I have a nextflow process that outputs multiple files, like below:
[chr1,/path/to/chr1_chunk1.TC.linear]
[chr1,/path/to/chr1_chunk1.HDL.linear]
[chr1,/path/to/chr1_chunk2.TC.linear]
[chr1,/path/to/chr1_chunk2.HDL.linear]
.....
The above example I got after using transpose() operator.
Now, I want to concatenate All chunks and all chromosome together ordered by chunk and chromosome number so that I get 1 file for TC and another file for HDL. I have multiple traits in many chunks so this link wouldn't be helpful. output files (chromosomal chunks) merging in nextflow
Any help?
You can use a combination of the branch and collectFile operators. Look at the following directory structure below (where the .linear files have their names as contents):
➜ sandbox tree .
.
├── ex1.HDL.linear
├── ex1.TC.linear
├── ex2.HDL.linear
├── ex2.TC.linear
├── ex3.HDL.linear
├── ex3.TC.linear
└── example.nf
I wrote the following minimal reproducible example:
workflow {
files = Channel.fromPath('**.linear', checkIfExists: true)
files
.branch {
TC: it.name.contains('TC')
HDL: it.name.contains('HDL')
}
.set { result }
result
.TC
.collectFile(name: 'TC.txt', storeDir: '/Users/mribeirodantas/sandbox')
result
.HDL
.collectFile(name: 'HDL.txt', storeDir: '/Users/mribeirodantas/sandbox')
}
After running this pipeline with nextflow run example.nf, I will get in the /Users/mribeirodantas/sandbox folder two new files: TC.txt and HDL.txt. The content of TC.txt, for example, is:
ex2.TC.linear
ex3.TC.linear
ex1.TC.linear
If your chunk files are sufficiently small, you can use the collectFile operator to concatenate them into files with names defined using a dynamic grouping criteria:
The grouping criteria is specified by a closure that must return a
pair in which the first element defines the file name for the group
and the second element the actual value to be appended to that file.
To sort by chromosome number and then by chunk number, you can use the toSortedList and flatMap operators to feed the sorted collection into the collectFile operator:
input_ch
.map { key, chunk_file ->
def matcher = chunk_file.name =~ /^chr(\d+)_chunk(\d+)\.(\w+)\.linear$/
def (_, chrom, chunk, trait) = matcher[0]
tuple( (chrom as int), (chunk as int), trait, chunk_file )
}
.toSortedList( { a, b -> (a[0] <=> b[0]) ?: (a[1] <=> b[1]) } )
.flatMap()
.collectFile( sort: false ) { chrom, chunk, trait, chunk_file ->
[ "${trait}.linear", chunk_file.text ]
}
Related
I have a workflow consisting of 2 subworkflows.
params.reads = "$projectDir/data/raw/reads/*_{1,2}.fastq.gz"
params.kaiju_db = "$projectDir/data/kaijudb/viruses/kaiju_db_viruses.fmi"
params.kaiju_names = "$projectDir/data/kaijudb/viruses/names.dmp"
params.kaiju_nodes = "$projectDir/data/kaijudb/viruses/nodes.dmp"
workflow subworkflow_A {
take:
reads // channel: [ val(sample), [ reads ] ]
main:
count_reads(reads)
trim_reads(reads)
emit:
trimmed_reads = process2.out.reads // channel: [ val(sample), [ trimmed_reads ] ]
}
workflow subworkflow_B {
take:
reads // channel: [ val(sample), [ reads ] ]
db // channel: /path/to/kaiju/db.fmi
nodes // channel: /path/to/kaiju/nodes/file
names // channel: /path/to/kaiju/names/file
main:
taxonomic_classification(reads, nodes, db)
kaiju_to_krona(taxonomic_classification.out, nodes, names)
krona_import_text(kaiju_to_krona.out)
kaiju_to_table(taxonomic_classification.out, nodes, names)
}
workflow main {
ch_reads = Channel.fromFilePairs("$params.reads", checkIfExists:true)
subworkflow_A(ch_reads)
ch_db = Channel.fromPath("$params.kaiju_db", checkIfExists: true)
ch_nodes = Channel.fromPath("$params.kaiju_nodes", checkIfExists: true)
ch_names = Channel.fromPath("$params.kaiju_names", checkIfExists: true)
ch_trimmed_reads = subworkflow_A.out.trimmed_reads
subworkflow_B(ch_processed_reads, ch_db, ch_nodes, ch_names)
}
The input for params.reads is a directory like,
reads/
├── test_sample1_1.fastq.gz
├── test_sample1_2.fastq.gz
├── test_sample2_1.fastq.gz
└── test_sample2_2.fastq.gz
The input for subworkflow_A, ch_reads is:
[test_sample1, [~project/data/raw/reads/test_sample1_1.fastq.gz, ~project/data/raw/reads/test_sample1_2.fastq.gz]]
[test_sample2, [~project/data/raw/reads/test_sample2_1.fastq.gz, ~project/data/raw/reads/test_sample2_2.fastq.gz]]
subworkflow_A then emits the following channel into ch_trimmed_reads
[test_sample1, [~project/work/51/240e81f0a30e7e4c1d932abfe97502/test_sample1.trim.R1.fq.gz, ~project/work/51/240e81f0a30e7e4c1d932abfe97502/test_sample1.trim.R2.fq.gz]]
[test_sample2, [~project/work/work/b2/d38399833f3adf11d4e8c6d85ec293/test_sample2.trim.R1.fq.gz, ~project/work/b2/d38399833f3adf11d4e8c6d85ec293/test_sample2.trim.R2.fq.gz]]
For some reason, subworkflow_B only runs the first sample test_sample1, and not the second sample test_sample1 when I want to run it over both samples.
Note that a value channel is implicitly created by a process when it is invoked with a simple value. This means you can just pass in a plain file object. For example:
workflow main {
ch_reads = Channel.fromFilePairs( params.reads, checkIfExists:true )
db = file( params.kaiju_db )
nodes = file( params.kaiju_nodes )
names = file( params.kaiju_names )
subworkflow_B( ch_reads, db, nodes, names )
}
Most of the time, what you want is one queue channel and one or more value channels when your process requires multiple input channels:
When two or more channels are declared as process inputs, the process
waits until there is a complete input configuration, i.e. until it
receives a value from each input channel. When this condition is
satisfied, the process consumes a value from each channel and launches
a new task, repeating this logic until one or more channels are empty.
As a result, channel values are consumed sequentially and any empty
channel will cause the process to wait, even if the other channels
have values.
A different semantic is applied when using a value channel. This kind
of channel is created by the Channel.value factory method or
implicitly when a process is invoked with an argument that is not a
channel. By definition, a value channel is bound to a single value and
it can be read an unlimited number of times without consuming its
content. Therefore, when mixing a value channel with one or more
(queue) channels, it does not affect the process termination because
the underlying value is applied repeatedly.
I'm trying to combine outputs from two separate processes A and B, where each of them outputs multiple files, into input of process C. All file names have in common a chromosome number(for example "chr1"). The process A outputs files: /path/chr1_qc.vcf.gz, /path/chr2_qc.vcf.gz and etc (genotype files).
Process B outputs files: /path/chr1.a.bcf, /path/chr1.b.bcf, /path/chr1.c.bcf.../path/chr2.a.bcf, /path/chr2.b.bcf and etc (region files). And the number of both file-sets could vary each time.
Part of the code:
process A {
module "bcftools/1.16"
publishDir "${params.out_dir}", mode: 'copy', overwrite: true
input:
path vcf
path tbi
output:
path ("${(vcf =~ /chr\d{1,2}/)[0]}_qc.vcf.gz")
script:
"""
bcftools view -R ${params.sites_list} -Oz -o ${(vcf =~ /chr\d{1,2}/)[0]}_qc.vcf.gz ${vcf} //generates QC-ed genome files
tabix -f ${(vcf =~ /chr\d{1,2}/)[0]}_qc.vcf.gz //indexing QC-ed genomes
"""
}
process B {
publishDir "${params.out_dir}", mode: 'copy', overwrite: true
input:
path(vcf)
output:
tuple path("${(vcf =~ /chr\d{1,2}/)[0]}.*.bed")
script:
"""
python split_chr.py ${params.chr_lims} ${vcf} //generates region files
"""
}
process C {
publishDir "${params.out_dir}", mode: 'copy', overwrite: true
input:
tuple path(vcf), path(bed)
output:
path "${bed.SimpleName}.vcf.gz"
script:
"""
bcftools view -R ${bed} -Oz -o ${bed.SimpleName}.vcf.gz ${vcf}
"""
}
workflow {
A(someprocess.out)
B(A.out)
C(combined_AB_files)
}
Process B output.view() output:
[/path/chr1.a.bed, /path/chr1.b.bed]
[/path/chr2.a.bed, /path/chr2.b.bed]
How can I get the process C to receive an input as a channel of tuples (A and B outputs combined by chromosome name) like this:
[ /path/chr1_qc.vcf.gz, /path/chr1.a.bcf ]
[ /path/chr1_qc.vcf.gz, /path/chr1.b.bcf ]
...
[ /path/chr2_qc.vcf.gz, /path/chr2.a.bcf ]
...
I think what you want is the second form of the combine operator, which allows you to combine items that share a matching key using the by parameter. If one or more of your channels are missing a shared key in the first element, you can just use the map operator to produce such a key. To get the desired output, use the transpose operator and specify the index (zero based) of the element to be transposed, again using the by parameter. For example:
workflow {
Channel
.fromPath( './data/*.bed' )
.map { tuple( it.simpleName, it ) }
.groupTuple()
.set { bed_files }
Channel
.fromPath( './data/*_qc.vcf.gz' )
.map { tuple( it.simpleName - ~/_qc$/, it ) }
.combine( bed_files, by: 0 )
.transpose( by: 2 )
.map { chrom, vcf, bed -> tuple( vcf, bed ) }
.view()
}
Results:
$ touch ./data/chr{1..3}.{a..c}.bed
$ touch ./data/chr{1..3}_qc.vcf.gz
$ nextflow run main.nf
N E X T F L O W ~ version 22.10.0
Launching `main.nf` [pedantic_woese] DSL2 - revision: 9c5abfca90
[/data/chr1_qc.vcf.gz, /data/chr1.c.bed]
[/data/chr1_qc.vcf.gz, /data/chr1.a.bed]
[/data/chr1_qc.vcf.gz, /data/chr1.b.bed]
[/data/chr2_qc.vcf.gz, /data/chr2.b.bed]
[/data/chr2_qc.vcf.gz, /data/chr2.a.bed]
[/data/chr2_qc.vcf.gz, /data/chr2.c.bed]
[/data/chr3_qc.vcf.gz, /data/chr3.c.bed]
[/data/chr3_qc.vcf.gz, /data/chr3.b.bed]
[/data/chr3_qc.vcf.gz, /data/chr3.a.bed]
Note that when two or more queue channels are declared as process inputs (like in your process A), the process will block until it receives a value from each input channel. As these are run in parallel and asynchronously, there's no guarantee that items will be emitted in the order that they were received. This can result in mix-ups, where for example, you unexpectedly end up with an index file that belongs to another VCF. Most of the time, what you want is one queue channel and one or more value channels. The section in the docs on multiple input channels explains this quite well in my opinion, and is well worth the time reading if you haven't already. Also, joining and combining channels becomes a lot easier when your processes define tuples in their input and output declarations, where the first element is a key, like a sample name/id. I think you want something something like the following:
params.vcf_files = './data/*.vcf.gz{,.tbi}'
params.sites_list = './data/sites.tsv'
params.chr_lims = './data/file.txt'
params.outdir = './results'
process proc_A {
tag "${sample}: ${indexed_vcf.first()}"
publishDir "${params.outdir}/proc_A", mode: 'copy', overwrite: true
module "bcftools/1.16"
input:
tuple val(sample), path(indexed_vcf)
path sites_list
output:
tuple val(sample), path("${sample}_qc.vcf.gz{,.tbi}")
script:
def vcf = indexed_vcf.first()
"""
bcftools view \\
-R "${sites_list}" \\
-Oz \\
-o "${sample}_qc.vcf.gz" \\
"${vcf}"
bcftools index \\
-t \\
"${sample}_qc.vcf.gz"
"""
}
process proc_B {
tag "${sample}: ${indexed_vcf.first()}"
publishDir "${params.outdir}/proc_B", mode: 'copy', overwrite: true
input:
tuple val(sample), path(indexed_vcf)
path chr_lims
output:
tuple val(sample), path("*.bed")
script:
def vcf = indexed_vcf.first()
"""
split_chr.py "${chr_lims}" "${vcf}"
"""
}
process proc_C {
tag "${sample}: ${indexed_vcf.first()}: ${bed.name}"
publishDir "${params.outdir}/proc_C", mode: 'copy', overwrite: true
input:
tuple val(sample), path(indexed_vcf), path(bed)
output:
tuple val(sample), path("${bed.simpleName}.vcf.gz")
script:
def vcf = indexed_vcf.first()
"""
bcftools view \\
-R "${bed}" \\
-Oz \\
-o "${bed.simpleName}.vcf.gz" \\
"${vcf}"
"""
}
workflow {
vcf_files = Channel.fromFilePairs( params.vcf_files )
sites_list = file( params.sites_list )
chr_lims = file( params.chr_lims )
proc_A( vcf_files, sites_list )
proc_B( proc_A.out, chr_lims )
proc_A.out \
| combine( proc_B.out, by: 0 ) \
| map { sample, indexed_vcf, bed_files ->
bed_list = bed_files instanceof Path ? [bed_files] : bed_files
tuple( sample, indexed_vcf, bed_list )
} \
| transpose( by: 2 ) \
| proc_C \
| view()
}
The above should produce results like:
$ nextflow run main.nf
N E X T F L O W ~ version 22.10.0
Launching `main.nf` [mighty_elion] DSL2 - revision: 5ea25ae72c
executor > local (15)
[b4/08df9d] process > proc_A (foo: foo.vcf.gz) [100%] 3 of 3 ✔
[93/55e467] process > proc_B (foo: foo_qc.vcf.gz) [100%] 3 of 3 ✔
[8b/cd7193] process > proc_C (foo: foo_qc.vcf.gz: b.bed) [100%] 9 of 9 ✔
[bar, ./work/90/53b9c6468ca54bb0f4eeb99ca82eda/a.vcf.gz]
[bar, ./work/24/cca839d5f63ee6988ead96dc9fbe1d/b.vcf.gz]
[bar, ./work/6f/61e1587134e68d2e358998f61f6459/c.vcf.gz]
[baz, ./work/f8/1484e94b9187ba6aae81d68f0a18cf/b.vcf.gz]
[baz, ./work/9c/20578262f5a2c13c6c3b566dc7b7d8/c.vcf.gz]
[baz, ./work/f5/3405b54f81f6f500a3ee4a78f5e6df/a.vcf.gz]
[foo, ./work/39/945fb0d3f375260e75afbc9caebc5d/a.vcf.gz]
[foo, ./work/de/cecd94ff39f204e799cb8e4c4ad46f/c.vcf.gz]
[foo, ./work/8b/cd7193107f6be5472d2e29982e3319/b.vcf.gz]
Also note that third party scripts, like your Python script, can be moved to a folder called bin in the root of your project repository (i.e. the same directory as your main.nf). And if you make your script executable, you will be able to invoke "as-is", i.e. without the need for an absolute path to it.
This can be done with channel operators. Check the code below, with some comments:
workflow {
// Let's start by building channels similar to the ones you described
Channel
.of(file('/path/chr1_qc.vcf.gz'), file('/path/chr2_qc.vcf.gz'))
.set { pAoutput}
Channel
.of(file('/path/chr1.a.bcf'), file('/path/chr1.b.bcf'), file('/path/chr1.c.bcf'),
file('/path/chr2.a.bcf'), file('/path/chr2.b.bcf'), file('/path/chr2.c.bcf'))
.set { pBoutput }
// Now, let's create keys to relate the elements in the two channels
pAoutput
.map { filepath -> [filepath.name.tokenize('_')[0], filepath ] }
.set { pAoutput_tuple }
// The channel now looks like this:
// [chr1, /path/chr1_qc.vcf.gz]
// [chr2, /path/chr2_qc.vcf.gz]
pBoutput
.map { filepath -> [filepath.name.tokenize('.')[0], filepath ] }
.set { pBoutput_tuple }
// And:
// [chr1, /path/chr1.a.bcf]
// [chr1, /path/chr1.b.bcf]
// [chr1, /path/chr1.c.bcf]
// [chr2, /path/chr2.a.bcf]
// [chr2, /path/chr2.b.bcf]
// [chr2, /path/chr2.c.bcf]
// Combine the two channels and group by key
pAoutput_tuple
.mix(pBoutput_tuple)
.groupTuple()
.flatMap { chrom, path_list ->
path_list.split {
it.name.endsWith('.vcf.gz')
}.combinations()
}
.view()
}
You can check the output below:
N E X T F L O W ~ version 22.10.4
Launching `ex.nf` [maniac_pike] DSL2 - revision: f87873ef13
[/path/chr1_qc.vcf.gz, /path/chr1.a.bcf]
[/path/chr1_qc.vcf.gz, /path/chr1.b.bcf]
[/path/chr1_qc.vcf.gz, /path/chr1.c.bcf]
[/path/chr2_qc.vcf.gz, /path/chr2.a.bcf]
[/path/chr2_qc.vcf.gz, /path/chr2.b.bcf]
[/path/chr2_qc.vcf.gz, /path/chr2.c.bcf]
I've been struggling to identify why a nextflow (v20.10.00) process is not using all the items in a channel. I want the process to run for each sample bam file (10 in total) and for each chromosome (3 in total).
Here is the creation of the channels and the process:
ref_genome = file( params.RefGen, checkIfExists: true )
ref_dir = ref_genome.getParent()
ref_name = ref_genome.getBaseName()
ref_dict = file( "${ref_dir}/${ref_name}.dict", checkIfExists: true )
ref_index = file( "${ref_dir}/${ref_name}.*.fai", checkIfExists: true )
// Handles reading in data if the previous step is skipped
if( params.Skip_BP ){
Channel
.fromFilePairs("${params.ProcBamDir}/*{bam,bai}") { file -> file.name.replaceAll(/.bam|.bai$/,'') }
.ifEmpty { error "No bams found in ${params.ProcBamDir}" }
.map { ID, files -> tuple(ID, files[0], files[1]) }
.set { processed_bams }
}
// Setting up the chromosome channel
if( params.Chroms == "" ){
// Defaulting to using all chromosomes
chromosomes_ch = Channel
.from("AgamP4_2L", "AgamP4_2R", "AgamP4_3L", "AgamP4_3R", "AgamP4_X", "AgamP4_Y_unplaced", "AgamP4_UNKN")
println "No chromosomes specified, using all major chromosomes: AgamP4_2L, AgamP4_2R, AgamP4_3L, AgamP4_3R, AgamP4_X, AgamP4_Y_unplaced, AgamP4_UNKN"
} else {
// User option to choose which chromosome will be used
// This worked with the following syntax nextflow run testing.nf --profile imperial --Chroms "AgamP4_3R,AgamP4_2L"
chrs = params.Chroms.split(",")
chromosomes_ch = Channel
.from( chrs )
println "User defined chromosomes set: ${params.Chroms}"
}
process DNA_HCG {
errorStrategy { sleep(Math.pow(2, task.attempt) * 600 as long); return 'retry' }
maxRetries 3
maxForks params.HCG_Forks
tag { SampleID+"-"+chrom }
executor = 'pbspro'
clusterOptions = "-lselect=1:ncpus=${params.HCG_threads}:mem=${params.HCG_memory}gb:mpiprocs=1:ompthreads=${params.HCG_threads} -lwalltime=${params.HCG_walltime}:00:00"
publishDir(
path: "${params.HCDir}",
mode: 'copy',
)
input:
each chrom from chromosomes_ch
set SampleID, path(bam), path(bai) from processed_bams
path ref_genome
path ref_dict
path ref_index
output:
tuple chrom, path("${SampleID}-${chrom}.vcf") into HCG_ch
path("${SampleID}-${chrom}.vcf.idx") into idx_ch
beforeScript 'module load anaconda3/personal; source activate NF_GATK'
script:
"""
if [ ! -d tmp ]; then mkdir tmp; fi
taskset -c 0-${params.HCG_threads} gatk --java-options \"-Xmx${params.HCG_memory}G -XX:+UseParallelGC -XX:ParallelGCThreads=${params.HCG_threads}\" HaplotypeCaller \\
--tmp-dir tmp/ \\
--pair-hmm-implementation AVX_LOGLESS_CACHING_OMP \\
--native-pair-hmm-threads ${params.HCG_threads} \\
-ERC GVCF \\
-L ${chrom} \\
-R ${ref_genome} \\
-I ${bam} \\
-O ${SampleID}-${chrom}.vcf ${params.GVCF_args}
"""
}
But for reasons I cannot figure out, nextflow only creates 3 jobs: [d8/45499b] process > DNA_HCG (0_wt5_BP-CM029350.1) [ 0%] 0 of 3
I thought maybe it was because it only took the first sample and then one process for each chromosome. Though I doubted this since the code works for a different reference genome correctly. Regardless, I adjusted the input channels:
processed_bams
.combine(chromosomes_ch)
.set { HCG_in }
and
input:
set SampleID, path(bam), path(bai), chrom from HCG_in
But this resulted in only a single job being created: [6e/78b070] process > DNA_HCG (0_wt10_BP-CM029350.1) [ 0%] 0 of 1
Confusingly, when i use HCG_in.view() there are 30 items. And to further confuse me the correct number of jobs comes from the following code:
chrs = params.Chroms.split(",")
chromosomes_ch = Channel
.from(chrs)
Channel
.fromFilePairs("${params.ProcBamDir}/*{bam,bai}") { file -> file.name.replaceAll(/.bam|.bai$/,'') }
.ifEmpty { error "No bams found in ${params.ProcBamDir}" }
.map { ID, files -> tuple(ID, files[0], files[1]) }
.set { processed_bams }
process HCG {
executor 'local'
input:
each chrom from chromosomes_ch
set SampleID, path(bam), path(bai) from processed_bams
//set SampleID, path(bam), path(bai), chrom from HCG_in
script:
"""
echo "${SampleID} - ${chrom}"
"""
}
Output: [75/c1c25a] process > HCG (27) [100%] 30 of 30 ✔
I'm hoping I've just missed something obvious, but I cannot see it at the moment. Thanks in advance for the help.
Issues like this almost always involve the use of multiple input channels:
When two or more channels are declared as process inputs, the process
stops until there’s a complete input configuration ie. it receives an
input value from all the channels declared as input.
Your initial assessment was correct. However, the reason only three processes were run (i.e. one sample for each of the three chromosomes), is because this line (probably) returned a list (i.e. a java LinkedList) containing a single element, and lists behave like queue channels:
ref_index = file( "${ref_dir}/${ref_name}.*.fai", checkIfExists: true )
You might have expected this to return a UnixPath. Ultimately, the solution is to ensure ref_index is value channel.
#BASENAME# does not appear to work in the install_dir: parameter of the Meson custom_target() function.
protoc = find_program('protoc')
protobuf_sources= [
'apples.proto',
'oranges.proto',
'pears.proto'
]
protobuf_generated_go = []
foreach protobuf_definition : protobuf_sources
protobuf_generated_go += custom_target('go_' + protobuf_definition,
command: [protoc, '--proto_path=#CURRENT_SOURCE_DIR#', '--go_out=paths=source_relative:#OUTDIR#', '#INPUT#'],
input: protobuf_definition,
output: '#BASENAME#.pb.go',
install: true,
install_dir: 'share/gocode/src/github.com/foo/bar/protobuf/go/#BASENAME#/'
)
endforeach
I need the generated files to end up in at directory based on the basename of the input file:
share/gocode/src/github.com/foo/bar/protobuf/go/apples/apples.pb.go
share/gocode/src/github.com/foo/bar/protobuf/go/oranges/oranges.pb.go
share/gocode/src/github.com/foo/bar/protobuf/go/pears/pears.pb.go
If I use #BASENAME# in install_dir: to try and create the directory needed, it does not expand, and instead just creates a literal '#BASENAME#' directory.
share/gocode/src/github.com/foo/bar/protobuf/go/#BASENAME#/apples.pb.go
share/gocode/src/github.com/foo/bar/protobuf/go/#BASENAME#/oranges.pb.go
share/gocode/src/github.com/foo/bar/protobuf/go/#BASENAME#/pears.pb.go
How can the required installed directory location based on the basename be achieved?
(just 3 files in the above example, I actually have 30+ files)
Yes, it looks as there is no support for placeholders like BASENAME for install_dir parameter since this feature aims at file names not directories. But you can process iterator that is string in a loop:
foreach protobuf_definition : protobuf_sources
...
install_dir: '.../go/#0#'.format(protobuf_definition.split('.')[0])
endforeach
Is there one? They both yield the same string
given 'file.txt'.IO -> $io {
say $io."$_" for <path abspath absolute>
}
# file.txt
# /Users/Me/file.txt
# /Users/Me/file.txt
The method Path::IO::absolute got a multi candidate that accepts a prefix to be glued in-between the current work dir and the filename or path fragment provided as a Path::IO instance.
dd 'file.txt'.IO.absolute('foo');
OUTPUT«"/home/camelia/foo/file.txt"»