Proper masking in MultiHeadAttention layer in Keras - tensorflow

I am new to Transformers and I am trying to create a very simple model (not NLP area) for processing data of variable length (not sequence data because for my problem order in data does not matter).
Basically, max length of data that I defined (number of vectors) is 10, and each vector has dimension 2. Because of problem domain, different inputs have different number of vectors, but the rest of input tensor is always padded with some value (e.g. -10000 because 0 has certain meaning for my data).
Below is example of 1-batch input with 4 vectors that have some meaning and other vectors with -1.0e+5 pad value.
array([[[ 1.7e-01, -2.2e-01],
[ 1.7e-01, 1.8e-01],
[-3.7e-01, 3.7e-01],
[-3.7e-01, 8.0e-02],
[-1.0e+05, -1.0e+05],
[-1.0e+05, -1.0e+05],
[-1.0e+05, -1.0e+05],
[-1.0e+05, -1.0e+05],
[-1.0e+05, -1.0e+05],
[-1.0e+05, -1.0e+05]]])
Now, I am using Keras MultiHeadAttention layer that has the option of masking part of the input for attention weigths. Call argument for this option is attention_mask described in Keras docs:
a boolean mask of shape (B, T, S), that prevents attention to certain positions. The boolean mask specifies which query elements can attend to which key elements, 1 indicates attention and 0 indicates no attention. Broadcasting can happen for the missing batch dimensions and the head dimension
So the mask should be tensor of zeros and ones, with ones at positions for which attention will be calculated.
For my problem queries, keys and values are all the same (input data), and the model looks like this:
def build_multihead_attention_model():
input_layer = Input(shape = (10, 2), name = 'input')
mask = ...mask somehow caluctaed for input_layer
multihead_layer = MultiHeadAttention(num_heads=1, key_dim=3)
attention_output = multihead_layer(input_layer, input_layer, attention_mask = mask, return_attention_scores = True)
model = Model(inputs = input_layer, outputs = attention_output)
return model
I tried to find some easy way how to calculate this mask depending on the input layer (number of input vectors that are not padded vectors), but I wasn't successful.
How should this mask be calculated?
Input data are just numbers, not words or not embeddings.
Order in data does not matter, but padded vectors are at the end of the input tensor.
Is there already a layer for this that could be used, like Masking layer in Keras?

Related

How to correctly ignore padded or missing timesteps at decoding time in multi-feature sequences with LSTM autonecoder

I am trying to learn a latent representation for text sequence (multiple features (3)) by doing reconstruction USING AUTOENCODER. As some of the sequences are shorter than the maximum pad length or a number of time steps I am considering (seq_length=15), I am not sure if reconstruction will learn to ignore the timesteps or not for calculating loss or accuracies.
I followed suggestions from this answer to crop the outputs but my losses are nan and several of accuracies as well.
input1 = keras.Input(shape=(seq_length,),name='input_1')
input2 = keras.Input(shape=(seq_length,),name='input_2')
input3 = keras.Input(shape=(seq_length,),name='input_3')
input1_emb = layers.Embedding(70,32,input_length=seq_length,mask_zero=True)(input1)
input2_emb = layers.Embedding(462,192,input_length=seq_length,mask_zero=True)(input2)
input3_emb = layers.Embedding(84,36,input_length=seq_length,mask_zero=True)(input3)
merged = layers.Concatenate()([input1_emb, input2_emb,input3_emb])
activ_func = 'tanh'
encoded = layers.LSTM(120,activation=activ_func,input_shape=(seq_length,),return_sequences=True)(merged) #
encoded = layers.LSTM(60,activation=activ_func,return_sequences=True)(encoded)
encoded = layers.LSTM(15,activation=activ_func)(encoded)
# Decoder reconstruct inputs
decoded1 = layers.RepeatVector(seq_length)(encoded)
decoded1 = layers.LSTM(60, activation= activ_func , return_sequences=True)(decoded1)
decoded1 = layers.LSTM(120, activation= activ_func , return_sequences=True,name='decoder1_last')(decoded1)
Decoder one has an output shape of (None, 15, 120).
input_copy_1 = layers.TimeDistributed(layers.Dense(70, activation='softmax'))(decoded1)
input_copy_2 = layers.TimeDistributed(layers.Dense(462, activation='softmax'))(decoded1)
input_copy_3 = layers.TimeDistributed(layers.Dense(84, activation='softmax'))(decoded1)
For each output, I am trying to crop the O padded timesteps as suggested by this answer. padding has 0 where actual input was missing (had zero due to padding) and 1 otherwise
#tf.function
def cropOutputs(x):
#x[0] is softmax of respective feature (time distributed) on top of decoder
#x[1] is the actual input feature
padding = tf.cast( tf.not_equal(x[1][1],0), dtype=tf.keras.backend.floatx())
print(padding)
return x[0]*tf.tile(tf.expand_dims(padding, axis=-1),tf.constant([1,x[0].shape[2]], tf.int32))
Applying crop function to all three outputs.
input_copy_1 = layers.Lambda(cropOutputs, name='input_copy_1', output_shape=(None, 15, 70))([input_copy_1,input1])
input_copy_2 = layers.Lambda(cropOutputs, name='input_copy_2', output_shape=(None, 15, 462))([input_copy_2,input2])
input_copy_3 = layers.Lambda(cropOutputs, name='input_copy_3', output_shape=(None, 15, 84))([input_copy_3,input3])
My logic is to crop timesteps of each feature (all 3 features for sequence have the same length, meaning they miss timesteps together). But for timestep, they have been applied softmax as per their feature size (70,462,84) so I have to zero out timestep by making a multi-dimensional mask array of zeros or ones equal to this feature size with help of mask padding, and multiply by respective softmax representation using this using multi-dimensional mask array.
I am not sure I am doing this right or not as I have Nan losses for these inputs as well as other accuracies have that I am learning jointly with this task (it happens only with this cropping thing).
If it helps someone, I end up cropping the padded entries from the loss directly (taking some keras code pointer from these answers).
#tf.function
def masked_cc_loss(y_true, y_pred):
mask = tf.keras.backend.all(tf.equal(y_true, masked_val_hotencoded), axis=-1)
mask = 1 - tf.cast(mask, tf.keras.backend.floatx())
loss = tf.keras.losses.CategoricalCrossentropy()(y_true, y_pred) * mask
return tf.keras.backend.sum(loss) / tf.keras.backend.sum(mask) # averaging by the number of unmasked entries

tensorflow how to pad batched text like pytorch's 'collate_fn'?

I want to pad a batch of text into same length, generate segment id, mask vector, and then feed them to bert model.
In pytorch, I can use the collate_fn like below.
def collate_fn(self, batch):
rows = self.df.iloc[batch] # take a batch of data
ids, seg_ids = self.get_ids_segs(rows) # process data
attention_mask = (ids > 0)
return ids, seg_ids,attention_mask
But in tensorflow, the data is pass by a tuple of matrix, thus all the text are padded into the max length 512.
# ids.shape = seg_ids = attention_mask = (data_number, max_seq_len)
xs = (ids, seg_ids, attention_mask)
model.fit(xs,, ys, batch_size=batch_size)
I found tf.data.dataset has a function padded_batch. But it can only pad one input, what I have is 3 input data, ids, seq_ids, attn_mask.
Probably using apply or map method of
tf.data.Dataset
after applying batch method should solve the problem.

Variable batch size in tensorflow and CNN

I want to feed in a 1-D CNN a sequence of fixed length and want it to make a prediction (regression), but I want to have a variable batch size during training. The tutorials are not really helpful.
In my input layer I have something like this:
input = tf.placeholder(tf.float32, [None, sequence_length], name="input")
y = tf.placeholder(tf.float32, [None, 1], name="y")
so I assume the None dimension, can be the a variable batch size of any number, so the current input dimension is batch_size * sequence_length and I am supposed to feed the network a 2d np array with dimensions any * sequence_length
tf.nn.conv1d expects 3-D, since my input is a single channel that is 1 np array of sequence_length observations the input I will need to feed to the cnn should be 1*batch_size * sequence_length, if I had on the other hand 2 different sequences that I combine to predict a single value in the end it would have been 2*batch_size * sequence_length and I would also need to concatenate the 2 different channels. So in my case I need
input = tf.expand_dims(input, -1)
and then the filter also follow the same:
filter_size = 5
channel_size = 1
num_filters = 10
filter_shape = [filter_size, channel_size, num_filters]
filters = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="filters")
tf.nn.conv1d(value=input, filters=filters, stride=1)
After that I add a FC layer, but the network isn't able to learn anything, even the a basic function such as sin(x), does the code above look correct?
Also how can I do a maxpooling?

How does a 1D multi-channel convolutional layer (Keras) train?

I am working with time series EEG data recorded from 10 individual locations on the body to classify future behavior in terms of increasing heart activity. I would like to better understand how my labeled data corresponds to the training inputs.
So far, several RNN configurations as well as countless combinations of vanilla dense networks have not gotten me great results and I'd figure a 1D convnet is worth a try.
The things I'm having trouble understanding are:
1.) Feeding data into the model.
orig shape = (30000 timesteps, 10 channels)
array fed to layer = (300 slices, 100 timesteps, 10 channels)
Are the slices separated by 1 time step, giving me 300 slices of timesteps at either end of the original array, or are they separated end to end? If the second is true, how could I create an array of (30000 - 100) slices separated by one ts and is also compatible with the 1D CNN layer?
2) Matching labels with the training and testing data
My understanding is that when you feed in a sequence of train_x_shape = (30000, 10), there are 30000 labels with train_y_shape = (30000, 2) (2 classes) associated with the train_x data.
So, when (300 slices of) 100 timesteps of train_x data with shape = (300, 100, 10) are fed into the model, does the label value correspond to the entire 100 ts (one label per 100 ts, with this label being equal to the last time step's label), or are each 100 rows/vectors in the slice labeled- one for each ts?
Train input:
train_x = train_x.reshape(train_x.shape[0], 1, train_x.shape[1])
n_timesteps = 100
n_channels = 10
layer : model.add(Convolution1D(filters = n_channels * 2, padding = 'same', kernel_size = 3, input_shape = (n_timesteps, n_channels)))
final layer : model.add(Dense(2, activation = 'softmax'))
I use categorical_crossentropy for loss.
Answer 1
This will really depend on "how did you get those slices"?
The answer is totally dependent on what "you're doing". So, what do you want?
If you have simply reshaped (array.reshape(...)) the original array from shape (30000,10) to shape (300,100,10), the model will see:
300 individual (and not connected) sequences
100 timesteps in each sequence
Sequence 1 goes from step 0 to 299;
Sequence 2 goes from step 300 to 599 and so on.
Creating overlapping slices - Sliding window
If you want to create sequences shifted by only one timestep, make a loop for that.
import numpy as np
originalSequence = someArrayWithShape((30000,10))
newSlices = [] #empty list
start = 0
end = start + 300
while end <= 30000:
newSlices.append(originalSequence[start:end])
start+=1
end+=1
newSlices = np.asarray(newSlices)
Beware: if you do this in the input data, you will have to do a similar thing in your output data as well.
Answer2
Again, that's totally up to you. What do you want to achieve?
Convolutional layers will keep the timesteps with these options:
If you use padding='same', the final length will be the same as the input
If you don't, the final length will be reduced depending on the kernel size you choose
Recurrent layers will keep the timesteps or not depending on:
Whether you use return_sequences=True - Output has timesteps
Or you use return_sequences=False - Output has no timesteps
If you want only one output for each sequence (not per timestep):
Recurrent models:
Use LSTM(...., return_sequences=True) until the last LSTM
The last LSTM will be LSTM(..., return_sequences=False)
Convolutional models:
At some point after the convolutions, choose one of these to add:
GlobalMaxPooling1D
GlobalAveragePooling1D
Flatten (but treat the number of channels later with a Dense(2)
Reshape((2,))
I think I'd go with GlobalMaxPooling2D if using convoltions, but recurrent models seem better for this. (Not a rule, though).
You can choose to use intermediate MaxPooling1D layers to gradually reduce the length from 100 to 50, then to 25 and so on. This will probably reach a better output.
Remember to keep X and Y paired:
import numpy as np
train_x = someArrayWithShape((30000,10))
train_y = someArrayWithShape((30000,2))
newXSlices = [] #empty list
newYSlices = [] #empty list
start = 0
end = start + 300
while end <= 30000:
newXSlices.append(train_x[start:end])
newYSlices.append(train_y[end-1:end])
start+=1
end+=1
newXSlices = np.asarray(newXSlices)
newYSlices = np.asarray(newYSlices)

How to calculate input_dim for a keras sequential model?

Keras Dense layer needs an input_dim or input_shape to be specified. What value do I put in there?
My input is a matrix of 1,000,000 rows and only 3 columns. My output is 1,600 classes.
What do I put there?
dimensionality of the inputs (1000000, 1600)
2 because it's a 2D matrix
input_dim is the number of dimensions of the features, in your case that is just 3. The equivalent notation for input_shape, which is an actual dimensional shape, is (3,)
In your case
lets assume x and y=target variable and are look like as follows after feature engineering
x.shape
(1000000, 3)
y.shape
((1000000, 1600)
# as first layer in a sequential model:
model = Sequential()
model.add(Dense(32, input_shape=x.shape[1])) # Input layer
# now the model will take as input arrays of shape (*, 3)
# and output arrays of shape (*, 32)
...
...
model.add(Dense(y.shape[1],activation='softmax')) # Output layer
y.shape[1]= 1600, the number of output which is the number of classes you have, since you are dealing with Classification.
X = dataset.iloc[:, 3:13]
meaning the X parameter having all the rows and 3rd column till 12th column inclusive and 13th column exclusive.
We will also have a X0 parameter to be given to the neural network, so total
input layers becomes 10+1 = 11.
Dense(input_dim = 11, activation = 'relu', kernel_initializer = 'he_uniform')