1.x to 2.0 or 3.5) then it would be a bad idea to depart from datasets. Why change something that already works?
If you are, however, creating a new apps, there a few things that you can cite:
Appeal to experiencing pain in maintaining apps that stick with DataSets
Cite performance benefits for your new approach
Bait them with a good middle-ground. Move to .NET 3.5, and promote LINQ to SQL, for instance: while still sticking to data-driven architecture, is a huge, huge departure to string-indexed data sets, and enforces... voila! Custom collections -- in a manner that is hidden from them.
What is important is that whatever approach you use you remain consistent, and you are completely honest with the pros and cons of your approaches.
If all else fails (e.g., you have a development team that utterly refuses to budge from old practices and is skeptical of learning new things), this is a very, very clear sign that you've outgrown your team it's time to leave your company!
Remember to consider the possibility that they're onto something you've missed. Being part of a team means taking turns learning & teaching.
Seconded. The whole idea that "enterprise development" is somehow distinct from (and usually the implication is 'more important than') normal development really irks me.
If there really is a benefit for using some technology, then you'll need to come up with a considered list of all the pros and cons that would occur if you switched.
Present this list to your co workers along with explanations and examples for each one.
You have to be realistic when creating this list. You can't just say "Saves us lots of time!!! WIN!!" without addressing the fact that sometimes it is going to take MORE time, will require X months to come up to speed on the new tech, etc. You have to show concrete examples where it will save time, and exactly how.
Likewise you can't just skirt over the cons as if they don't matter, your co-workers will call you on it.
If you don't do these things, or come across as just pushing what you personally like, nobody is going to take you seriously, and you'll just get a reputation for being the guy who's full of enthusiasm and energy but has no idea about anything.
BTW. Look out for this particular con. It will trump everything, unless you have a lot of strong cases for all your other stuff:
Requires 12+ months work porting our existing code. You lose.
Of course, "it depends" on the situation. Sometimes DataSets or DataTables are more suited, like if it really is pretty light business logic, flat hierarchy of entities/records, or featuring some versioning capabilities.
Custom object collections shine when you want to implement a deep hierarchy/graph of objects that cannot be efficiently represented in flat 2D tables. What you can demonstrate is a large graph of objects and getting certain events to propagate down the correct branches without invoking inappropriate objects in other branches. That way it is not necessary to loop or Select through each and every DataTable just to get the child records.
For example, in a project I got involved in two and half years ago, there was a UI module that is supposed to display questions and answer controls in a single WinForms DataGrid (to be more specific, it was Infragistics' UltraGrid). Some more tricky requirements
The answer control for a question can be anything - text box, check box options, radio button options, drop-down lists, or even to pop up a custom dialog box that may pull more data from a web service.
Depending on what the user answered, it can trigger more sub-questions to appear directly under the parent question. If a different answer is given later, it should expose another set of sub-questions (if any) related to that answer.
The original implementation was written entirely in DataSets, DataTables, and arrays. The amount of looping through the hundreds of rows for multiple tables was purely mind-bending. It did not help the programmer came from a C++ background attempting to ref everything (hello, objects living in the heap use reference variables, like pointers!). Nobody, not even the originally programmer, could explain why the code is doing what it does. I came into the scene more than six months after this, and it was stil flooded with bugs. No wonder the 2nd-generation developer I took over from decided to quit.
Two months of tying to fix the chaotic mess, I took it upon myself to redesign the entire module into an object-oriented graph to solve this problem. yeap, complete with abstract classes (to render different answer control on a grid cell depending on question type), delegates and eventing. The end result was a 2D dataGrid binded to a deep hierarchy of questions, naturally sorted according to the parent-child arrangement. When a parent question's answer changed, it would raise an event to the children questions and they would automatically show/hide their rows in the grid according to the parent's answer. Only question objects down that path were affected. The UI responsiveness of this solution compared to the old method was by orders of magnitude.
Ironically, I wanted to post a question that was the exact opposite of this. Most of the programmers I've worked with have gone with the custom data objects/collections approach. It breaks my heart to watch someone with their SQL Server table definition open on one monitor, slowly typing up a matching row-wrapper class in Visual Studio in another monitor (complete with private properties and getters-setters for each column). It's especially painful if they're also prone to creating 60-column tables. I know there are ORM systems that can build these classes automagically, but I've seen the manual approach used much more frequently.
Engineering choices always involve trade-offs between the pros and cons of the available options. The DataSet-centric approach has its advantages (db-table-like in-memory representation of actual db data, classes written by people who know what they're doing, familiar to large pool of developers etc.), as do custom data objects (compile-type checking, users don't need to learn SQL etc.). If everyone else at your company is going the DataSet route, it's at least technically possible that DataSets are the best choice for what they're doing.
Datasets/tables aren't so bad are they?
Best advise I can give is to use it as much as you can in your own code, and hopefully through peer reviews and bugfixes, the other developers will see how code becomes more readable. (make sure to push the point when these occurrences happen).
Ultimately if the code works, then the rest is semantics is my view.
I guess you can trying selling the idea of O/R mapping and mapper tools. The benefit of treating rows as objects is pretty powerful.
I think you should focus on the performance. If you can create an application that shows the performance difference when using DataSets vs Custom Entities. Also, try to show them Domain Driven Design principles and how it fits with entity frameworks.
Don't make it a religion or faith discussion. Those are hard to win (and is not what you want anyway)
Don't frame it the way you just did in your question. The issue is not getting anyone to agree that this way or that way is the general way they should work. You should talk about how each one needs to think in order to make the right choice at any given time. give an example for when to use dataSet, and when not to.
I had developers using dataTables to store data they fetched from the database and then have business logic code using that dataTable... And I showed them how I reduced the time to load a page from taking 7 seconds of 100% CPU (on the web server) to not being able to see the CPU line move at all.. by changing the memory object from dataTable to Hash table.
So take an example or case that you thing is better implemented differently, and win that battle. Don't fight the a high level war...
If Interoperability is/will be a concern down the line, DataSet is definitely not the right direction to go in. You CAN expose DataSets/DataTables over a service but whether you SHOULD or is debatable. If you are talking .NET->.NET you're probably Ok, otherwise you are going to have a very unhappy client developer from the other side of the fence consuming your service
You can't convince them otherwise. Pick a smaller challenge or move to a different organization. If your manager respects you see if you can do a project in the domain-driven style as a sort of technology trial.
If you can profile, just Do it and profile. Datasets are heavier then a simple Collection<T>
DataReaders are faster then using Adapters...
Changing behavior in an objects is much easier than massaging a dataset
Anyway: Just Do It, ask for forgiveness not permission.
Most programmers don't like to stray out of their comfort zones (note that the intersection of the 'most programmers' set and the 'Stack Overflow' set is the probably the empty set). "If it worked before (or even just worked) then keep on doing it". The project I'm currently on required a lot of argument to get the older programmers to use XML/schemas/data sets instead of just CSV files (the previous version of the software used CSV's). It's not perfect, the schemas aren't robust enough at validating the data. But it's a step in the right direction. The code I develop uses OO abstractions on the data sets rather than passing data set objects around. Generally, it's best to teach by example, one small step at a time.
There is already some very good advice here but you'll still have a job to convince your colleagues if all you have to back you up is a few supportive comments on stackoverflow.
And, if they are as sceptical as they sound, you are going to need more ammo.
First, get a copy of Martin Fowler's "Patterns of Enterprise Architecture" which contains a detailed analysis of a variety of data access techniques.
Read it.
Then force them all to read it.
Job done.
data-centric means less code-complexity.
custom objects means potentially hundreds of additional objects to organize, maintain, and generally live with. It's also going to be a bit faster.
I think it's really a code-complexity vs performance question, which can be answered by the needs of your app.
Start small. Is there a utility app you can use to illustrate your point?
For instance, at a place where I worked, the main application had a complicated build process, involving changing config files, installing a service, etc.
So I wrote an app to automate the build process. It had a rudimentary WinForms UI. But since we were moving towards WPF, I changed it to a WPF UI, while keeping the WinForms UI as well, thanks to Model-View-Presenter. For those who weren't familiar with Model-View-Presenter, it was an easily-comprehensible example they could refer to.
Similarly, find something small where you can show them what a non-DataSet app would look like without having to make a major development investment.