How to write Nested ParametrizedTest with MethodSource in Kotlin? - kotlin

I'm learning how to write test in Kotlin with JUnit 5. I like using feature like #Nested, #ParametrizedTest and #MethodSource when I was writing Java. But when I switch to Kotlin, I encounter an issue:
I figured out how to use
#Nested by referring this JUnit test in nested Kotlin class not found when running gradle test
#ParametrizedTest and #MethodSource by referring JUnit 5 for Kotlin Developers - section 4.2
But when I put this together, I got
Companion object is not allowed here.
inside the inner class.
Test to reproduce the error
internal class SolutionTest {
#Nested
inner class NestedTest {
#ParameterizedTest
#MethodSource("testCases")
fun given_input_should_return_expected(input: Int, expected: Int) {
// assert
}
// error in below line
companion object {
#JvmStatic
fun testCases(): List<Arguments> {
return emptyList()
}
}
}
}
Is it possible to solve this error? So I can use #Nested, #ParametrizedTest and #MethodSource together?

You can specify the method by using fully qualified name of the outer class
#MethodSource("com.example.SolutionTest#testCases")
Here is an example nested test.
package com.example
// imports
internal class SolutionTest {
#Test
fun outerTest() {
// ...
}
#Nested
inner class NestedTest {
#ParameterizedTest
#MethodSource("com.example.SolutionTest#testCases")
fun given_input_should_return_expected(input: Int, expected: Int) {
Assertions.assertEquals(input + 2, expected)
}
}
companion object {
#JvmStatic
fun testCases(): List<Arguments> {
return listOf(
Arguments.of(1, 3),
Arguments.of(2, 4),
)
}
}
}

If you don't mind having #TestInstance(PER_CLASS), you can then define your MethodSource method just like a normal Kotlin method, without needing a companion object:
internal class SolutionTest {
#Nested
#TestInstance(PER_CLASS)
inner class NestedTest {
#ParameterizedTest
#MethodSource("testCases")
fun given_input_should_return_expected(input: Int, expected: Int) {
// assert
}
fun testCases(): List<Arguments> {
return emptyList()
}
}
}

Related

Kotlin generics supertype not applied

I was coding on Java for quite a long time and trying to migrate to Kotlin. I'm confused with Generics in Kotlin a bit...
I have a DelegateManager class. It should consume only subtypes of IViewData
class DelegateManager<T : IViewData> {
private val delegates: MutableList<AdapterDelegate<T>> = mutableListOf()
fun addDelegate(adapterDelegate: AdapterDelegate<T>) {
delegates.add(adapterDelegate)
}
...
}
Inside TrackListAdapter I want to add a delegate. As you might have seen it's AdapterDelegate<TrackViewData> and TrackViewData is a subtype of IViewData So it should work but it shows error inside init block of TrackListAdapter
class TrackListAdapter : BaseListAdapter<IViewData>() {
init {
delegateManager.addDelegate(TrackViewDelegate()) // error: Type mismatch -> Required: AdapterDelegate<IViewData>, Found: TrackViewDelegate
}
}
class TrackViewDelegate : AdapterDelegate<TrackViewData>() {
override fun onCreateViewHolder(parent: ViewGroup): ListViewHolder<TrackViewData> {
val itemView = LayoutInflater.from(parent.context).inflate(R.layout.track_item, parent, false)
return TrackViewHolder(itemView)
}
override fun isDelegateForDataType(data: IViewData) = data is TrackViewData
}
How to deal with it? How to extend the generic parameter correctly?

Runtime polymorphism in Kotlin

Is there any elegant way to apply polymorphism in this case? The parser provides the following classes at runtime:
class io.swagger.v3.oas.models.media.Schema //is parent of the rest :
class io.swagger.v3.oas.models.media.ComposedSchema
class io.swagger.v3.oas.models.media.ArraySchema
class io.swagger.v3.oas.models.media.StringSchema
class io.swagger.v3.oas.models.media.ObjectSchema
I'd like to have function for each class with the same name and simple, short method which will cast and call necessary function at runtime. Which is actually happening, but I hope there is more brief solution, without necessity of making this kind of duplicates:
fun main() {
val parser = OpenAPIV3Parser()
val asList = listOf(pathYaml3, pathYml2)
val map = asList.map(parser::read)
.flatMap { it.components.schemas.values }
.forEach(::parseRawSchema)
}
fun parseRawSchema(schema: Schema<Any>) {
if (schema is ComposedSchema) {
parseSchema(schema)
}
if (schema is StringSchema) {
parseSchema(schema)
}
...
}
fun parseSchema(schema: ComposedSchema) {
println("Compose-schema")
}
fun parseSchema(schema: StringSchema) {
println("Sting-schema")
}
...
Try use extension.
For example:
fun ComposedSchema.parseSchema() {
println("Compose-schema")
}
fun StringSchema.parseSchema() {
println("Sting-schema")
}
And than:
fun parseRawSchema(schema: Schema<Any>) {
schema.parseSchema()
}

Is there a way to verify that a top-level function passed as a dependency to a class has been called during testing?

I have a class that receives a function allowing it to display things on the UI during a failure case. What's the best way that I can verify that the function is called in my test?
MyClass(private val uiPrinter: (String) -> Unit) {
fun foo() {
// do some stuff
uiPrinter("printing from foo!")
// do some more stuff
}
}
MyClassTest() {
val testUiPrinter: (String) -> Unit = { System.out.println(it) }
#Test
fun uiPrinterIsInvoked() {
val myClass = MyClass(testUiPrinter)
myClass.foo()
// can I verify that testUiPrinter has been invoked?
}
}
You may want to check out the Model-View-Presenter architecture. Its purpose is to hide the Android framework behind an abstract View interface which a purely Java Presenter can interact with. In your example:
interface ViewInterface {
fun printError(error: String)
}
class MyPresenter(private val view: ViewInterface) {
fun foo() {
// do some stuff (testable stuff)
view.printError("Printing from foo()!")
// do some more (testable) stuff
}
}
class MyPresenterTest() { // Test using Mockito to mock the abstract view
private val view = mock(ViewInterface::class.java)
private val presenter = MyPresenter(view)
#Test
fun printsError() {
// set up preconditions
presenter.foo()
verify(view).printError("Printing from foo()!")
}
}
Your concrete view will generally be an Android Activity, Fragment, or View which implements the view interface. Notice MyPresenter only expects the abstract view and does not need knowledge of the framework-dependent operations.
class MyActivity : Activity(), ViewInterface {
// ...
override fun printError(error: String) {
textView.text = error // For example
}
// ...
}
This can be achieved by mocking the higher-order function as higher-order functions are objects unless inlined.
#Mock
val testUiPrinter: (String) -> Unit
#Test
fun uiPrinterIsInvoked() {
val myClass = MyClass(testUiPrinter)
myClass.foo()
verify(testUiPrinter).invoke("Printing from foo!")
}

How kotlin delegation is useful?

I'm really confused about the kotlin delegation. Let me describe the regular polymorphism approach here which looks same like the kotlin delgation.
interface Base {
fun print()
}
class BaseImpl(val x: Int) : Base {
override fun print() { print(x) }
}
fun main(args: Array<String>) {
val b : Base = BaseImpl(10)
b.print() // prints 10
}
I can pass any implemented class of Base interface to b variable to call the method of specified class's object. Then what is the benefit of kotlin's delegation? Which is described here.
interface Base {
fun print()
}
class BaseImpl(val x: Int) : Base {
override fun print() { print(x) }
}
class Derived(b: Base) : Base by b // why extra line of code?
// if the above example works fine without it.
fun main(args: Array<String>) {
val b = BaseImpl(10)
Derived(b).print() // prints 10
}
I know this is the simple scenario where the both codes are working fine. There should be a benefit of delegation that's why kotlin introduced it. What is the difference? and how kotlin delegation can be useful? Please give me a working example to compare with polymorphism approach.
Also remember that you're not restricted to just one delegate. Kotlin's way of implementing delegation is similar to traits implementation in languages like Groovy. You can compose different functionality via delegates. Kotlin's way can also be considered more powerful because you can "plug in" different implementations too.
interface Marks {
fun printMarks()
}
class StdMarks() : Marks {
override fun printMarks() { println("printed marks") }
}
class CsvMarks() : Marks {
override fun printMarks() { println("printed csv marks") }
}
interface Totals {
fun printTotals()
}
class StdTotals : Totals {
override fun printTotals() { println("calculated and printed totals") }
}
class CheatTotals : Totals {
override fun printTotals() { println("calculated and printed higher totals") }
}
class Student(val studentId: Int, marks: Marks, totals: Totals)
: Marks by marks, Totals by totals
fun main(args:Array<String>) {
val student = Student(1,StdMarks(), StdTotals())
student.printMarks()
student.printTotals()
val cheater = Student(1,CsvMarks(), CheatTotals())
cheater.printMarks()
cheater.printTotals()
}
Output:
printed marks
calculated and printed totals
printed csv marks
calculated and printed higher totals
You can't do this with inheritance.
It is extremely useful for creating decorators and for object composition.
Joshua Bloch in Effective Java, 2nd Edition, Item 16 'Favor Composition Over Inheritance' shows a good example: inheritance is easy-to-break, and decorators are not.
Inheritance:
class LoggingList<E> : ArrayList<E>() {
override fun add(e: E): Boolean {
println("added $e")
return super.add(e)
}
override fun addAll(e: Collection<E>): Boolean {
println("added all: $e")
return super.addAll(e) // oops! Calls [add] internally.
}
}
Delegation:
class LoggingList<E>(delegate: MutableList<E>) : MutableList<E> by delegate {
override fun add(e: E): Boolean {
println("added $e")
return delegate.add(e)
}
override fun addAll(e: Collection<E>): Boolean {
println("added all: $e")
return delegate.addAll(e) // all OK
// it calls [delegate]'s [add] internally, not ours
}
}
It is useful because of the Delegation Pattern where most of the behavior can be the same as the target of the delegation (b) but you just want to override a subset of methods to act differently.
An example would be an InputStream implementation which delegates all work to another InputStream but overrides the close() method to not close the underlying stream. This could be implemented as:
class CloseGuardInputStream(private val base: InputStream)
: InputStream by base {
override fun close() {}
}
Following is the example :-
interface Mode{
val color:String
fun display()
}
class DarkMode(override val color:String) : Mode{
override fun display(){
println("Dark Mode..."+color)
}
}
class LightMode(override val color:String) : Mode {
override fun display() {
println("Light Mode..."+color)
}
}
class MyCustomMode(val mode: Mode): Mode{
override val color:String = mode.color
override fun display() {
mode.display()
}
}
Now, the custom mode can reuse display() function of both modes DarkMode & LightMode
fun main() {
MyCustomMode(DarkMode("CUSTOM_DARK_GRAY")).display()
MyCustomMode(LightMode("CUSTOM_LIGHT_GRAY")).display()
}
/* output:
Dark Mode...CUSTOM_DARK_GRAY
Light Mode...CUSTOM_LIGHT_GRAY
*/
Kotlin natively support delegation pattern.
Kotlin provides by keyword to specify the delegate object which our custom mode will be delegating to.
We can achieve the same result of the code above using by keyword.
class MyCustomMode(val mode: Mode): Mode by mode
fun main() {
MyCustomMode(DarkMode("CUSTOM_DARK_GRAY")).display()
MyCustomMode(LightMode("CUSTOM_LIGHT_GRAY")).display()
}
/* output:
Dark Mode...CUSTOM_DARK_GRAY
Light Mode...CUSTOM_LIGHT_GRAY
*/

Create an annotation instance in Kotlin

I have a framework written in Java that, using reflection, get the fields on an annotation and make some decisions based on them. At some point I am also able to create an ad-hoc instance of the annotation and set the fields myself. This part looks something like this:
public #interface ThirdPartyAnnotation{
String foo();
}
class MyApp{
ThirdPartyAnnotation getInstanceOfAnnotation(final String foo)
{
ThirdPartyAnnotation annotation = new ThirdPartyAnnotation()
{
#Override
public String foo()
{
return foo;
}
};
return annotation;
}
}
Now I am trying to do the exact thing in Kotlin. Bear in mind that the annotation is in a third party jar.
Anyway, here is how I tried it in Kotlin:
class MyApp{
fun getAnnotationInstance(fooString:String):ThirdPartyAnnotation{
return ThirdPartyAnnotation(){
override fun foo=fooString
}
}
But the compiler complains about: Annotation class cannot be instantiated
So the question is: how should I do this in Kotlin?
You can do this with Kotlin reflection:
val annotation = ThirdPartyAnnotation::class.constructors.first().call("fooValue")
In the case of annotation having no-arg constructor (e.g. each annotation field has a default value), you can use following approach:
annotation class SomeAnnotation(
val someField: Boolean = false,
)
val annotation = SomeAnnotation::class.createInstance()
This is the solution I might have found but feels like a hack to me and I would prefer to be able to solve it within the language.
Anyway, for what is worth,it goes like this:
class MyApp {
fun getInstanceOfAnnotation(foo: String): ThirdPartyAnnotation {
val annotationListener = object : InvocationHandler {
override fun invoke(proxy: Any?, method: Method?, args: Array<out Any>?): Any? {
return when (method?.name) {
"foo" -> foo
else -> FindBy::class.java
}
}
}
return Proxy.newProxyInstance(ThirdPartyAnnotation::class.java.classLoader, arrayOf(ThirdPartyAnnotation::class.java), annotationListener) as ThirdPartyAnnotation
}
}