I am reading events from Kafka and depositing into REDIS. Then, we read events using Python and in case we don’t find events we drop/re-create the index.
However, I noticed at times even after re-creating the index I still don’t find events.
I have couple of questions -
[Q1] Is re-indexing a good approach where we are continuously getting a huge flow of events?
[Q2] Also, I noticed during REDIS search at times I do get events and then at another instance query does not return results, can this be related to dropping / re-creating index?
[Q3] Is there a better standard approach to ensure JSON are deposited / retrieved consistenly.
[Q4] Is there an explanation as to why at times everything just seems to work fine continuously for several hours and then does not work at all for few hours.
I would appreciate alternate approaches for this simple use case as I am fairly new to REDIS
Here are some points. I hope it would be helpful.
[Q1]
Re-indexing can be a good approach if you are getting a huge flow of events, as it will help keep your data up-to-date. However, you also need to make sure that your Redis instance is able to handle the increased load otherwise Redis can become very slow when it is re-indexing and may not be able to keep up with the flow of event. And in that case, you may need to scale your Redis instance to handle the load or incremental indexing may be a better option.
[Q2]
There could be many reasons why search results vary, but it is possible that the index is being dropped and re-created, which would cause the event to not be found. There are a few other things that could be happening:
There could be an issue with the search algorithm, which would cause search results to not be returned.
The data in the database could be changing, which would cause search results to not be returned.
[Q3]
There is no one standard approach to ensure JSON are deposited or retrieved consistently. However, some best practices you may consider include using a library or tool that supports serialization and deserialization of JSON data, validating input and output data, and using an editor that highlights errors in JSON syntax. You can also use locking mechanism to ensure that only one process can write to the Redis instance at a time, or using a queue to buffer writes to Redis. Also, different developers may have different preferences and opinions on the best way to handle JSON in Redis. Some possible methods include using commands such as JSET or JGET to manage JSON objects, or using a library such as JRedis to simplify the process.
[Q4]
Redis can be temperamental, and its behavior can vary depending on the specific configuration and usage scenarios. There is no specific explanation for this behavior, but it could be due to various factors such as load on the Redis server, network conditions, or other applications using the same Redis instance. In that case, server will not be able to handle requests properly and will stop responding. If everything is working fine for a few hours and then suddenly stops working, you can try restarting Redis or checking the logs for any errors that may have occurred.
Related
I will have multiple computers on the same network with the same C# application running, connecting to a SQL database.
I am wondering if I need to use the service broker to ensure that if I update record A in table B on Machine 1, the change is pushed to Machine 2. I have seen applications that need to use messaging servers to accomplish this before but I was wondering why this is necessary, surely if they connect to the same database, any changes from one machine will be reflected on the other?
Thanks :)
This is mostly about consistency and latency.
If your applications always perform atomic operations on the database, and they always read whatever they need with no caching, everything will be consistent.
In practice, this is seldom the case. There's plenty of hidden opportunities for caching, like when you have an edit form - it has the values the entity had before you started the edit process, but what if someone modified those in the mean time? You'd just rewrite their changes with your data.
Solving this is a bunch of architectural decisions. Different scenarios require different approaches.
Once data is committed in the database, everyone reading it will see the same thing - but only if they actually get around to reading it, and the two reads aren't separated by another commit.
Update notifications are mostly concerned with invalidating caches, and perhaps some push-style processing (e.g. IM client might show you a popup saying you got a new message). However, SQL Server notifications are not reliable - there is no guarantee that you'll get the notification, and even less so that you'll get it in time. This means that to ensure consistency, you must not depend on the cached data, and you have to force an invalidation once in a while anyway, even if you didn't get a change notification.
Remember, even if you're actually using a database that's close enough to ACID, it's usually not the default setting (for performance and availability, mostly). You need to understand what kind of guarantees you're getting, and how to write code to handle this. Even the most perfect ACID database isn't going to help your consistency if your application introduces those inconsistencies :)
I am looking for a (SQL/RDB) database setup that works something like this:
I will have 3+ databases in an active/active/active configuration
prior to doing any insert, the database will communicate with atleast a majority of the others, such that they all either insert at the same time or rollback (transaction)
this way I can write and read from any of the databases, and always get the same results (as long as the field wasn't updated very recently)
note: this is for a use case that will be very read-heavy and have few writes (and delay on the writes is an OK situation)
does anything like this exist? I see all sorts of solutions with database HA configurations, but most of them suggest writing to a primary node or having a passive backup
alternatively I could setup a custom application, and have each application talk to exactly 1 database, and achieve a similar result, but I was hoping something similar would already exist
So my questions is: does something like this exist? if not, are there any technical/architectural reasons why not?
P.S. - I will NOT be using a SAN where all databases can store/access the same data
edit: more clarifications as far as what I am looking for:
1. I have no database picked out yet, but I am more familiar with MySQL / SQL Server / Oracle, so I would have a minor inclination towards on of those
2. If a majority of the nodes are down (or a single node can't communicate with the collective), then I expect all writes from that node to fail, and accept that it may provide old/outdated information
failure / recover scenario expectations:
1. A node goes down: it will query and get updates from the other nodes when it comes back up
2. A node loses connection with the collective: it will provide potentially old data to read request, and refuse any writes
3. A node is in disagreement with the data stores in others: majority rule
4. 4. majority rule does not work: go with whomever has the latest data (although this really shouldn't happen)
5. The entries are insert/update/read only, i.e. there will be no deletes (except manually ofc), so I shouldn't need to worry about an update after a delete, however in that case I would choose to delete the record and ignore the update
6. Any other scenarios I missed?
update: I the closest I see to what I am looking for seems to be using a quorum + 2 DBs, however I would prefer if I could have 3 DBs instead, such that I can query any of them at any time (to further distribute the reads, and also to keep another copy of the data)
You need to define "very recently". In most environments with replication for inserts, all the databases will have the same data within a few seconds of an insert (and a few seconds seems pessimistic).
An alternative approach is a "read-from-one/write-to-all" approach. In this case, reads are spread through the system. Writes are then sent to all nodes by the application (or a common layer that the application uses).
Remember, though, that the issue with database replication is not how it works when it works. The issue is how it recovers when it fails and even how failures are identified. You need to decide what happens when nodes go down, how they recover lost transactions, how you decide that nodes are really synchronized. I would suggest that you peruse the documentation of the database that you are actually using and understand the replication mechanisms provided by that platform.
We are working with a .NET 3.5 app which is fast approaching legacy status. We have an existing SOAP service which reads records from our database and saves them to a third party MS SQL database, sending all the data rows in a single batch.
This has always worked fine, but recently we've taken on a much larger client than any we've had before, and they are transmitting much larger batches, so much so that they have begun to fail. We've upped the time out and max memory sizes in IIS, and maxed out the maxRequestLength in the web.config, but we are still bumping up against size problems.
So, I understand that long term, we should consider moving away from SOAP and into WCF, and plans for that are in the works. But in the mean time, we need a short term fix for this new client. And of course, to make the business and sales people happy, we need it kinda quickly.
I'm wondering what the best-practice approach might be. Initially I'm thinking something like this, but I could be thinking inside the box too much:
Establish a bench mark of # of records over which we don’t want to attempt to sync all at once.
Before attempting to save the data, check the number of records against that bench mark
If it's above it, then break the transmission down into segments which are each below that benchmark. SELECT TOP 10000 * FROM table WHERE sent = false, etc., if the benchmark is 10000. Then update sent to true for those records once submitted. Repeat.
Obviously, this will slow the process down, so to handle the user experience, we may want to toss in a status bar so they can see the progress.
Am I on the right track?
In addition to the comments from John, you should consider if you are solving the problem in the most optimal way.
It looks like you are triggering a one way sync between 2 database by calling a web service. This approach leads to the time out and memory problems that you are experiencing.
If your goal is to do the one way sync, you could use a free framework such as Microsofts sync framework: http://msdn.microsoft.com/en-US/sync
I'm considering MongoDB right now. Just so the goal is clear here is what needs to happen:
In my app, Finch (finchformac.com for details) I have thousands and thousands of entries per day for each user of what window they had open, the time they opened it, the time they closed it, and a tag if they choose one for it. I need this data to be backed up online so it can sync to their other Mac computers, etc.. I also need to be able to draw charts online from their data which means some complex queries hitting hundreds of thousands of records.
Right now I have tried using Ruby/Rails/Mongoid in with a JSON parser on the app side sending up data in increments of 10,000 records at a time, the data is processed to other collections with a background mapreduce job. But, this all seems to block and is ultimately too slow. What recommendations does (if anyone) have for how to go about this?
You've got a complex problem, which means you need to break it down into smaller, more easily solvable issues.
Problems (as I see it):
You've got an application which is collecting data. You just need to
store that data somewhere locally until it gets sync'd to the
server.
You've received the data on the server and now you need to shove it
into the database fast enough so that it doesn't slow down.
You've got to report on that data and this sounds hard and complex.
You probably want to write this as some sort of API, for simplicity (and since you've got loads of spare processing cycles on the clients) you'll want these chunks of data processed on the client side into JSON ready to import into the database. Once you've got JSON you don't need Mongoid (you just throw the JSON into the database directly). Also you probably don't need rails since you're just creating a simple API so stick with just Rack or Sinatra (possibly using something like Grape).
Now you need to solve the whole "this all seems to block and is ultimately too slow" issue. We've already removed Mongoid (so no need to convert from JSON -> Ruby Objects -> JSON) and Rails. Before we get onto doing a MapReduce on this data you need to ensure it's getting loaded into the database quickly enough. Chances are you should architect the whole thing so that your MapReduce supports your reporting functionality. For sync'ing of data you shouldn't need to do anything but pass the JSON around. If your data isn't writing into your DB fast enough you should consider Sharding your dataset. This will probably be done using some user-based key but you know your data schema better than I do. You need choose you sharding key so that when multiple users are sync'ing at the same time they will probably be using different servers.
Once you've solved Problems 1 and 2 you need to work on your Reporting. This is probably supported by your MapReduce functions inside Mongo. My first comment on this part, is to make sure you're running at least Mongo 2.0. In that release 10gen sped up MapReduce (my tests indicate that it is substantially faster than 1.8). Other than this you can can achieve further increases by Sharding and directing reads to the the Secondary servers in your Replica set (you are using a Replica set?). If this still isn't working consider structuring your schema to support your reporting functionality. This lets you use more cycles on your clients to do work rather than loading your servers. But this optimisation should be left until after you've proven that conventional approaches won't work.
I hope that wall of text helps somewhat. Good luck!
We have an application that takes real time data and inserts it into database. it is online for 4.5 hours a day. We insert data second by second in 17 tables. The user at any time may query any table for the latest second data and some record in the history...
Handling the feed and insertion is done using a C# console application...
Handling user requests is done through a WCF service...
We figured out that insertion is our bottleneck; most of the time is taken there. We invested a lot of time trying to finetune the tables and indecies yet the results were not satisfactory
Assuming that we have suffecient memory, what is the best practice to insert data into memory instead of having database. Currently we are using datatables that are updated and inserted every second
A colleague of ours suggested another WCF service instead of database between the feed-handler and the WCF user-requests-handler. The WCF mid-layer is supposed to be TCP-based and it keeps the data in its own memory. One may say that the feed handler might deal with user-requests instead of having a middle layer between 2 processes, but we want to seperate things so if the feed-handler crashes we want to still be able to provide the user with the current records
We are limited in time, and we want to move everything to memory in short period. Is having a WCF in the middle of 2 processes a bad thing to do? I know that the requests add some overhead, but all of these 3 process(feed-handler, In memory database (WCF), user-request-handler(WCF) are going to be on the same machine and bandwidth will not be that much of an issue.
Please assist!
I would look into creating a cache of the data (such that you can also reduce database selects), and invalidate data in the cache once it has been written to the database. This way, you can batch up calls to do a larger insert instead of many smaller ones, but keep the data in-memory such that the readers can read it. Actually, if you know when the data goes stale, you can avoid reading the database entirely and use it just as a backing store - this way, database performance will only affect how large your cache gets.
Invalidating data in the cache will either be based on whether its written to the database or its gone stale, which ever comes last, not first.
The cache layer doesn't need to be complicated, however it should be multi-threaded to host the data and also save it in the background. This layer would sit just behind the WCF service, the connection medium, and the WCF service should be improved to contain the logic of the console app + the batching idea. Then the console app can just connect to WCF and throw results at it.
Update: the only other thing to say is invest in a profiler to see if you are introducing any performance issues in code that are being masked. Also, profile your database. You mention you need fast inserts and selects - unfortunately, they usually trade-off against each other...
What kind of database are you using? MySQL has a storage engine MEMORY which would seem to be suited to this sort of thing.
Are you using DataTable with DataAdapter? If so, I would recommend that you drop them completely. Insert your records directly using DBCommand. When users request reports, read data using DataReader, or populate DataTable objects using DataTable.Load (IDataReader).
Storying data in memory has the risk of losing data in case of crashes or power failures.