I am consistently getting a higher training loss than the validation loss while training a deep convolution autoencoder. Notice in my train data generator, I am doing data augmentation with Keras zoom_range. If I raise the zoom range like [0.8-4], [0.8,6] etc the gap between training and validation loss keeps increasing.
Is it because training loss is calculated on augmented data? Assuming more augmentation makes it harder for the model to predict(reconstruct) the input image. Or something wrong with my training method? I have attached my code snippet for the training command as well.
checkpoint = ModelCheckpoint(model_save_dir, monitor='val_loss', save_best_only=False, mode='min')
callbacks_list = [checkpoint]
history = model.fit(train_generator, validation_data=val_generator, epochs=n_epochs, shuffle=True, callbacks=callbacks_list)
It looks like your train loss increase as you are increasing data augmentation effect and basically this is because it becomes harder for the model to learn pattern with too much data augmentation.
In my point of view the goal of data augmentation is to make realistic change from initial data to improve the model's robustness like a regularization technique.
However the loss of validation remains the same so I presume the efficiency of the learning phase is not impaired so much. I will have made sure that the distribution of the labels is homogenous and the data from train/val is stratified. I will also have made a test set (without any data augmentation such as the validation set) to make comparaison more valuable.
Related
Can you tell me which one among the two is a good validation vs train plot?
Both of them are trained with same keras sequential layers, but the second one is trained using more number of samples, i.e. augmented the dataset.
I'm a little bit confused about the zigzags in the first plot, otherwise I think it is better than the second.
In the second plot, there are no zigzags but the validation accuracy tends to be a little high than train, is it overfitting or considerable?
It is an image detection model where the first model's dataset size is 5170 and the second had 9743 samples.
The convolutional layers defined for the model building:
tf.keras.layers.Conv2D(128,(3,3), activation = 'relu', input_shape = (150,150,3)),
tf.keras.layers.MaxPool2D(2,2),
tf.keras.layers.Conv2D(64,(3,3), activation = 'relu'),
tf.keras.layers.MaxPool2D(2,2),
tf.keras.layers.Conv2D(32,(3,3), activation = 'relu'),
tf.keras.layers.MaxPool2D(2,2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512,activation='relu'),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Dense(128,activation='relu'),
tf.keras.layers.Dropout(0.25),
tf.keras.layers.Dense(1,activation='sigmoid')
Can the model be improved?
From the graphs the second graph where you have more samples is better. The reason is with more samples the model is trained on a much wider probability distribution of images. So when validation is run you have a better chance of correctly classifying the image. You have a lot of dropout in your model. This is good to prevent over fitting, however it will lower the training accuracy relative to the validation accuracy. Your model seems to be doing well. It might improve if you add additional convolution- max pooling layers. Alternative of course is to use transfer learning. I would recommend efficientnetb3. I also recommend using an adjustable learning rate. The Keras callback ReduceLROnPlateau works well for that purpose. Documentation is here.. Code below shows my recommended settings.
rlronp=tf.keras.callbacks.ReduceLROnPlateau(
monitor='val_loss',
factor=0.5,
patience=2,
verbose=1,
mode='auto'
)
in model.fit include callbacks=[rlronp]
My validation accuracy is stuck at 50% while my training accuracy manages to converge to 100%. The pitfall is that i have very few data: 46 images in train set and 12 in validation set.
Therefore, I am augmenting my data while training but i am running out of data too early. and as i saw from previous answers that i should specify steps_per_epoch.
however, using steps_per_epoch=46/batch_size is not returning that much of iteration (maximum of 10 if i specify a very low batch size).
I assume data augmentation is not being applied? How can i be sure my data is indeed being augmented? Below is my data augmentation code:
gen=ImageDataGenerator(rotation_range=180,
horizontal_flip=True,
vertical_flip=True,
)
train_batches=gen.flow(
x=x_train,
y=Y_train,
batch_size=5,
subset=None,
shuffle=True
)
val_batches=gen.flow(
x=x_val,
y=Y_val,
batch_size=3,
subset=None,
shuffle=True
)
history= model.fit(
train_batches,
batch_size=32,
# steps_per_epoch=len(x_train)/batch_size,
epochs=50,
verbose=2,
validation_data=val_batches,
validation_steps=len(x_val)/batch_size)
I will really appreciate your help!
I think the mistake is not in your code.
You have a very small dataset, you are using only 2 augmentations, and (I assume) you initialize your model with random weights. Your model expectedly overfits.
Here are a couple of ideas that may help you:
Add more argumentations. Vertical and horizontal flips - are just not enough (with your small dataset). Think about crops, rotations, color changes etc. BTW here is a good tutorial on image augmentation where you'll find more ideas on what types of data augmentation you can use for your task: https://notrocketscience.blog/complete-guide-to-data-augmentation-for-computer-vision/
Transfer learning - is a must-do for small datasets. If you are using popular/default architecture, PyTorch and Tensorflow allow you to load model weights trained on ImageNet, for instance. If your architecture is custom - download some open-source dataset (better similar to your task) and pretrain model with this data.
Appropriate validation. Consider n-fold cross-validation, because a fixed train and test set is not a good idea for the small datasets. Your validation accuracy may be low by chance (for instance, all "hard" images are in the test set), but not because the model is bad.
Let me know if it helps!
I'm working on a short project that involves implementing a character RNN for text generation. My model uses a single LSTM layer with varying units (messing around with between 50 and 500), dropout at a rate of 0.2, and softmax activation. I'm using RMSprop with a learning rate of 0.01.
My issue is that I can't find a good way to characterize the validation loss. I'm using a validation split of 0.3 and I'm finding that the validation loss starts to become constant after only a few epochs (maybe 2-5 or so) while the training loss keeps decreasing. Does validation loss carry much weight in this sort of problem? The purpose of the model is to generate new strings, so quantifying the validation loss with other strings seems... pointless?
It's hard for me to really find the best model since qualitatively I get the sense that the best model is trained for more epochs than it takes for the validation loss to stop changing but also for fewer epochs than it takes for the training loss to start increasing. I would really appreciate any advice you have regarding this problem as well as any general advice about RNN's for text generation, especially regarding dropout and overfitting. Thanks!
This is the code for fitting the model for every epoch. The callback is a custom callback that just prints a few tests. I'm now realizing that history_callback.history['loss'] is probably the training loss isn't it...
for i in range(num_epochs):
history_callback = model.fit(x, y,
batch_size=128,
epochs=1,
callbacks=[print_callback],
validation_split=0.3)
loss_history.append(history_callback.history['loss'])
validation_loss_history.append(history_callback.history['val_loss'])
My intention for this model isn't to replicate sentences from the training data, rather, I'd like to generate sentence from the same distribution that I'm training on.
Yes history_callback.history['loss'] is Training Loss and history_callback.history['val_loss'] is the Validation Loss.
Yes, Validation Loss carries weight in this sort of problem because you just don't want to replicate the sentences which are given during Training but you want to learn the patterns from the Training Data and generate new sentences when it sees a new data.
From the information you mentioned in the question and from the insights identified from comments (thanks to Brian Bartoldson), it is understood that your model is overfitting. In addition to EarlyStopping and dropout, you can try the below mentioned techniques to mitigate overfitting problem.
3.a. Shuffle the Data, by using shuffle=True in model.fit. Code is shown below
3.b. Use recurrent_dropout. For example, If we set the value of Recurrent Dropout as 0.2 in a Recurrent Layer (LSTM), it means that it will consider only 80% of the Time Steps for that Recurrent Layer (LSTM).
3.c. Use Regularization. You can try l1 Regularization or l1_l2 Regularization as well for the arguments, kernel_regularizer, recurrent_regularizer, bias_regularizer, activity_regularizer of the LSTM Layer.
Sample code to use Shuffle, Early Stopping, Recurrent_Dropout, Regularization is shown below:
from tensorflow.keras.regularizers import l2
from tensorflow.keras.models import Sequential
model = Sequential()
Regularizer = l2(0.001)
model.add(tf.keras.layers.LSTM(units = 50, activation='relu',kernel_regularizer=Regularizer ,
recurrent_regularizer=Regularizer , bias_regularizer=Regularizer , activity_regularizer=Regularizer, dropout=0.2, recurrent_dropout=0.3))
callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=15)
history_callback = model.fit(x, y,
batch_size=128,
epochs=1,
callbacks=[print_callback, callback],
validation_split=0.3, shuffle = True)
Hope this helps. Happy Learning!
I am new to machine learning and stack overflow, I am trying to interpret two graphs from my regression model.
Training error and Validation error from my machine learning model
my case is similar to this guy Very large loss values when training multiple regression model in Keras but my MSE and RMSE are very high.
Is my modeling underfitting? if yes what can I do to solve this problem?
Here is my neural network I used for solving a regression problem
def build_model():
model = keras.Sequential([
layers.Dense(128, activation=tf.nn.relu, input_shape=[len(train_dataset.keys())]),
layers.Dense(64, activation=tf.nn.relu),
layers.Dense(1)
])
optimizer = tf.keras.optimizers.RMSprop(0.001)
model.compile(loss='mean_squared_error',
optimizer=optimizer,
metrics=['mean_absolute_error', 'mean_squared_error'])
return model
and my data set
I have 500 samples, 10 features and 1 target
Quite the opposite: it looks like your model is over-fitting. When you have low error rates for your training set, it means that your model has learned from the data well and can infer the results accurately. If your validation data is high afterwards however, that means that the information learned from your training data is not successfully being applied to new data. This is because your model has 'fit' onto your training data too much, and only learned how to predict well when its based off of that data.
To solve this, we can introduce common solutions to reduce over-fitting. A very common technique is to use Dropout layers. This will randomly remove some of the nodes so that the model cannot correlate with them too heavily - therefor reducing dependency on those nodes and 'learning' more using the other nodes too. I've included an example that you can test below; try playing with the value and other techniques to see what works best. And as a side note: are you sure that you need that many nodes within your dense layer? Seems like quite a bit for your data set, and that may be contributing to the over-fitting as a result too.
def build_model():
model = keras.Sequential([
layers.Dense(128, activation=tf.nn.relu, input_shape=[len(train_dataset.keys())]),
Dropout(0.2),
layers.Dense(64, activation=tf.nn.relu),
layers.Dense(1)
])
optimizer = tf.keras.optimizers.RMSprop(0.001)
model.compile(loss='mean_squared_error',
optimizer=optimizer,
metrics=['mean_absolute_error', 'mean_squared_error'])
return model
Well i think your model is overfitting
There are several ways that can help you :
1-Reduce the network’s capacity Which you can do by removing layers or reducing the number of elements in the hidden layers
2- Dropout layers, which will randomly remove certain features by setting them to zero
3-Regularization
If i want to give a brief explanation on these:
-Reduce the network’s capacity:
Some models have a large number of trainable parameters. The higher this number, the easier the model can memorize the target class for each training sample. Obviously, this is not ideal for generalizing on new data.by lowering the capacity of the network, it's going to learn the patterns that matter or that minimize the loss. But remember،reducing the network’s capacity too much will lead to underfitting.
-regularization:
This page can help you a lot
https://towardsdatascience.com/handling-overfitting-in-deep-learning-models-c760ee047c6e
-Drop out layer
You can use some layer like this
model.add(layers.Dropout(0.5))
This is a dropout layer with a 50% chance of setting inputs to zero.
For more details you can see this page:
https://machinelearningmastery.com/how-to-reduce-overfitting-with-dropout-regularization-in-keras/
As mentioned in the existing answer by #omoshiroiii your model in fact seems to be overfitting, that's why RMSE and MSE are too high.
Your model learned the detail and noise in the training data to the extent that it is now negatively impacting the performance of the model on new data.
The solution is therefore randomly removing some of the nodes so that the model cannot correlate with them too heavily.
I have created this Linear regression model using Tensorflow (Keras). However, I am not getting good results and my model is trying to fit the points around a linear line. I believe fitting points around degree 'n' polynomial can give better results. I have looked googled how to change my model to polynomial linear regression using Tensorflow Keras, but could not find a good resource. Any recommendation on how to improve the prediction?
I have a large dataset. Shuffled it first and then spited to 80% training and 20% Testing. Also dataset is normalized.
1) Building model:
def build_model():
model = keras.Sequential()
model.add(keras.layers.Dense(units=300, input_dim=32))
model.add(keras.layers.Activation('sigmoid'))
model.add(keras.layers.Dense(units=250))
model.add(keras.layers.Activation('tanh'))
model.add(keras.layers.Dense(units=200))
model.add(keras.layers.Activation('tanh'))
model.add(keras.layers.Dense(units=150))
model.add(keras.layers.Activation('tanh'))
model.add(keras.layers.Dense(units=100))
model.add(keras.layers.Activation('tanh'))
model.add(keras.layers.Dense(units=50))
model.add(keras.layers.Activation('linear'))
model.add(keras.layers.Dense(units=1))
#sigmoid tanh softmax relu
optimizer = tf.train.RMSPropOptimizer(0.001,
decay=0.9,
momentum=0.0,
epsilon=1e-10,
use_locking=False,
centered=False,
name='RMSProp')
#optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
model.compile(loss='mse',
optimizer=optimizer,
metrics=['mae'])
return model
model = build_model()
model.summary()
2) Train the model:
class PrintDot(keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs):
if epoch % 100 == 0: print('')
print('.', end='')
EPOCHS = 500
# Store training stats
history = model.fit(train_data, train_labels, epochs=EPOCHS,
validation_split=0.2, verbose=1,
callbacks=[PrintDot()])
3) plot Train loss and val loss
enter image description here
4) Stop When results does not get improved
enter image description here
5) Evaluate the result
[loss, mae] = model.evaluate(test_data, test_labels, verbose=0)
#Testing set Mean Abs Error: 1.9020842795676374
6) Predict:
test_predictions = model.predict(test_data).flatten()
enter image description here
7) Prediction error:
enter image description here
Polynomial regression is a linear regression with some extra additional input features which are the polynomial functions of original input features.
i.e.;
let the original input features are : (x1,x2,x3,...)
Generate a set of polynomial functions by adding some transformations of the original features, for example: (x12, x23, x13x2,...).
One may decide which all functions are to be included depending on their constraints such as intuition on correlation to the target values, computational resources, and training time.
Append these new features to the original input feature vector. Now the transformed input feature vector has a size of len(x1,x2,x3,...) + len(x12, x23, x13x2,...)
Further, this updated set of input features (x1,x2,x3,x12, x23, x13x2,...) is feeded into the normal linear regression model. ANN's architecture may be tuned again to get the best trained model.
PS: I see that your network is huge while the number of inputs is only 32 - this is not a common scale of architecture. Even in this particular linear model, reducing the hidden layers to one or two hidden layers may help in training better models (It's a suggestion with an assumption that this particular dataset is similar to other generally seen regression datasets)
I've actually created polynomial layers for Tensorflow 2.0, though these may not be exactly what you are looking for. If they are, you could use those layers directly or follow the procedure used there to create a more general layer https://github.com/jloveric/piecewise-polynomial-layers