I have an Azure data lake external table, and want to remove all rows from it. I know that the 'truncate' command doesn't work for external tables, and BTW I don't really want to re-create the table (but might consider that option for certain flows). Anyway, the best I've gotten to work so far is to create an empty data frame (with a defined schema) and overwrite the folder containing the data, e.g.:
from pyspark.sql.types import *
data = []
schema = StructType(
[
StructField('Field1', IntegerType(), True),
StructField('Field2', StringType(), True),
StructField('Field3', DecimalType(18, 8), True)
]
)
sdf = spark.createDataFrame(data, schema)
#sdf.printSchema()
#display(sdf)
sdf.write.format("csv").option('header',True).mode("overwrite").save("/db1/table1")
This mostly works, except that if I go to select from the table, it will fail with the below error:
Error: Job aborted due to stage failure: Task 0 in stage 3.0 failed 4 times, most recent failure: Lost task 0.3 in stage 3.0 (TID 13) (vm-9cb62393 executor 2): java.io.FileNotFoundException: Operation failed: "The specified path does not exist."
It is possible the underlying files have been updated. You can explicitly invalidate the cache in Spark by running 'REFRESH TABLE tableName' command in SQL or by recreating the Dataset/DataFrame involved.
I tried running 'refresh' on the table but the error persisted. Restarting the spark session fixes it, but that's not ideal. Is there a correct way for me to be doing this?
UPDATE: I don't have it working yet, but at least I now have a function that dynamically clears the table:
from pyspark.sql.types import *
from pyspark.sql.types import _parse_datatype_string
def empty_table(database_name, table_name):
data = []
schema = StructType()
for column in spark.catalog.listColumns(table_name, database_name):
datatype_string = _parse_datatype_string(column.dataType)
schema.add(column.name, datatype_string, True)
sdf = spark.createDataFrame(data, schema)
path = "/{}/{}".format(database_name, table_name)
sdf.write.format("csv").mode("overwrite").save(path)
Related
I am trying to do POC in pyspark on a very simple requirement. As a first step, I am just trying to copy the table records from one table to another table. There are more than 20 tables but at first, I am trying to do it only for the one table and later enhance it to multiple tables.
The below code is working fine when I am trying to copy only 10 records. But, when I am trying to copy all records from the main table, this code is getting stuck and eventually I have to terminate it manually. As the main table has 1 million records, I was expecting it to happen in few seconds, but it just not getting completed.
Spark UI :
Could you please suggest how should I handle it ?
Host : Local Machine
Spark verison : 3.0.0
database : Oracle
Code :
from pyspark.sql import SparkSession
from configparser import ConfigParser
#read configuration file
config = ConfigParser()
config.read('config.ini')
#setting up db credentials
url = config['credentials']['dbUrl']
dbUsr = config['credentials']['dbUsr']
dbPwd = config['credentials']['dbPwd']
dbDrvr = config['credentials']['dbDrvr']
dbtable = config['tables']['dbtable']
#print(dbtable)
# database connection
def dbConnection(spark):
pushdown_query = "(SELECT * FROM main_table) main_tbl"
prprDF = spark.read.format("jdbc")\
.option("url",url)\
.option("user",dbUsr)\
.option("dbtable",pushdown_query)\
.option("password",dbPwd)\
.option("driver",dbDrvr)\
.option("numPartitions", 2)\
.load()
prprDF.write.format("jdbc")\
.option("url",url)\
.option("user",dbUsr)\
.option("dbtable","backup_tbl")\
.option("password",dbPwd)\
.option("driver",dbDrvr)\
.mode("overwrite").save()
if __name__ =="__main__":
spark = SparkSession\
.builder\
.appName("DB refresh")\
.getOrCreate()
dbConnection(spark)
spark.stop()
It looks like you are using only one thread(executor) to process the data by using JDBC connection. Can you check the executors and driver details in Spark UI and try increasing the resources. Also share the error by which it's failing. You can get this from the same UI or use CLI to logs "yarn logs -applicationId "
I'm running a simple dataflow job to read data from a table and write back to another.
The job fails with the error:
Workflow failed. Causes: S01:ReadFromBQ+WriteToBigQuery/WriteToBigQuery/NativeWrite failed., BigQuery creating dataset "_dataflow_temp_dataset_18172136482196219053" in project "[my project]" failed., BigQuery execution failed., Error:
Message: Access Denied: Project [my project]: User does not have bigquery.datasets.create permission in project [my project].
I'm not trying to create any dataset though, it's basically trying to create a temp_dataset because the job fails. But I dont get any information on the real error behind the scene.
The reading isn't the issue, it's really the writing step that fails. I don't think it's related to permissions but my question is more about how to get the real error rather than this one.
Any idea of how to work with this issue ?
Here's the code:
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions, GoogleCloudOptions, StandardOptions, WorkerOptions
from sys import argv
options = PipelineOptions(flags=argv)
google_cloud_options = options.view_as(GoogleCloudOptions)
google_cloud_options.project = "prj"
google_cloud_options.job_name = 'test'
google_cloud_options.service_account_email = "mysa"
google_cloud_options.staging_location = 'gs://'
google_cloud_options.temp_location = 'gs://'
options.view_as(StandardOptions).runner = 'DataflowRunner'
worker_options = options.view_as(WorkerOptions)
worker_options.subnetwork = 'subnet'
with beam.Pipeline(options=options) as p:
query = "SELECT ..."
bq_source = beam.io.BigQuerySource(query=query, use_standard_sql=True)
bq_data = p | "ReadFromBQ" >> beam.io.Read(bq_source)
table_schema = ...
bq_data | beam.io.WriteToBigQuery(
project="prj",
dataset="test",
table="test",
schema=table_schema,
create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED,
write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND
)
When using the BigQuerySource the SDK creates a temporary dataset and stores the output of the query into a temporary table. It then issues an export from that temporary table to read the results from.
So it is expected behavior for it to create this temp_dataset. This means that it is probably not hiding an error.
This is not very well documented but can be seen in the implementation of the BigQuerySource by following the read call: BigQuerySource.reader() --> BigQueryReader() --> BigQueryReader().__iter__() --> BigQueryWrapper.run_query() --> BigQueryWrapper._start_query_job().
You can specify the dataset to use. That way the process doesn't create a temp dataset.
Example:
TypedRead<TableRow> read = BigQueryIO.readTableRowsWithSchema()
.fromQuery("selectQuery").withQueryTempDataset("existingDataset")
.usingStandardSql().withMethod(TypedRead.Method.DEFAULT);
I am writing a beam job that is a simple 1:1 ETL from a binary protobuf file stored in GCS into BigQuery. The table schema is quite large, and generated automatically from a representative protobuf.
I am encountering behavior where the BigQuery table is created successfully, but no records are inserted. I have confirmed that records are being generated by the earlier stage, and when I use a normal file sink I can confirm that records are written.
Does anyone know why this is happening?
Logs:
WARNING:root:Inferring Schema...
WARNING:root:Unable to find default credentials to use: The Application Default Credentials are not available. They are available if running in Google Compute Engine. Otherwise, the environment variable GOOGLE_APPLICATION_CREDENTIALS must be defined pointing to a file defining the credentials. See https://developers.google.com/accounts/docs/application-default-credentials for more information.
Connecting anonymously.
WARNING:root:Defining Beam Pipeline...
<PATH REDACTED>/venv/lib/python3.7/site-packages/apache_beam/io/gcp/bigquery.py:1145: BeamDeprecationWarning: options is deprecated since First stable release. References to <pipeline>.options will not be supported
experiments = p.options.view_as(DebugOptions).experiments or []
WARNING:root:Running Beam Pipeline...
WARNING:root:extracted {'counters': [MetricResult(key=MetricKey(step=extract_games, metric=MetricName(namespace=__main__.ExtractGameProtobuf, name=extracted_games), labels={}), committed=8, attempted=8)], 'distributions': [], 'gauges': []} games
Pipeline Source:
def main(args):
DEFAULT_REPLAY_IDS_PATH = "./replay_ids.txt"
DEFAULT_BQ_TABLE_OUT = "<PROJECT REDACTED>:<DATASET REDACTED>.games"
# configure logging
logging.basicConfig(level=logging.WARNING)
# set up replay source
replay_source = ETLReplayRemoteSource.default()
# TODO: load the example replay and parse schema
logging.warning("Inferring Schema...")
sample_replay = replay_source.load_replay(DEFAULT_REPLAY_IDS[0])
game_schema = ProtobufToBigQuerySchemaGenerator(
sample_replay.analysis.DESCRIPTOR).schema()
# print("GAME SCHEMA:\n{}".format(game_schema)) # DEBUG
# submit beam job that reads replays into bigquery
def count_ones(word_ones):
(word, ones) = word_ones
return (word, sum(ones))
with beam.Pipeline(options=PipelineOptions()) as p:
logging.warning("Defining Beam Pipeline...")
# replay_ids = p | "create_replay_ids" >> beam.Create(DEFAULT_REPLAY_IDS)
(p | "read_replay_ids" >> beam.io.ReadFromText(DEFAULT_REPLAY_IDS_PATH)
| "extract_games" >> beam.ParDo(ExtractGameProtobuf())
| "write_out_bq" >> WriteToBigQuery(
DEFAULT_BQ_TABLE_OUT,
schema=game_schema,
write_disposition=BigQueryDisposition.WRITE_APPEND,
create_disposition=BigQueryDisposition.CREATE_IF_NEEDED)
)
logging.warning("Running Beam Pipeline...")
result = p.run()
result.wait_until_finish()
n_extracted = result.metrics().query(
MetricsFilter().with_name('extracted_games'))
logging.warning("extracted {} games".format(n_extracted))
I am trying to write a table into my data warehouse using the RPostgreSQL package
library(DBI)
library(RPostgreSQL)
pano = dbConnect(dbDriver("PostgreSQL"),
host = 'db.panoply.io',
port = '5439',
user = panoply_user,
password = panoply_pw,
dbname = mydb)
RPostgreSQL::dbWriteTable(pano, "mtcars", mtcars[1:5, ])
I am getting this error:
Error in postgresqlpqExec(new.con, sql4) :
RS-DBI driver: (could not Retrieve the result : ERROR: syntax error at or near "STDIN"
LINE 1: ..."hp","drat","wt","qsec","vs","am","gear","carb" ) FROM STDIN
^
)
The above code writes into Panoply as a 0 row, 0 byte table. Columns seem to be properly entered into Panoply but nothing else appears.
Fiest and most important redshift <> postgresql.
Redshift does not use the Postgres bulk loader. (so stdin is NOT allowed).
There are many options available which you should choose depending on your need, especially consider the volume of data.
For high volume of data you should write to s3 first and then use redshift copy command.
There are many options take a look at
https://github.com/sicarul/redshiftTools
for low volume see
inserting multiple records at once into Redshift with R
I am writing a R Markdown file with a sequence of sql chunks. Each chunk contains a CREATE TABLE statement that writes data into an Oracle database. For instance:
```{r setup}
library(knitr)
library(ROracle)
con <- dbConnect(dbDriver("Oracle"), ...)
```
```{sql, connection = "con"}
CREATE TABLE TEST AS SELECT * FROM TESTTABLE
```
Ideally, I would like to get a report that contains the SQLs followed by messages of success or failure. However, when I run the chunks, tables are successfully created, but the following error messages appear:
Error in seq_len(ncol(data)) : argument must be coercible to
non-negative integer In addition: Warning message: In
seq_len(ncol(data)) : first element used of 'length.out' argument
This suggests to me that the result of the SQL statement (which is a logical TRUE or FALSE) cannot be transformed and displayed correctly. A workaround is to assign the result of the SQL to R via the output.var option and then print it in a separate R chunk.
```{sql, connection = "con", output.var = "createTableResult"}
CREATE TABLE TEST AS
SELECT * FROM TESTTABLE
```
```{r}
createTableResult
```
[1] TRUE
Is there a way to avoid this workaround?
Can I somehow get the resulting TRUE or FALSE message directly from the SQL chunk?