Good evening everyone,
I have 5 classes and each one has 2000 images, I built 2 Models with different model names and that's my model code
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(5, activation=tf.nn.softmax)
], name="Model1")
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_images, train_labels,
batch_size=128, epochs=30, validation_split=0.2)
model.save('f3_1st_model_seg.h5')
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(5, activation=tf.nn.softmax)
], name="Model2")
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_images, train_labels,
batch_size=128, epochs=30, validation_split=0.2)
model.save('f3_2nd_model_seg.h5')
then I used this code to merge the 2 models
input_shape = [150, 150, 3]
model = keras.models.load_model('1st_model_seg.h5')
model.summary()
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 148, 148, 32) 896
max_pooling2d (MaxPooling2D (None, 74, 74, 32) 0
)
conv2d_1 (Conv2D) (None, 72, 72, 32) 9248
max_pooling2d_1 (MaxPooling (None, 36, 36, 32) 0
2D)
conv2d_2 (Conv2D) (None, 34, 34, 64) 18496
max_pooling2d_2 (MaxPooling (None, 17, 17, 64) 0
2D)
conv2d_3 (Conv2D) (None, 15, 15, 128) 73856
max_pooling2d_3 (MaxPooling (None, 7, 7, 128) 0
2D)
flatten (Flatten) (None, 6272) 0
dense (Dense) (None, 5) 31365
=================================================================
Total params: 133,861
Trainable params: 133,861
Non-trainable params: 0
model2 = keras.models.load_model('2nd_model_seg.h5')
model2.summary()
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 148, 148, 32) 896
max_pooling2d (MaxPooling2D (None, 74, 74, 32) 0
)
conv2d_1 (Conv2D) (None, 72, 72, 32) 9248
max_pooling2d_1 (MaxPooling (None, 36, 36, 32) 0
2D)
conv2d_2 (Conv2D) (None, 34, 34, 64) 18496
max_pooling2d_2 (MaxPooling (None, 17, 17, 64) 0
2D)
conv2d_3 (Conv2D) (None, 15, 15, 128) 73856
max_pooling2d_3 (MaxPooling (None, 7, 7, 128) 0
2D)
flatten (Flatten) (None, 6272) 0
dense (Dense) (None, 5) 31365
=================================================================
Total params: 133,861
Trainable params: 133,861
Non-trainable params: 0
def concat_horizontal(models, input_shape):
models_count = len(models)
hidden = []
input = tf.keras.layers.Input(shape=input_shape)
for i in range(models_count):
hidden.append(models[i](input))
output = tf.keras.layers.concatenate(hidden)
model = tf.keras.Model(inputs=input, outputs=output)
return model
new_model = concat_horizontal(
[model, model2], (input_shape))
new_model.save('f1_1st_merged_seg.h5')
new_model.summary()
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 150, 150, 3 0 []
)]
model1 (Sequential) (None, 5) 133861 ['input_1[0][0]']
model2 (Sequential) (None, 5) 133861 ['input_1[0][0]']
concatenate (Concatenate) (None, 10) 0 ['model1[0][0]',
'model2[0][0]']
==================================================================================================
Total params: 267,722
Trainable params: 267,722
Non-trainable params: 0
so after I tested the merged model I found some images getting classes 7 and 9 although I have only 5 classes and that's my code for prediction
class_names = ['A', 'B', 'C', D', 'E']
for img in os.listdir(path):
# predicting images
img2 = tf.keras.preprocessing.image.load_img(
os.path.join(path, img), target_size=(150, 150))
x = tf.keras.preprocessing.image.img_to_array(img2)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = np.argmax(model.predict(images), axis=-1)
y_out = class_names[classes[0]]
I got this error
y_out = class_names[classes[0]]
IndexError: list index out of range
for this case it could have been done even by sequential method, look you are trying to concatenate two output layers with 5 columns; so it would lead into increase classes from 5 to 10; try out to define these two models up to output layer (the flatten layer as the last layer defined for both these models) and then define final model with input layer, these two models, and concatenate layer and then the output layer with five units and activation;
so remove output layer
tf.keras.layers.Dense(5, activation=tf.nn.softmax)
from those two models, and implement it just as one layer after the output layer you have defined here
def concat_horizontal(models, input_shape):
models_count = len(models)
hidden = []
input = tf.keras.layers.Input(shape=input_shape)
for i in range(models_count):
hidden.append(models[i](input))
output = tf.keras.layers.concatenate(hidden)
output = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(output)
model = tf.keras.Model(inputs=input, outputs=output)
return model
But notice it would be better to define branch models based on functional API method for these cases
Related
I am running an Involution Model (based of this example), and I am constantly running into errors during the training stage. This is my error:
ValueError: `logits` and `labels` must have the same shape, received ((None, 10) vs (None, 1)).
Below is the relevant code for dataset loading:
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_ds = train_datagen.flow_from_directory(
'data/train',
target_size=(150, 150),
batch_size=128,
class_mode='binary')
test_ds = test_datagen.flow_from_directory(
'data/test',
target_size=(150, 150),
batch_size=64,
class_mode='binary')`
And this is the code for training:
print("building the involution model...")
inputs = keras.Input(shape=(224, 224, 3))
x, _ = Involution(channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_1")(inputs)
x = keras.layers.ReLU()(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x, _ = Involution(
channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_2")(x)
x = keras.layers.ReLU()(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x, _ = Involution(
channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_3")(x)
x = keras.layers.ReLU()(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(64, activation="relu")(x)
outputs = keras.layers.Dense(10)(x)
inv_model = keras.Model(inputs=[inputs], outputs=[outputs], name="inv_model")
print("compiling the involution model...")
inv_model.compile(
optimizer="adam",
loss=keras.losses.BinaryCrossentropy(from_logits=True),
metrics=["accuracy"],
)
print("inv model training...")
inv_hist = inv_model.fit(train_ds, epochs=20, validation_data=test_ds)`
The model itself the same used by Keras, and I have not changed anything except to use my own dataset instead of the CIFAR dataset (model works for me with this dataset). So I am sure there is an error in my data loading, but I am unable to identify what that is.
Model Summary:
Model: "inv_model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_14 (InputLayer) [(None, 224, 224, 3)] 0
inv_1 (Involution) ((None, 224, 224, 3), 26
(None, 224, 224, 9, 1,
1))
re_lu_39 (ReLU) (None, 224, 224, 3) 0
max_pooling2d_26 (MaxPoolin (None, 112, 112, 3) 0
g2D)
inv_2 (Involution) ((None, 112, 112, 3), 26
(None, 112, 112, 9, 1,
1))
re_lu_40 (ReLU) (None, 112, 112, 3) 0
max_pooling2d_27 (MaxPoolin (None, 56, 56, 3) 0
g2D)
inv_3 (Involution) ((None, 56, 56, 3), 26
(None, 56, 56, 9, 1, 1)
)
re_lu_41 (ReLU) (None, 56, 56, 3) 0
flatten_15 (Flatten) (None, 9408) 0
dense_26 (Dense) (None, 64) 602176
dense_27 (Dense) (None, 10) 650
=================================================================
When you called the train_datagen.flow_from_directory() function, you used class_mode='binary' which means you will have the labels of your images as 0 and 1 only, whereas you are have total 10 predictions i.e. 10 neurons in your final output layer. Hence the labels and logits dosen't match.
Solution: Use class_mode='categorical' which means that there will be as many labels as the number of classes. Do the same in test_datagen as well.
I'm trying to train a Neural Network on a dataset for liveness anti-spoofing. I have some videos in two folders named genuine and fake. I have extracted 10 frames of each video and saved them in two folders with aforementioned names under a new directory tarining.
--/training/
----/genuine/ #containes 10frame*300videos=3000images
----/fake/ #containes 10frame*800videos=8000images
I designed the following 3D Convent using Keras as my first try, but after running it, it throws the following exception:
from keras.preprocessing.image import ImageDataGenerator
from keras import Model, optimizers, activations, losses, regularizers, backend, Sequential
from keras.layers import Dense, MaxPooling3D, AveragePooling3D, Conv3D, Input, Flatten, BatchNormalization
BATCH_SIZE = 10
TARGET_SIZE = (224, 224)
train_datagen = ImageDataGenerator(rescale=1.0/255,
data_format='channels_last',
validation_split=0.2,
shear_range=0.0,
zoom_range=0,
horizontal_flip=False,
featurewise_center=False,
featurewise_std_normalization=False,
width_shift_range=False,
height_shift_range=False)
train_generator = train_datagen.flow_from_directory("./training/",
target_size=TARGET_SIZE,
batch_size=BATCH_SIZE,
class_mode='binary',
shuffle=False,
subset='training')
validation_generator = train_datagen.flow_from_directory("./training/",
target_size=TARGET_SIZE,
batch_size=BATCH_SIZE,
class_mode='binary',
shuffle=False,
subset='validation')
SHAPE = (10, 224, 224, 3)
model = Sequential()
model.add(Conv3D(filters=128, kernel_size=(1, 3, 3), data_format='channels_last', activation='relu', input_shape=(10, 224, 224, 3)))
model.add(MaxPooling3D(data_format='channels_last', pool_size=(1, 2, 2)))
model.add(Conv3D(filters=64, kernel_size=(2, 3, 3), activation='relu'))
model.add(MaxPooling3D(pool_size=(1, 2, 2)))
model.add(Conv3D(filters=32, kernel_size=(2, 3, 3), activation='relu'))
model.add(Conv3D(filters=32, kernel_size=(2, 3, 3), activation='relu'))
model.add(MaxPooling3D(pool_size=(1, 2, 2)))
model.add(Conv3D(filters=16, kernel_size=(2, 3, 3), activation='relu'))
model.add(Conv3D(filters=16, kernel_size=(2, 3, 3), activation='relu'))
model.add(AveragePooling3D())
model.add(BatchNormalization())
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer=optimizers.adam(), loss=losses.binary_crossentropy, metrics=['accuracy'])
model.fit_generator(train_generator, steps_per_epoch=train_generator.samples/train_generator.batch_size, epochs=5, validation_data=validation_generator, validation_steps=validation_generator.samples/validation_generator.batch_size)
model.save('3d.h5')
Here is the Error:
ValueError: Error when checking input: expected conv3d_1_input to have 5 dimensions, but got array with shape (10, 224, 224, 3)
And this is the output of model.summary()
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv3d_1 (Conv3D) (None, 10, 222, 222, 128) 3584
_________________________________________________________________
max_pooling3d_1 (MaxPooling3 (None, 10, 111, 111, 128) 0
_________________________________________________________________
conv3d_2 (Conv3D) (None, 9, 109, 109, 64) 147520
_________________________________________________________________
max_pooling3d_2 (MaxPooling3 (None, 9, 54, 54, 64) 0
_________________________________________________________________
conv3d_3 (Conv3D) (None, 8, 52, 52, 32) 36896
_________________________________________________________________
conv3d_4 (Conv3D) (None, 7, 50, 50, 32) 18464
_________________________________________________________________
max_pooling3d_3 (MaxPooling3 (None, 7, 25, 25, 32) 0
_________________________________________________________________
conv3d_5 (Conv3D) (None, 6, 23, 23, 16) 9232
_________________________________________________________________
conv3d_6 (Conv3D) (None, 5, 21, 21, 16) 4624
_________________________________________________________________
average_pooling3d_1 (Average (None, 2, 10, 10, 16) 0
_________________________________________________________________
batch_normalization_1 (Batch (None, 2, 10, 10, 16) 64
_________________________________________________________________
dense_1 (Dense) (None, 2, 10, 10, 32) 544
_________________________________________________________________
dense_2 (Dense) (None, 2, 10, 10, 1) 33
=================================================================
Total params: 220,961
Trainable params: 220,929
Non-trainable params: 32
__________________________________________________________
I'd appreciate any help to fix the exception. By the way, I'm using TensorFlow as backend if it helps to solve the problem.
As #thushv89 mentioned in the comments Keras has no build-in video generator which causes a lot of problems for those who will work with big video datasets. Therefore, I wrote a simple VideoDataGenerator which works almost as simple as ImageDataGenerator. The script could be found here on my github in case someone needs it in the future.
I am beginner in Keras. I am tring to build a model for which i am using Sequential model. When i am tring to reduce the input size from 28 to 14 or lesser by using maxpooling function then the maxpooling function results does't display on call to the model.summary() function. I am tring to achive an accuracy of 0.99 or above after traing i.e, on call to model.score() the accuracy result should be 0.99 or above. Model build my me so far can be seen here
from keras.layers import Activation, MaxPooling2D
model = Sequential()
model.add(Convolution2D(32, 3, 3, activation='relu', input_shape=(28,28,1)))
model.add(Convolution2D(32, 1, activation='relu'))
MaxPooling2D(pool_size=(2, 2))
model.add(Convolution2D(32, 26))
model.add(Convolution2D(10, 1))
model.add(Flatten())
model.add(Activation('softmax'))
model.summary()
Output -
Layer (type) Output Shape Param #
=================================================================
conv2d_29 (Conv2D) (None, 26, 26, 32) 320
_________________________________________________________________
conv2d_30 (Conv2D) (None, 26, 26, 32) 1056
_________________________________________________________________
conv2d_31 (Conv2D) (None, 1, 1, 32) 692256
_________________________________________________________________
conv2d_32 (Conv2D) (None, 1, 1, 10) 330
_________________________________________________________________
flatten_7 (Flatten) (None, 10) 0
_________________________________________________________________
activation_7 (Activation) (None, 10) 0
=================================================================
Total params: 693,962
Trainable params: 693,962
Non-trainable params: 0
____________________________
Batch size i am using is 32 and number of epoch is 10.
model.compile(loss='categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.fit(X_train, Y_train, batch_size=32, nb_epoch=10, verbose=1)
score = model.evaluate(X_test, Y_test, verbose=0)
print(score)
Output after training -
[0.09016687796734459, 0.9814]
You are not adding the Maxpooling2D layer to your model...
model.add(MaxPooling2D(pool_size=(2, 2)))
Also, the output of your maxpooling will have shape (None, 13, 13, 32), the convolutional kernel in the next layer (in your case 26) can't be larger than the dimensions your current (13). Your code should be something like this:
from keras.layers import Activation, MaxPooling2D, Dense
model = Sequential()
model.add(Convolution2D(32, 3, 3, activation='relu', input_shape=(28,28,1)))
model.add(Convolution2D(32, 1, activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(32, 8))
model.add(Convolution2D(10, 6))
model.add(Flatten())
model.add(Activation('softmax'))
print(model.summary())
Output
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
_________________________________________________________________
conv2d_2 (Conv2D) (None, 26, 26, 32) 1056
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 13, 13, 32) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 6, 6, 32) 65568
_________________________________________________________________
conv2d_4 (Conv2D) (None, 1, 1, 10) 11530
_________________________________________________________________
flatten_1 (Flatten) (None, 10) 0
_________________________________________________________________
activation_1 (Activation) (None, 10) 0
=================================================================
Total params: 78,474
Trainable params: 78,474
Non-trainable params: 0
___________________________________
P.S.: I would consider using smaller kernel sizes and a FC layer at the output, as it is a more practical solution in most cases than trying to match convolution output shapes
I'm basically following this guide to build convolutional autoencoder with tensorflow backend. The main difference to the guide is that my data is 257x257 grayscale images. The following code:
TRAIN_FOLDER = 'data/OIRDS_gray/'
EPOCHS = 10
SHAPE = (257,257,1)
FILELIST = os.listdir(TRAIN_FOLDER)
def loadTrainData():
train_data = []
for fn in FILELIST:
img = misc.imread(TRAIN_FOLDER + fn)
img = np.reshape(img,(len(img[0,:]), len(img[:,0]), SHAPE[2]))
if img.shape != SHAPE:
print "image shape mismatch!"
print "Expected: "
print SHAPE
print "but got:"
print img.shape
sys.exit()
train_data.append (img)
train_data = np.array(train_data)
train_data = train_data.astype('float32')/ 255
return np.array(train_data)
def createModel():
input_img = Input(shape=SHAPE)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu',padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid',padding='same')(x)
return Model(input_img, decoded)
x_train = loadTrainData()
autoencoder = createModel()
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
print x_train.shape
autoencoder.summary()
# Run the network
autoencoder.fit(x_train, x_train,
epochs=EPOCHS,
batch_size=128,
shuffle=True)
gives me a error:
ValueError: Error when checking target: expected conv2d_7 to have shape (None, 260, 260, 1) but got array with shape (859, 257, 257, 1)
As you can see this is not the standard problem with theano/tensorflow backend dim ordering, but something else. I checked that my data is what it's supposed to be with print x_train.shape:
(859, 257, 257, 1)
And I also run autoencoder.summary():
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 257, 257, 1) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 257, 257, 16) 160
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 129, 129, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 129, 129, 8) 1160
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 65, 65, 8) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 65, 65, 8) 584
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 33, 33, 8) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 33, 33, 8) 584
_________________________________________________________________
up_sampling2d_1 (UpSampling2 (None, 66, 66, 8) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 66, 66, 8) 584
_________________________________________________________________
up_sampling2d_2 (UpSampling2 (None, 132, 132, 8) 0
_________________________________________________________________
conv2d_6 (Conv2D) (None, 132, 132, 16) 1168
_________________________________________________________________
up_sampling2d_3 (UpSampling2 (None, 264, 264, 16) 0
_________________________________________________________________
conv2d_7 (Conv2D) (None, 264, 264, 1) 145
=================================================================
Total params: 4,385
Trainable params: 4,385
Non-trainable params: 0
_________________________________________________________________
Now I'm not exactly sure where the problem is, but it does look like things go wrong around conv2d_6 (Param # too high). I do know how CAE's work on principle, but I'm not that familiar with the exact technical details yet and I have tried to solve this mainly by messing with deconvolution padding (instead of same, using valid). The closes I got to dims matching was (None, 258, 258, 1). I achieved this by blindly trying different combinations of padding on deconvolution side, not really a smart way to solve a problem...
At this point I'm at a loss, and any help would be appreciated
Since your input and output data are the same, your final output shape should be the same as the input shape.
The last convolutional layer should have shape (None, 257,257,1).
The problem is happening because you have an odd number as the sizes of the images (257).
When you apply MaxPooling, it should divide the number by two, so it chooses rounding either up or down (it's going up, see the 129, coming from 257/2 = 128.5)
Later, when you do UpSampling, the model doesn't know the current dimensions were rounded, it simply doubles the value. This happening in sequence is adding 7 pixels to the final result.
You could try either cropping the result or padding the input.
I usually work with images of compatible sizes. If you have 3 MaxPooling layers, your size should be a multiple of 2³. The answer is 264.
Padding the input data directly:
x_train = numpy.lib.pad(x_train,((0,0),(3,4),(3,4),(0,0)),mode='constant')
This will require that SHAPE=(264,264,1)
Padding inside the model:
import keras.backend as K
input_img = Input(shape=SHAPE)
x = Lambda(lambda x: K.spatial_2d_padding(x, padding=((3, 4), (3, 4))), output_shape=(264,264,1))(input_img)
Cropping the results:
This will be required in any case where you do not change the actual data (numpy array) directly.
decoded = Lambda(lambda x: x[:,3:-4,3:-4,:], output_shape=SHAPE)(x)
I am trying to design a CNN that can do pixel wise segmentation of cell images. Such as these:
With segmentation masks such as this (except more than one segmentation mask for each raw image, eg: interior of cell, border of cell, background):
I have mostly copied the U-net design from here: https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
However even 10 annotated images (over 300 cells) I still get quite bad dice coefficient scores and not great predictions. According to the U-Net paper this number of annotated cells should be sufficient for a good prediction.
This is the code for the model I am using.
def get_unet():
inputs = Input((img_rows, img_cols, 1))
conv1 = Conv2D(16, window_size, activation='relu', padding='same')(inputs)
conv1 = Conv2D(16, window_size, activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(64, window_size, activation='relu', padding='same')(pool1)
conv2 = Conv2D(64, window_size, activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(128, window_size, activation='relu', padding='same')(pool2)
conv3 = Conv2D(128, window_size, activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(128, window_size, activation='relu', padding='same')(pool3)
conv4 = Conv2D(128, window_size, activation='relu', padding='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(512, window_size, activation='relu', padding='same')(pool4)
conv5 = Conv2D(512, window_size, activation='relu', padding='same')(conv5)
up6 = concatenate([Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3)
conv6 = Conv2D(128, window_size, activation='relu', padding='same')(up6)
conv6 = Conv2D(128, window_size, activation='relu', padding='same')(conv6)
up7 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3)
conv7 = Conv2D(128, window_size, activation='relu', padding='same')(up7)
conv7 = Conv2D(128, window_size, activation='relu', padding='same')(conv7)
up8 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)
conv8 = Conv2D(64, window_size, activation='relu', padding='same')(up8)
conv8 = Conv2D(64, window_size, activation='relu', padding='same')(conv8)
up9 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3)
conv9 = Conv2D(16, window_size, activation='relu', padding='same')(up9)
conv9 = Conv2D(16, window_size, activation='relu', padding='same')(conv9)
conv10 = Conv2D(f_num, (1, 1), activation='softmax')(conv9) # change to N,(1,1) for more classes and softmax
model = Model(inputs=[inputs], outputs=[conv10])
model.compile(optimizer=Adam(lr=1e-5), loss=dice_coef_loss, metrics=[dice_coef])
return model`
I have tried many different hyper-parameters for the model all with no success. Dice scores hover around 0.25 and my loss barely decreases between epochs.
I feel I am doing something fundamentally wrong here. Any suggestions?
EDIT: Sigmoid activation improves dice score from 0.25 to 0.33 (again however 1 epoch reaches this score and subsequent epochs only improve very slightly from 0.33 to 0.331 etc)
dice_coef_loss is defined as below
smooth = 1.
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
Also in case it's useful the model.summary output:
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) (None, 64, 64, 1) 0
_________________________________________________________________
conv2d_20 (Conv2D) (None, 64, 64, 16) 32
_________________________________________________________________
conv2d_21 (Conv2D) (None, 64, 64, 16) 272
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 32, 32, 16) 0
_________________________________________________________________
conv2d_22 (Conv2D) (None, 32, 32, 64) 1088
_________________________________________________________________
conv2d_23 (Conv2D) (None, 32, 32, 64) 4160
_________________________________________________________________
max_pooling2d_6 (MaxPooling2 (None, 16, 16, 64) 0
_________________________________________________________________
conv2d_24 (Conv2D) (None, 16, 16, 128) 8320
_________________________________________________________________
conv2d_25 (Conv2D) (None, 16, 16, 128) 16512
_________________________________________________________________
max_pooling2d_7 (MaxPooling2 (None, 8, 8, 128) 0
_________________________________________________________________
conv2d_26 (Conv2D) (None, 8, 8, 128) 16512
_________________________________________________________________
conv2d_27 (Conv2D) (None, 8, 8, 128) 16512
_________________________________________________________________
max_pooling2d_8 (MaxPooling2 (None, 4, 4, 128) 0
_________________________________________________________________
conv2d_28 (Conv2D) (None, 4, 4, 512) 66048
_________________________________________________________________
conv2d_29 (Conv2D) (None, 4, 4, 512) 262656
_________________________________________________________________
conv2d_transpose_5 (Conv2DTr (None, 8, 8, 512) 1049088
_________________________________________________________________
concatenate_5 (Concatenate) (None, 8, 8, 640) 0
_________________________________________________________________
conv2d_30 (Conv2D) (None, 8, 8, 128) 82048
_________________________________________________________________
conv2d_31 (Conv2D) (None, 8, 8, 128) 16512
_________________________________________________________________
conv2d_transpose_6 (Conv2DTr (None, 16, 16, 128) 65664
_________________________________________________________________
concatenate_6 (Concatenate) (None, 16, 16, 256) 0
_________________________________________________________________
conv2d_32 (Conv2D) (None, 16, 16, 128) 32896
_________________________________________________________________
conv2d_33 (Conv2D) (None, 16, 16, 128) 16512
_________________________________________________________________
conv2d_transpose_7 (Conv2DTr (None, 32, 32, 128) 65664
_________________________________________________________________
concatenate_7 (Concatenate) (None, 32, 32, 192) 0
_________________________________________________________________
conv2d_34 (Conv2D) (None, 32, 32, 64) 12352
_________________________________________________________________
conv2d_35 (Conv2D) (None, 32, 32, 64) 4160
_________________________________________________________________
conv2d_transpose_8 (Conv2DTr (None, 64, 64, 64) 16448
_________________________________________________________________
concatenate_8 (Concatenate) (None, 64, 64, 80) 0
_________________________________________________________________
conv2d_36 (Conv2D) (None, 64, 64, 16) 1296
_________________________________________________________________
conv2d_37 (Conv2D) (None, 64, 64, 16) 272
_________________________________________________________________
conv2d_38 (Conv2D) (None, 64, 64, 4) 68
=================================================================
Total params: 1,755,092.0
Trainable params: 1,755,092.0
Non-trainable params: 0.0