How can I group elements of a list in Raku? - raku

Is there some method in Raku which, when you pass it a "getter", groups together items from the original list for which the getter is returning the same value?
I am looking for something like groupBy in Scala:
# (1 until 10).groupBy(_ % 3)
res0: Map[Int, IndexedSeq[Int]] = HashMap(0 -> Vector(3, 6, 9), 1 -> Vector(1, 4, 7), 2 -> Vector(2, 5, 8))
Or groupBy from Lodash (JavaScript):
> groupBy(range(1, 10), x => x % 3)
{"0": [3,6,9], "1": [1,4,7], "2": [2,5,8]}

It's called classify in Raku:
$ raku -e 'say (1..10).classify(* % 3)'
{0 => [3 6 9], 1 => [1 4 7 10], 2 => [2 5 8]}

Related

Pandas: Calculate of max value from filtered elements from the same group

I have an input data frame like this:
# input data frame
df = pd.DataFrame(
[
("A", 11, 1),
("A", 12, 2),
("A", 13, 3),
("A", 14, 4),
("B", 21, 1),
("B", 22, 2),
("B", 23, 3),
("B", 24, 4)
],
columns=("key", "ord", "val"),
)
I am looking for a simple way (without iteration) to calculate for each group (key) and each group element the maximal of previous values from the previous rows in the same group the result should be like this:
# wanted output data frame
df = pd.DataFrame(
[
("A", 11, 1, np.NaN), # no previous element in this group, so it should be Nul
("A", 12, 2, 1), # max of vals = [1] in group "A" and ord < 12
("A", 13, 3, 2), # max of vals = [1,2] in group "A" and ord < 13
("A", 14, 4, 3), # max of vals = [1,2,3] in group "A" and ord < 14
("B", 21, 2, np.NaN),
("B", 22, 3, 2),
("B", 23, 4, 3),
("B", 24, 5, 4),
],
columns=("key", "ord", "val", "max_val_before"),
)
I tried to group and filter but my solution do not give me the expected results. I this possible without iterating each row manually? Thank you very much.
I have saved the notebook also on Kaggle:
https://www.kaggle.com/maciejbednarz/mean-previous
Let us try cummax with shift
df.groupby('key').val.apply(lambda x : x.cummax().shift())
Out[221]:
0 NaN
1 1.0
2 2.0
3 3.0
4 NaN
5 1.0
6 2.0
7 3.0
Name: val, dtype: float64

Find duplicated sequences in numpy.array or pandas column

For example, I have got an array like this:
([ 1, 5, 7, 9, 4, 6, 3, 3, 7, 9, 4, 0, 3, 3, 7, 8, 1, 5 ])
I need to find all duplicated sequences , not values, but sequences of at least two values one by one.
The result should be like this:
of length 2: [1, 5] with indexes (0, 16);
of length 3: [3, 3, 7] with indexes (6, 12); [7, 9, 4] with indexes (2, 8)
The long sequences should be excluded, if they are not duplicated. ([5, 5, 5, 5]) should NOT be taken as [5, 5] on indexes (0, 1, 2)! It's not a duplicate sequence, it's one long sequence.
I can do it with pandas.apply function, but it calculates too slow, swifter did not help me.
And in real life I need to find all of them, with length from 10 up to 100 values one by one on database with 1500 columns with 700 000 values each. So i really do need a vectorized decision.
Is there a vectorized decision for finding all at once? Or at least for finding only 10-values sequences? Or only 4-values sequences? Anything, that will be fully vectorized?
One possible implementation (although not fully vectorized) that finds all sequences of size n that appear more than once is the following:
import numpy as np
def repeated_sequences(arr, n):
Na = arr.size
r_seq = np.arange(n)
n_seqs = arr[np.arange(Na - n + 1)[:, None] + r_seq]
unique_seqs = np.unique(n_seqs, axis=0)
comp = n_seqs == unique_seqs[:, None]
M = np.all(comp, axis=-1)
if M.any():
matches = np.array(
[np.convolve(M[i], np.ones((n), dtype=int)) for i in range(M.shape[0])]
)
repeated_inds = np.count_nonzero(matches, axis=-1) > n
repeated_matches = matches[repeated_inds]
idxs = np.argwhere(repeated_matches > 0)[::n]
grouped_idxs = np.split(
idxs[:, 1], np.unique(idxs[:, 0], return_index=True)[1][1:]
)
else:
return [], []
return unique_seqs[repeated_inds], grouped_idxs
In theory, you could replace
matches = np.array(
[np.convolve(M[i], np.ones((n), dtype=int)) for i in range(M.shape[0])]
)
with
matches = scipy.signal.convolve(
M, np.ones((1, n), dtype=int), mode="full"
).astype(int)
which would make the whole thing "fully vectorized", but my tests showed that this was 3 to 4 times slower than the for-loop. So I'd stick with that. Or simply,
matches = np.apply_along_axis(np.convolve, -1, M, np.ones((n), dtype=int))
which does not have any significant speed-up, since it's basically a hidden loop (see this).
This is based off #Divakar's answer here that dealt with a very similar problem, in which the sequence to look for was provided. I simply made it so that it could follow this procedure for all possible sequences of size n, which are found inside the function with n_seqs = arr[np.arange(Na - n + 1)[:, None] + r_seq]; unique_seqs = np.unique(n_seqs, axis=0).
For example,
>>> a = np.array([1, 5, 7, 9, 4, 6, 3, 3, 7, 9, 4, 0, 3, 3, 7, 8, 1, 5])
>>> repeated_seqs, inds = repeated_sequences(a, n)
>>> for i, seq in enumerate(repeated_seqs[:10]):
...: print(f"{seq} with indexes {inds[i]}")
...:
[3 3 7] with indexes [ 6 12]
[7 9 4] with indexes [2 8]
Disclaimer
The long sequences should be excluded, if they are not duplicated. ([5, 5, 5, 5]) should NOT be taken as [5, 5] on indexes (0, 1, 2)! It's not a duplicate sequence, it's one long sequence.
This is not directly taken into account and the sequence [5, 5] would appear more than once according to this algorithm. You could do something like this, based off #Paul's answer here, but it involves a loop:
import numpy as np
repeated_matches = np.array([[0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]])
idxs = np.argwhere(repeated_matches > 0)
grouped_idxs = np.split(
idxs[:, 1], np.unique(idxs[:, 0], return_index=True)[1][1:]
)
>>> print(grouped_idxs)
[array([ 6, 7, 8, 12, 13, 14], dtype=int64),
array([ 7, 8, 9, 10], dtype=int64)]
# If there are consecutive numbers in grouped_idxs, that means that there is a long
# sequence that should be excluded. So, you'd have to check for consecutive numbers
filtered_idxs = []
for idx in grouped_idxs:
if not all((idx[1:] - idx[:-1]) == 1):
filtered_idxs.append(idx)
>>> print(filtered_idxs)
[array([ 6, 7, 8, 12, 13, 14], dtype=int64)]
Some tests:
>>> n = 3
>>> a = np.array([1, 5, 7, 9, 4, 6, 3, 3, 7, 9, 4, 0, 3, 3, 7, 8, 1, 5])
>>> %timeit repeated_sequences(a, n)
414 µs ± 5.88 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
>>> n = 4
>>> a = np.random.randint(0, 10, (10000,))
>>> %timeit repeated_sequences(a, n)
3.88 s ± 54 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
>>> result, _ = repeated_sequences(a, n)
>>> result.shape
(2637, 4)
This is not the most efficient implementation by far, but it works as a 2D approach. Plus, if there aren't any repeated sequences, it returns empty lists.
EDIT: Full implementation
I vectorized the routine I added in the Disclaimer section as a possible solution to the long sequence problem and ended up with the following:
import numpy as np
# Taken from:
# https://stackoverflow.com/questions/53051560/stacking-numpy-arrays-of-different-length-using-padding
def stack_padding(it):
def resize(row, size):
new = np.array(row)
new.resize(size)
return new
row_length = max(it, key=len).__len__()
mat = np.array([resize(row, row_length) for row in it])
return mat
def repeated_sequences(arr, n):
Na = arr.size
r_seq = np.arange(n)
n_seqs = arr[np.arange(Na - n + 1)[:, None] + r_seq]
unique_seqs = np.unique(n_seqs, axis=0)
comp = n_seqs == unique_seqs[:, None]
M = np.all(comp, axis=-1)
repeated_seqs = []
idxs_repeated_seqs = []
if M.any():
matches = np.apply_along_axis(np.convolve, -1, M, np.ones((n), dtype=int))
repeated_inds = np.count_nonzero(matches, axis=-1) > n
if repeated_inds.any():
repeated_matches = matches[repeated_inds]
idxs = np.argwhere(repeated_matches > 0)
grouped_idxs = np.split(
idxs[:, 1], np.unique(idxs[:, 0], return_index=True)[1][1:]
)
# Additional routine
# Pad this uneven array with zeros so that we can use it normally
grouped_idxs = np.array(grouped_idxs, dtype=object)
padded_idxs = stack_padding(grouped_idxs)
# Find the indices where there are padded zeros
pad_positions = padded_idxs == 0
# Perform the "consecutive-numbers check" (this will take one
# item off the original array, so we have to correct for its shape).
idxs_to_remove= np.pad(
(padded_idxs[:, 1:] - padded_idxs[:, :-1]) == 1,
[(0, 0), (0, 1)],
constant_values=True,
)
pad_positions = np.argwhere(pad_positions)
i = pad_positions[:, 0]
j = pad_positions[:, 1] - 1 # Shift by one (shape correction)
idxs_to_remove[i, j] = True # Masking, since we don't want pad indices
# Obtain a final mask (boolean opposite of indices to remove)
final_mask = ~idxs_to_remove.all(axis=-1)
grouped_idxs = grouped_idxs[final_mask] # Filter the long sequences
repeated_seqs = unique_seqs[repeated_inds][final_mask]
# In order to get the correct indices, we must first limit the
# search to a shape (on axis=1) of the closest multiple of n.
# This will avoid taking more indices than we should to show where
# each repeated sequence begins
to = padded_idxs.shape[1] & (-n)
# Build the final list of indices (that goes from 0 - to with
# a step of n
idxs_repeated_seqs = [
grouped_idxs[i][:to:n] for i in range(grouped_idxs.shape[0])
]
return repeated_seqs, idxs_repeated_seqs
For example,
n = 2
examples = [
# First example is your original example array.
np.array([1, 5, 7, 9, 4, 6, 3, 3, 7, 9, 4, 0, 3, 3, 7, 8, 1, 5]),
# Second example has a long sequence of 5's, and since there aren't
# any [5, 5] anywhere else, it's not taken into account and therefore
# should not come out.
np.array([1, 5, 5, 5, 5, 6, 3, 3, 7, 9, 4, 0, 3, 3, 7, 8, 1, 5]),
# Third example has the same long sequence but since there is a [5, 5]
# later, then it should take it into account and this sequence should
# be found.
np.array([1, 5, 5, 5, 5, 6, 5, 5, 7, 9, 4, 0, 3, 3, 7, 8, 1, 5]),
# Fourth example has a [5, 5] first and later it has a long sequence of
# 5's which are uneven and the previous implementation got confused with
# the indices to show as the starting indices. In this case, it should be
# 1, 13 and 15 for [5, 5].
np.array([1, 5, 5, 9, 4, 6, 3, 3, 7, 9, 4, 0, 3, 5, 5, 5, 5, 5]),
]
for a in examples:
print(f"\nExample: {a}")
repeated_seqs, inds = repeated_sequences(a, n)
for i, seq in enumerate(repeated_seqs):
print(f"\t{seq} with indexes {inds[i]}")
Output (as expected):
Example: [1 5 7 9 4 6 3 3 7 9 4 0 3 3 7 8 1 5]
[1 5] with indexes [0 16]
[3 3] with indexes [6 12]
[3 7] with indexes [7 13]
[7 9] with indexes [2 8]
[9 4] with indexes [3 9]
Example: [1 5 5 5 5 6 3 3 7 9 4 0 3 3 7 8 1 5]
[1 5] with indexes [0 16]
[3 3] with indexes [6 12]
[3 7] with indexes [7 13]
Example: [1 5 5 5 5 6 5 5 7 9 4 0 3 3 7 8 1 5]
[1 5] with indexes [ 0 16]
[5 5] with indexes [1 3 6]
Example: [1 5 5 9 4 6 3 3 7 9 4 0 3 5 5 5 5 5]
[5 5] with indexes [ 1 13 15]
[9 4] with indexes [3 9]
You can test it out yourself with more examples and more cases. Keep in mind this is what I understood from your disclaimer. If you want to count the long sequences as one, even if multiple sequences are in there (for example, [5, 5] appears twice in [5, 5, 5, 5]), this won't work for you and you'd have to come up with something else.

Transforming a sequence of integers into the binary representation of that sequence's strides [duplicate]

I'm looking for a way to select multiple slices from a numpy array at once. Say we have a 1D data array and want to extract three portions of it like below:
data_extractions = []
for start_index in range(0, 3):
data_extractions.append(data[start_index: start_index + 5])
Afterwards data_extractions will be:
data_extractions = [
data[0:5],
data[1:6],
data[2:7]
]
Is there any way to perform above operation without the for loop? Some sort of indexing scheme in numpy that would let me select multiple slices from an array and return them as that many arrays, say in an n+1 dimensional array?
I thought maybe I can replicate my data and then select a span from each row, but code below throws an IndexError
replicated_data = np.vstack([data] * 3)
data_extractions = replicated_data[[range(3)], [slice(0, 5), slice(1, 6), slice(2, 7)]
You can use the indexes to select the rows you want into the appropriate shape.
For example:
data = np.random.normal(size=(100,2,2,2))
# Creating an array of row-indexes
indexes = np.array([np.arange(0,5), np.arange(1,6), np.arange(2,7)])
# data[indexes] will return an element of shape (3,5,2,2,2). Converting
# to list happens along axis 0
data_extractions = list(data[indexes])
np.all(data_extractions[1] == data[1:6])
True
The final comparison is against the original data.
stride_tricks can do that
a = np.arange(10)
b = np.lib.stride_tricks.as_strided(a, (3, 5), 2 * a.strides)
b
# array([[0, 1, 2, 3, 4],
# [1, 2, 3, 4, 5],
# [2, 3, 4, 5, 6]])
Please note that b references the same memory as a, in fact multiple times (for example b[0, 1] and b[1, 0] are the same memory address). It is therefore safest to make a copy before working with the new structure.
nd can be done in a similar fashion, for example 2d -> 4d
a = np.arange(16).reshape(4, 4)
b = np.lib.stride_tricks.as_strided(a, (3,3,2,2), 2*a.strides)
b.reshape(9,2,2) # this forces a copy
# array([[[ 0, 1],
# [ 4, 5]],
# [[ 1, 2],
# [ 5, 6]],
# [[ 2, 3],
# [ 6, 7]],
# [[ 4, 5],
# [ 8, 9]],
# [[ 5, 6],
# [ 9, 10]],
# [[ 6, 7],
# [10, 11]],
# [[ 8, 9],
# [12, 13]],
# [[ 9, 10],
# [13, 14]],
# [[10, 11],
# [14, 15]]])
In this post is an approach with strided-indexing scheme using np.lib.stride_tricks.as_strided that basically creates a view into the input array and as such is pretty efficient for creation and being a view occupies nomore memory space.
Also, this works for ndarrays with generic number of dimensions.
Here's the implementation -
def strided_axis0(a, L):
# Store the shape and strides info
shp = a.shape
s = a.strides
# Compute length of output array along the first axis
nd0 = shp[0]-L+1
# Setup shape and strides for use with np.lib.stride_tricks.as_strided
# and get (n+1) dim output array
shp_in = (nd0,L)+shp[1:]
strd_in = (s[0],) + s
return np.lib.stride_tricks.as_strided(a, shape=shp_in, strides=strd_in)
Sample run for a 4D array case -
In [44]: a = np.random.randint(11,99,(10,4,2,3)) # Array
In [45]: L = 5 # Window length along the first axis
In [46]: out = strided_axis0(a, L)
In [47]: np.allclose(a[0:L], out[0]) # Verify outputs
Out[47]: True
In [48]: np.allclose(a[1:L+1], out[1])
Out[48]: True
In [49]: np.allclose(a[2:L+2], out[2])
Out[49]: True
You can slice your array with a prepared slicing array
a = np.array(list('abcdefg'))
b = np.array([
[0, 1, 2, 3, 4],
[1, 2, 3, 4, 5],
[2, 3, 4, 5, 6]
])
a[b]
However, b doesn't have to generated by hand in this way. It can be more dynamic with
b = np.arange(5) + np.arange(3)[:, None]
In the general case you have to do some sort of iteration - and concatenation - either when constructing the indexes or when collecting the results. It's only when the slicing pattern is itself regular that you can use a generalized slicing via as_strided.
The accepted answer constructs an indexing array, one row per slice. So that is iterating over the slices, and arange itself is a (fast) iteration. And np.array concatenates them on a new axis (np.stack generalizes this).
In [264]: np.array([np.arange(0,5), np.arange(1,6), np.arange(2,7)])
Out[264]:
array([[0, 1, 2, 3, 4],
[1, 2, 3, 4, 5],
[2, 3, 4, 5, 6]])
indexing_tricks convenience methods to do the same thing:
In [265]: np.r_[0:5, 1:6, 2:7]
Out[265]: array([0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 2, 3, 4, 5, 6])
This takes the slicing notation, expands it with arange and concatenates. It even lets me expand and concatenate into 2d
In [269]: np.r_['0,2',0:5, 1:6, 2:7]
Out[269]:
array([[0, 1, 2, 3, 4],
[1, 2, 3, 4, 5],
[2, 3, 4, 5, 6]])
In [270]: data=np.array(list('abcdefghijk'))
In [272]: data[np.r_['0,2',0:5, 1:6, 2:7]]
Out[272]:
array([['a', 'b', 'c', 'd', 'e'],
['b', 'c', 'd', 'e', 'f'],
['c', 'd', 'e', 'f', 'g']],
dtype='<U1')
In [273]: data[np.r_[0:5, 1:6, 2:7]]
Out[273]:
array(['a', 'b', 'c', 'd', 'e', 'b', 'c', 'd', 'e', 'f', 'c', 'd', 'e',
'f', 'g'],
dtype='<U1')
Concatenating results after indexing also works.
In [274]: np.stack([data[0:5],data[1:6],data[2:7]])
My memory from other SO questions is that relative timings are in the same order of magnitude. It may vary for example with the number of slices versus their length. Overall the number of values that have to be copied from source to target will be the same.
If the slices vary in length, you'd have to use the flat indexing.
No matter which approach you choose, if 2 slices contain same element, it doesn't support mathematical operations correctly unlesss you use ufunc.at which can be more inefficient than loop. For testing:
def as_strides(arr, window_size, stride, writeable=False):
'''Get a strided sub-matrices view of a 4D ndarray.
Args:
arr (ndarray): input array with shape (batch_size, m1, n1, c).
window_size (tuple): with shape (m2, n2).
stride (tuple): stride of windows in (y_stride, x_stride).
writeable (bool): it is recommended to keep it False unless needed
Returns:
subs (view): strided window view, with shape (batch_size, y_nwindows, x_nwindows, m2, n2, c)
See also numpy.lib.stride_tricks.sliding_window_view
'''
batch_size = arr.shape[0]
m1, n1, c = arr.shape[1:]
m2, n2 = window_size
y_stride, x_stride = stride
view_shape = (batch_size, 1 + (m1 - m2) // y_stride,
1 + (n1 - n2) // x_stride, m2, n2, c)
strides = (arr.strides[0], y_stride * arr.strides[1],
x_stride * arr.strides[2]) + arr.strides[1:]
subs = np.lib.stride_tricks.as_strided(arr,
view_shape,
strides=strides,
writeable=writeable)
return subs
import numpy as np
np.random.seed(1)
Xs = as_strides(np.random.randn(1, 5, 5, 2), (3, 3), (2, 2), writeable=True)[0]
print('input\n0,0\n', Xs[0, 0])
np.add.at(Xs, np.s_[:], 5)
print('unbuffered sum output\n0,0\n', Xs[0,0])
np.add.at(Xs, np.s_[:], -5)
Xs = Xs + 5
print('normal sum output\n0,0\n', Xs[0, 0])
We can use list comprehension for this
data=np.array([1,2,3,4,5,6,7,8,9,10])
data_extractions=[data[b:b+5] for b in [1,2,3,4,5]]
data_extractions
Results
[array([2, 3, 4, 5, 6]), array([3, 4, 5, 6, 7]), array([4, 5, 6, 7, 8]), array([5, 6, 7, 8, 9]), array([ 6, 7, 8, 9, 10])]

How to make a simple Vandermonde matrix with numpy?

My question is how to make a vandermonde matrix. This is the definition:
In linear algebra, a Vandermonde matrix, named after Alexandre-Théophile Vandermonde, is a matrix with the terms of a geometric progression in each row, i.e., an m × n matrix
I would like to make a 4*4 version of this.
So farI have defined values but only for one row as follows
a=2
n=4
for a in range(n):
for i in range(n):
v.append(a**i)
v = np.array(v)
print(v)
I dont know how to scale this. Please help!
Given a starting column a of length m you can create a Vandermonde matrix v with n columns a**0 to a**(n-1)like so:
import numpy as np
m = 4
n = 4
a = range(1, m+1)
v = np.array([a]*n).T**range(n)
print(v)
#[[ 1 1 1 1]
# [ 1 2 4 8]
# [ 1 3 9 27]
# [ 1 4 16 64]]
As proposed by michael szczesny you could use numpy.vander.
But this will not be according to the definition on Wikipedia.
x = np.array([1, 2, 3, 5])
N = 4
np.vander(x, N)
#array([[ 1, 1, 1, 1],
# [ 8, 4, 2, 1],
# [ 27, 9, 3, 1],
# [125, 25, 5, 1]])
So, you'd have to use numpy.fliplr aswell:
x = np.array([1, 2, 3, 5])
N = 4
np.fliplr(np.vander(x, N))
#array([[ 1, 1, 1, 1],
# [ 1, 2, 4, 8],
# [ 1, 3, 9, 27],
# [ 1, 5, 25, 125]])
This could also be achieved without numpy using nested list comprehensions:
x = [1, 2, 3, 5]
N = 4
[[xi**i for i in range(N)] for xi in x]
# [[1, 1, 1, 1],
# [1, 2, 4, 8],
# [1, 3, 9, 27],
# [1, 5, 25, 125]]
# Vandermonde Matrix
def Vandermonde_Matrix(D, k):
'''
D = {(x_i,y_i): 0<=i<=n}
----------------
k degree
'''
n = len(D)
V = np.zeros(shape=(n, k))
for i in range(n):
V[i] = np.power(np.array(D[i][0]), np.arange(k))
return V

Get elements of a permutation

I have an 1D-array whose elements are a permutation of 0:N, and I need to take the first K elements of this permutation
For example, in the case the permutation is
0 [[9]
1 [0]
2 [1]
3 [2]
4 [3]
5 [4]
6 [5]
7 [6]
8 [7]
9 [8]]
The first 3 elements are 9 , 8 , 7
The code is
n = start
r = zeros (nodeCount, dtype = int)
i = 0
while (self.nodes[n][direction] != stop):
r[i] = n
n = self.nodes[n][direction]
i+=1
I need a faster way to extract the elements from permutation.
This works, but I don't think it is going to be especially fast:
>>> a
array([9, 0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> n = 3
>>> b = np.empty((n,), dtype=a.dtype)
>>> b[0] = a[0]
>>> for k in xrange(1, n):
... b[k] = a[b[k-1]]
...
>>> b
array([9, 8, 7])
Is numpy.roll what you're after?
>>> a = np.arange(10)
>>> b = np.roll(a,1)
>>> b
array([9, 0, 1, 2, 3, 4, 5, 6, 7, 8])
>>> np.roll(b[::-1],1)[:3]
array([9, 8, 7])
That last line of code is pretty cryptic, but b[::-1] reverses the array, np.roll shifts it, and the [:3] only takes the first three elements.