Whilst trying to learn Recurrent Neural Networks(RNNs) am trying to train an Automatic Lip Reading Model using 3DCNN + LSTM. I tried out a code I found for the same on Kaggle.
model = Sequential()
# 1st layer group
model.add(Conv3D(32, (3, 3, 3), strides = 1, input_shape=(22, 100, 100, 1), activation='relu', padding='valid'))
model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=2))
model.add(Conv3D(64, (3, 3, 3), activation='relu', strides=1))
model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=2))
model.add(Conv3D(128, (3, 3, 3), activation='relu', strides=1))
model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=2))
shape = model.get_output_shape_at(0)
model.add(Reshape((shape[-1],shape[1]*shape[2]*shape[3])))
# LSTMS - Recurrent Network Layer
model.add(LSTM(32, return_sequences=True))
model.add(Dropout(.5))
model.add((Flatten()))
# # FC layers group
model.add(Dense(2048, activation='relu'))
model.add(Dropout(.5))
model.add(Dense(1024, activation='relu'))
model.add(Dropout(.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy'])
model.summary()
However, it returns the following error:
11 model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=2))
12
---> 13 shape = model.get_output_shape_at(0)
14 model.add(Reshape((shape[-1],shape[1]*shape[2]*shape[3])))
15
RuntimeError: The layer sequential_2 has never been called and thus has no defined output shape.
From my understanding, I see that the author of the code was trying to get the output shape of the first layer and reshape it such as to forward to the LSTM layer.
Found a similar post following which I made the following changes and the error was fixed.
shape = model.layers[-1].output_shape
# shape = model.get_output_shape_at(0)
Still I am confused as to what the code does to forward the input from the CNN layer to LSTM layer. Any help to make me understand the above is appreciated. Thank You!!
When you are passing the code from top to bottom then the inputs are flowing in the graph from top to bottom, you are getting this error because you can't call this function on eager mode, as Tensorflow 2.0 is fully transferred to eager mode, so, once you will fit the function and train it 1 epoch then you can use model.get_output_at(0) otherwise use mode.layers[-1].output.
The CNN Layer will extract the features locally then LSTM will sequentially extract and learn the feature, using CONV with LSTM is a good approach, but I will recommend you directly using tf.keras.layers.ConvLSTM3D. Check it here https://www.tensorflow.org/api_docs/python/tf/keras/layers/ConvLSTM3D
tf.keras.backend.clear_session()
model = Sequential()
# 1st layer group
model.add(Conv3D(32, (3, 3, 3), strides = 1, input_shape=(22, 100, 100, 1), activation='relu', padding='valid'))
model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=2))
model.add(Conv3D(64, (3, 3, 3), activation='relu', strides=1))
model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=2))
model.add(Conv3D(128, (3, 3, 3), activation='relu', strides=1))
model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=2))
shape = model.layers[-1].output_shape
model.add(Reshape((shape[-1],shape[1]*shape[2]*shape[3])))
# LSTMS - Recurrent Network Layer
model.add(LSTM(32, return_sequences=True))
model.add(Dropout(.5))
model.add((Flatten()))
# # FC layers group
model.add(Dense(2048, activation='relu'))
model.add(Dropout(.5))
model.add(Dense(1024, activation='relu'))
model.add(Dropout(.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy'])
model.summary()
Related
model = Sequential()
model.add(Conv2D(128, (3, 3), activation='relu', input_shape=(64, 64, 3), padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(5, activation = 'softmax'))
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=[tf.keras.metrics.Recall()])
This code works fine for metrics=['accuracy']), but it shows ValueError: Shapes (None, 1) and (None, 5) are incompatible for metrics=[tf.keras.metrics.Recall()])
Please help me. Thanks in advance.
Recall makes sense only for binary classification. Your final layer has 5 nodes, which essentially means you have 5 classes. You should change recall to another metric. Documentation should help you choose an appropriate metric for your model. Categorical accuracy should be good enough to get started.
I was studying different CNN architectures to predict the CIFAR10 dataset, and I found this interesting Github repository:
https://gist.github.com/wielandbrendel/ccf1ff6f8f92139439be
I tried to run the model, but it was created in 6 years ago and the following Keras command is no longer valid:
model.add(Convolution2D(32, 3, 3, 3, border_mode='full'))
How is this command translated into the modern Keras syntax for Conv2D?
I get an error in Keras when I try to input the sequence of integers in Convolution2D(32, 3, 3, 3, ...)?
I guess 32 is the number of channels, and then we specify a 3x3 kernel size, but I am not sure about the meaning of the last 3 mentioned (4th position).
PS. Changing border_mode into padding = 'valid' or 'same' returns the following error:
model.add(Convolution2D(32, 3, 3, 3, padding='valid'))
TypeError: __init__() got multiple values for argument 'padding'
The gist there you're following is backdated and also has some issues. You don't need to follow this now. Here is the updated version of it. Try this.
Imports and DataSet
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import (Dense, Dropout, Activation,
Flatten, Conv2D, MaxPooling2D)
from tensorflow.keras.optimizers import SGD, Adadelta, Adagrad
import tensorflow as tf
# parameters
batch_size = 32
nb_classes = 10
nb_epoch = 5
# the data, shuffled and split between tran and test sets
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.cifar10.load_data()
# convert class vectors to binary class matrices
Y_train = tf.keras.utils.to_categorical(y_train, nb_classes)
Y_test = tf.keras.utils.to_categorical(y_test, nb_classes)
# train model
X_train = X_train.astype("float32") / 255
X_test = X_test.astype("float32") / 255
X_train.shape, y_train.shape, X_test.shape, y_test.shape
((50000, 32, 32, 3), (50000, 1), (10000, 32, 32, 3), (10000, 1))
Modeling
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3, 3),
strides=(1, 1), activation='relu', padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(filters=32, kernel_size=(3, 3),
strides=(1, 1), activation='relu', padding="same"))
model.add(Activation('relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(filters=32, kernel_size=(3, 3),
strides=(1, 1), activation='relu', padding="same"))
model.add(Activation('relu'))
model.add(Conv2D(filters=32, kernel_size=(3, 3),
strides=(1, 1), activation='relu', padding="same"))
model.add(Activation('relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
# let's train the model using SGD + momentum (how original).
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
Compile and Run
model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch)
# test score & top 1 performance
score = model.evaluate(X_test, Y_test, batch_size=batch_size)
y_hat = model.predict(X_test)
yhat = np.argmax(y_hat, 1)
top1 = np.mean(yhat == np.squeeze(y_test))
print('Test score/Top1', score, top1)
The Convolutional2D is now named Conv2D, but there is still an alias for Convolutional2D, so that's not a problem.
The border_mode argument is not available anymore, the equivalent is padding, with options valid or same.
Try both to see if any of those fits the shapes of the outputs and allows to code to work.
I am trying to train a neural network on CIFAR-10 using keras package in tensorflow. The neural network considered is VGG-16, which I directly borrowed from the official keras models.
The definition is:
def cnn_model(nb_classes=10):
# VGG-16 official keras model
img_input= Input(shape=(32,32,3))
vgg_layer= Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
vgg_layer= Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(vgg_layer)
vgg_layer= MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(vgg_layer)
# Block 2
vgg_layer= Conv2D(64, (3, 3), activation='relu', padding='same', name='block2_conv1')(vgg_layer)
vgg_layer= Conv2D(64, (3, 3), activation='relu', padding='same', name='block2_conv2')(vgg_layer)
vgg_layer= MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(vgg_layer)
# Block 3
vgg_layer= Conv2D(128, (3, 3), activation='relu', padding='same', name='block3_conv1')(vgg_layer)
vgg_layer= Conv2D(128, (3, 3), activation='relu', padding='same', name='block3_conv2')(vgg_layer)
vgg_layer= Conv2D(128, (3, 3), activation='relu', padding='same', name='block3_conv3')(vgg_layer)
vgg_layer= MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(vgg_layer)
# Block 4
vgg_layer= Conv2D(256, (3, 3), activation='relu', padding='same', name='block4_conv1')(vgg_layer)
vgg_layer= Conv2D(256, (3, 3), activation='relu', padding='same', name='block4_conv2')(vgg_layer)
vgg_layer= Conv2D(256, (3, 3), activation='relu', padding='same', name='block4_conv3')(vgg_layer)
vgg_layer= MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(vgg_layer)
# Classification block
vgg_layer= Flatten(name='flatten')(vgg_layer)
vgg_layer= Dense(1024, activation='relu', name='fc1')(vgg_layer)
vgg_layer= Dense(1024, activation='relu', name='fc2')(vgg_layer)
vgg_layer= Dense(nb_classes, activation='softmax', name='predictions')(vgg_layer)
return Model(inputs=img_input, outputs=vgg_layer)
However during training, I always get both train and validation accuracy as 0.1 i.e, 10%.
validation accuracy for adv. training of model for epoch 1= 0.1
validation accuracy for adv. training of model for epoch 2= 0.1
validation accuracy for adv. training of model for epoch 3= 0.1
validation accuracy for adv. training of model for epoch 4= 0.1
validation accuracy for adv. training of model for epoch 5= 0.1
As a step towards debugging, whenever I replace with any other model (eg, any simple CNN model) it works perfectly well. This shows that the rest of the script works well.
For example the following CNN model works perfectly well and achieves an accuracy of 75% after 30 epochs.
def cnn_model(nb_classes=10, num_hidden=1024, weight_decay= 0.0001, cap_factor=4):
model=Sequential()
input_shape = (32,32,3)
model.add(Conv2D(32*cap_factor, kernel_size=(3,3), strides=(1,1), kernel_regularizer=keras.regularizers.l2(weight_decay), kernel_initializer="he_normal", activation='relu', padding='same', input_shape=input_shape))
model.add(Conv2D(32*cap_factor, kernel_size=(3,3), strides=(1,1), kernel_regularizer=keras.regularizers.l2(weight_decay), kernel_initializer="he_normal", activation="relu", padding="same"))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Conv2D(64*cap_factor, kernel_size=(3,3), strides=(1,1), kernel_regularizer=keras.regularizers.l2(weight_decay), kernel_initializer="he_normal", activation="relu", padding="same"))
model.add(Conv2D(64*cap_factor, kernel_size=(3,3), strides=(1,1), kernel_regularizer=keras.regularizers.l2(weight_decay), kernel_initializer="he_normal", activation="relu", padding="same"))
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))
model.add(BatchNormalization())
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(num_hidden, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes, activation='softmax'))
return model
It appears to me that both of these models are correctly defined. However, one works perfect while the other doesn't learn at all. I also tried writing the VGG model as an Sequential structure i.e, similar to the second one, but it still gave me 10% accuracy.
Even if the model doesn't update any weights, still the "he_normal" initializer will easily able to obtain a much better accuracy than pure chance. It appears that somehow tensorflow computing the output logits from the model which results in accuracy as pure chance.
I will be really helpful if someone can point out my mistake in it.
Your 10% corresponds higly with nr of classes = 10. That makes me think that regardless of the training, your answer is always "1" for all categories, what constantly gives you 10% accuracy on 10 classes.
Check the output of the untrained model, if it is always 1
If so, check the initial weights of the model, probably it's wrongly initialized, gradients are zero and it can't converge
I want to build an end-to-end trainable model with the following proprieties:
CNN to extract features from image
The features is reshaped to a matrix
Each row of this matrix is then fed to LSTM1
Each column of this matrix is then fed to LSTM2
The output of LSTM1 and LSTM2 are concatenated for the final output
(it's more or less similar to Figure 2 in this paper: https://arxiv.org/pdf/1611.07890.pdf)
My problem now is after the reshape, how can I feed the values of feature matrix to LSTM with Keras or Tensorflow?
This is my code so far with VGG16 net (also a link to Keras issues):
# VGG16
model = Sequential()
model.add(Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=(224, 224, 3)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
# block 2
model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
# block 3
model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(256, (3, 3), activation='relu'))
model.add(Conv2D(256, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
# block 4
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu'))
model.add(Conv2D(512, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
# block 5
model.add(Conv2D(512, (3, 3), activation='relu', padding='same'))
model.add(Conv2D(512, (3, 3), activation='relu'))
model.add(Conv2D(512, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
# block 6
model.add(Flatten())
model.add(Dense(4096, activation='relu'))
model.add(Dense(4096, activation='relu'))
# reshape the feature 4096 = 64 * 64
model.add(Reshape((64, 64)))
# How to feed each row of this to LSTM?
# This is my first solution but it doesn’t look correct:
# model.add(LSTM(256, input_shape=(64, 1))) # 256 hidden units, sequence length = 64, feature dim = 1
Consider building your CNN model with Conv2D and MaxPool2D layers, until you reach your Flatten layer, because the vectorized output from the Flatten layer will be you input data to the LSTM part of your structure.
So, build your CNN model like this:
model_cnn = Sequential()
model_cnn.add(Conv2D...)
model_cnn.add(MaxPooling2D...)
...
model_cnn.add(Flatten())
Now, this is an interesting point, the current version of Keras has some incompatibility with some TensorFlow structures that will not let you stack your entire layers in just one Sequential object.
So it's time to use the Keras Model Object to complete you neural network with a trick:
input_lay = Input(shape=(None, ?, ?, ?)) #dimensions of your data
time_distribute = TimeDistributed(Lambda(lambda x: model_cnn(x)))(input_lay) # keras.layers.Lambda is essential to make our trick work :)
lstm_lay = LSTM(?)(time_distribute)
output_lay = Dense(?, activation='?')(lstm_lay)
And finally, now it's time to put together our 2 separated models:
model = Model(inputs=[input_lay], outputs=[output_lay])
model.compile(...)
OBS: Note that you can substitute my model_cnn example by your VGG without including the top layers, once the vectorized output from the VGG Flatten layer will be the input of the LSTM model.
I wanted to merge two sequential models into one using a Merge layer but it is showing me an error. I am working with images, with size 128x128 (RGB image) and batch size is 32.
The error is:
ValueError: The model expects 3 input arrays, but only received one array. Found: array with shape (32, 3, 128, 128)
The model is defined as:
model = Sequential() leftBranch = Sequential()
leftBranch.add(Reshape((3,128,128), input_shape=(3, img_width, img_height)))
leftBranch.add(Convolution2D(14, 3, 1, activation='relu'))
leftBranch.add(ZeroPadding2D((1, 1)))
leftBranch.add(Flatten())
rightBranch = Sequential()
rightBranch.add(Reshape((3,128,128), input_shape=(3, img_width, img_height)))
rightBranch.add(Convolution2D(14, 1, 3, activation='relu'))
rightBranch.add(MaxPooling2D((2, 2), strides=(2, 2)))
rightBranch.add(Flatten())
centralBranch = Sequential()
centralBranch.add(Reshape((3,128,128), input_shape=(3, img_width, img_height)))
centralBranch.add(Convolution2D(14, 5, 5, activation='relu'))
centralBranch.add(MaxPooling2D((2, 2), strides=(2, 2)))
centralBranch.add(Flatten())
merged = Merge([leftBranch, centralBranch, rightBranch], mode='concat')
model = Sequential()
model.add(merged) model.add(Dense(64))
model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(1))
model.add(Activation('sigmoid'))
Error coming is :
ValueError: The model expects 3 input arrays, but only received one array. Found: array with shape (32, 3, 128, 128)
So, whats is the proper way to concatenate two sequential model with convolutional layers. I just want to Merge convolutional layers output like I did it here.