RuntimeError: class '__torch__.kornia.geometry.boxes.Boxes3D' already defined - tensorflow

I am using a Premade code that works on colab.research.google.com but when I downloaded it locally and used Jupyter I got this error
RuntimeError: class '__torch__.kornia.geometry.boxes.Boxes3D' already defined.
Here is the premade code
# #title 3) Download Libraries for Neural Network
import argparse
import math
from pathlib import Path
import sys
sys.path.append('./taming-transformers')
from IPython import display
from base64 import b64encode
from omegaconf import OmegaConf
from PIL import Image
from taming.models import cond_transformer, vqgan
import torch
from torch import nn, optim
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm.notebook import tqdm
from CLIP import clip
import kornia.augmentation as K
import numpy as np
import imageio
from PIL import ImageFile, Image
from imgtag import ImgTag # metadatos
from libxmp import * # metadatos
import libxmp # metadatos
from stegano import lsb
import json
ImageFile.LOAD_TRUNCATED_IMAGES = True
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.view([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.view([n, c, h, w])
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class ReplaceGrad(torch.autograd.Function):
#staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
#staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
class ClampWithGrad(torch.autograd.Function):
#staticmethod
def forward(ctx, input, min, max):
ctx.min = min
ctx.max = max
ctx.save_for_backward(input)
return input.clamp(min, max)
#staticmethod
def backward(ctx, grad_in):
input, = ctx.saved_tensors
return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None
clamp_with_grad = ClampWithGrad.apply
def vector_quantize(x, codebook):
d = x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x # codebook.T
indices = d.argmin(-1)
x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) # codebook
return replace_grad(x_q, x)
class Prompt(nn.Module):
def __init__(self, embed, weight=1., stop=float('-inf')):
super().__init__()
self.register_buffer('embed', embed)
self.register_buffer('weight', torch.as_tensor(weight))
self.register_buffer('stop', torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
def parse_prompt(prompt):
vals = prompt.rsplit(':', 2)
vals = vals + ['', '1', '-inf'][len(vals):]
return vals[0], float(vals[1]), float(vals[2])
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.augs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
# K.RandomSolarize(0.01, 0.01, p=0.7),
K.RandomSharpness(0.3,p=0.4),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'),
K.RandomPerspective(0.2,p=0.4),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7))
self.noise_fac = 0.1
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
def load_vqgan_model(config_path, checkpoint_path):
config = OmegaConf.load(config_path)
if config.model.target == 'taming.models.vqgan.VQModel':
model = vqgan.VQModel(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer':
parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
parent_model.eval().requires_grad_(False)
parent_model.init_from_ckpt(checkpoint_path)
model = parent_model.first_stage_model
elif config.model.target == 'taming.models.vqgan.GumbelVQ':
model = vqgan.GumbelVQ(**config.model.params)
print(config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
else:
raise ValueError(f'unknown model type: {config.model.target}')
del model.loss
return model
def resize_image(image, out_size):
ratio = image.size[0] / image.size[1]
area = min(image.size[0] * image.size[1], out_size[0] * out_size[1])
size = round((area * ratio)**0.5), round((area / ratio)**0.5)
return image.resize(size, Image.LANCZOS)
def download_img(img_url):
try:
return wget.download(img_url,out="input.jpg")
except:
return
again there isn't any problem with the code it is working, just not in this local conda environment
Here is the output error
RuntimeError Traceback (most recent call last)
Input In [22], in <cell line: 22>()
19 from tqdm.notebook import tqdm
21 from CLIP import clip
---> 22 import kornia.augmentation as K
23 import numpy as np
24 import imageio
File ~\anaconda3\envs\taming\lib\site-packages\kornia\__init__.py:10, in <module>
7 from . import geometry
9 # import the other modules for convenience
---> 10 from . import (
11 augmentation,
12 color,
13 contrib,
14 enhance,
15 feature,
16 losses,
17 metrics,
18 morphology,
19 tracking,
20 utils,
21 x,
22 )
23 # NOTE: we are going to expose to top level very few things
24 from kornia.constants import pi
File ~\anaconda3\envs\taming\lib\site-packages\kornia\augmentation\__init__.py:54, in <module>
41 from kornia.augmentation._3d import (
42 CenterCrop3D,
43 RandomAffine3D,
(...)
51 RandomVerticalFlip3D,
52 )
53 from kornia.augmentation._3d.base import AugmentationBase3D
---> 54 from kornia.augmentation.container import AugmentationSequential, ImageSequential, PatchSequential, VideoSequential
56 __all__ = [
57 "AugmentationBase2D",
58 "GeometricAugmentationBase2D",
(...)
109 "VideoSequential",
110 ]
File ~\anaconda3\envs\taming\lib\site-packages\kornia\augmentation\container\__init__.py:1, in <module>
----> 1 from kornia.augmentation.container.augment import AugmentationSequential
2 from kornia.augmentation.container.image import ImageSequential
3 from kornia.augmentation.container.patch import PatchSequential
File ~\anaconda3\envs\taming\lib\site-packages\kornia\augmentation\container\augment.py:20, in <module>
18 from kornia.augmentation.container.video import VideoSequential
19 from kornia.constants import DataKey
---> 20 from kornia.geometry.boxes import Boxes
22 __all__ = ["AugmentationSequential"]
25 class AugmentationSequential(ImageSequential):
File ~\anaconda3\envs\taming\lib\site-packages\kornia\geometry\boxes.py:465, in <module>
460 self._data = self._data.to(device=device, dtype=dtype)
461 return self
464 #torch.jit.script
--> 465 class Boxes3D:
466 r"""3D boxes containing N or BxN boxes.
467
468 Args:
(...)
478 `hexahedrons <https://en.wikipedia.org/wiki/Hexahedron>`_ are cubes and rhombohedrons.
479 """
480 def __init__(
481 self, boxes: torch.Tensor, raise_if_not_floating_point: bool = True,
482 mode: str = "xyzxyz_plus"
483 ) -> None:
File ~\anaconda3\envs\taming\lib\site-packages\torch\jit\_script.py:924, in script(obj, optimize, _frames_up, _rcb)
921 def fail(self, *args, **kwargs):
922 raise RuntimeError(name + " is not supported on ScriptModules")
--> 924 return fail
File ~\anaconda3\envs\taming\lib\site-packages\torch\jit\_script.py:64, in _compile_and_register_class(obj, rcb, qualified_name)
61 def _reduce(cls):
62 raise pickle.PickleError("ScriptFunction cannot be pickled")
---> 64 ScriptFunction.__reduce__ = _reduce # type: ignore[assignment]
67 if _enabled:
68 Attribute = collections.namedtuple("Attribute", ["value", "type"])
RuntimeError: class '__torch__.kornia.geometry.boxes.Boxes3D' already defined.
https://colab.research.google.com/drive/1lx9AGsrh7MlyJhK9UrNTK8pYpARnx457?usp=sharing
this is the link to the project I downloaded locally instead of using it online, so I am trying to get it up and running
Thanks!!!

Related

How to convert a pytorch script into tensorflow?

I am trying to convert a pytorch script into tensorflow, how may I do so? Do we do it line by line or does the overall structure change in tensorflow?
Please, someone help me with this and provide some usefull link for this!
The code refers to graph convolution network. I see that pytorch_geometric has predefined modules like MessagePassing from which GCNConv is inheriting.
Is there any similar module in tensorflow?
GCN script :
import torch
from torch.nn import Parameter
from torch_scatter import scatter_add
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import remove_self_loops, add_self_loops
from inits import glorot, zeros
import pdb
class GCNConv(MessagePassing):
def __init__(self,
in_channels,
out_channels,
improved=False,
cached=False,
bias=True):
super(GCNConv, self).__init__('add')
self.in_channels = in_channels
self.out_channels = out_channels
self.improved = improved
self.cached = cached
self.cached_result = None
self.weight = Parameter(torch.Tensor(in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
glorot(self.weight)
zeros(self.bias)
self.cached_result = None
#staticmethod
def norm(edge_index, num_nodes, edge_weight, improved=False, dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ),
dtype=dtype,
device=edge_index.device)
edge_weight = edge_weight.view(-1)
assert edge_weight.size(0) == edge_index.size(1)
edge_index, edge_weight = remove_self_loops(edge_index, edge_weight)
edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)
loop_weight = torch.full((num_nodes, ),
1 if not improved else 2,
dtype=edge_weight.dtype,
device=edge_weight.device)
edge_weight = torch.cat([edge_weight, loop_weight], dim=0)
row, col = edge_index
deg = scatter_add(edge_weight, col, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-1)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[col] * edge_weight
def forward(self, x, edge_index, edge_weight=None):
""""""
x = torch.matmul(x, self.weight)
if not self.cached or self.cached_result is None:
edge_index, norm = self.norm(edge_index, x.size(0), edge_weight,
self.improved, x.dtype)
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
return self.propagate(edge_index, x=x, norm=norm)
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j
def update(self, aggr_out):
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.in_channels,
self.out_channels)
The script is of a graph convolutional network. (source: https://github.com/seongjunyun/Graph_Transformer_Networks )

Google Colab freezes my browser and pc when trying to reconnect to a notebook

I am training a Machine learning model in google colab, to be more specific I am training a GAN with PyTorch-lightning. The problem occurs is when I get disconnected from my current runtime due to inactivity. When I try to reconnect my Browser(tried on firefox and chrome) becomes first laggy and than freezes, my pc starts to lag so that I am not able to close my browser and it doesn't go away. I am forced to press the power button of my PC in order to restart the PC.
I have no clue why this happens.
I tried various batch sizes(also the size 1) but it still happens. It can't be that my dataset is too big either(since i tried it on a dataset with 10images for testing puposes).
I hope someone can help me.
Here is my code (For using the code you will need comet.nl and enter the comet.ml api key):
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from pytorch_lightning.callbacks import ModelCheckpoint
import pytorch_lightning as pl
from pytorch_lightning import loggers
import numpy as np
from numpy.random import choice
from PIL import Image
import os
from pathlib import Path
import shutil
from collections import OrderedDict
# custom weights initialization called on netG and netD
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
# randomly flip some labels
def noisy_labels(y, p_flip=0.05): # # flip labels with 5% probability
# determine the number of labels to flip
n_select = int(p_flip * y.shape[0])
# choose labels to flip
flip_ix = choice([i for i in range(y.shape[0])], size=n_select)
# invert the labels in place
y[flip_ix] = 1 - y[flip_ix]
return y
class AddGaussianNoise(object):
def __init__(self, mean=0.0, std=0.1):
self.std = std
self.mean = mean
def __call__(self, tensor):
return tensor + torch.randn(tensor.size()) * self.std + self.mean
def __repr__(self):
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
def get_valid_labels(img):
return (0.8 - 1.1) * torch.rand(img.shape[0], 1, 1, 1) + 1.1 # soft labels
def get_unvalid_labels(img):
return noisy_labels((0.0 - 0.3) * torch.rand(img.shape[0], 1, 1, 1) + 0.3) # soft labels
class Generator(nn.Module):
def __init__(self, ngf, nc, latent_dim):
super(Generator, self).__init__()
self.ngf = ngf
self.latent_dim = latent_dim
self.nc = nc
self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d(latent_dim, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64
)
def forward(self, input):
return self.main(input)
class Discriminator(nn.Module):
def __init__(self, ndf, nc):
super(Discriminator, self).__init__()
self.nc = nc
self.ndf = ndf
self.main = nn.Sequential(
# input is (nc) x 64 x 64
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*2) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input)
class DCGAN(pl.LightningModule):
def __init__(self, hparams, logger, checkpoint_folder, experiment_name):
super().__init__()
self.hparams = hparams
self.logger = logger # only compatible with comet_logger at the moment
self.checkpoint_folder = checkpoint_folder
self.experiment_name = experiment_name
# networks
self.generator = Generator(ngf=hparams.ngf, nc=hparams.nc, latent_dim=hparams.latent_dim)
self.discriminator = Discriminator(ndf=hparams.ndf, nc=hparams.nc)
self.generator.apply(weights_init)
self.discriminator.apply(weights_init)
# cache for generated images
self.generated_imgs = None
self.last_imgs = None
# For experience replay
self.exp_replay_dis = torch.tensor([])
# creating checkpoint folder
dirpath = Path(self.checkpoint_folder)
if not dirpath.exists():
os.makedirs(dirpath, 0o755)
def forward(self, z):
return self.generator(z)
def adversarial_loss(self, y_hat, y):
return F.binary_cross_entropy(y_hat, y)
def training_step(self, batch, batch_nb, optimizer_idx):
# For adding Instance noise for more visit: https://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/
std_gaussian = max(0, self.hparams.level_of_noise - ((self.hparams.level_of_noise * 1.5) * (self.current_epoch / self.hparams.epochs)))
AddGaussianNoiseInst = AddGaussianNoise(std=std_gaussian) # the noise decays over time
imgs, _ = batch
imgs = AddGaussianNoiseInst(imgs) # Adding instance noise to real images
self.last_imgs = imgs
# train generator
if optimizer_idx == 0:
# sample noise
z = torch.randn(imgs.shape[0], self.hparams.latent_dim, 1, 1)
# generate images
self.generated_imgs = self(z)
self.generated_imgs = AddGaussianNoiseInst(self.generated_imgs) # Adding instance noise to fake images
# Experience replay
# for discriminator
perm = torch.randperm(self.generated_imgs.size(0)) # Shuffeling
r_idx = perm[:max(1, self.hparams.experience_save_per_batch)] # Getting the index
self.exp_replay_dis = torch.cat((self.exp_replay_dis, self.generated_imgs[r_idx]), 0).detach() # Add our new example to the replay buffer
# ground truth result (ie: all fake)
g_loss = self.adversarial_loss(self.discriminator(self.generated_imgs), get_valid_labels(self.generated_imgs)) # adversarial loss is binary cross-entropy
tqdm_dict = {'g_loss': g_loss}
log = {'g_loss': g_loss, "std_gaussian": std_gaussian}
output = OrderedDict({
'loss': g_loss,
'progress_bar': tqdm_dict,
'log': log
})
return output
# train discriminator
if optimizer_idx == 1:
# Measure discriminator's ability to classify real from generated samples
# how well can it label as real?
real_loss = self.adversarial_loss(self.discriminator(imgs), get_valid_labels(imgs))
# Experience replay
if self.exp_replay_dis.size(0) >= self.hparams.experience_batch_size:
fake_loss = self.adversarial_loss(self.discriminator(self.exp_replay_dis.detach()), get_unvalid_labels(self.exp_replay_dis)) # train on already seen images
self.exp_replay_dis = torch.tensor([]) # Reset experience replay
# discriminator loss is the average of these
d_loss = (real_loss + fake_loss) / 2
tqdm_dict = {'d_loss': d_loss}
log = {'d_loss': d_loss, "d_exp_loss": fake_loss, "std_gaussian": std_gaussian}
output = OrderedDict({
'loss': d_loss,
'progress_bar': tqdm_dict,
'log': log
})
return output
else:
fake_loss = self.adversarial_loss(self.discriminator(self.generated_imgs.detach()), get_unvalid_labels(self.generated_imgs)) # how well can it label as fake?
# discriminator loss is the average of these
d_loss = (real_loss + fake_loss) / 2
tqdm_dict = {'d_loss': d_loss}
log = {'d_loss': d_loss, "std_gaussian": std_gaussian}
output = OrderedDict({
'loss': d_loss,
'progress_bar': tqdm_dict,
'log': log
})
return output
def configure_optimizers(self):
lr = self.hparams.lr
b1 = self.hparams.b1
b2 = self.hparams.b2
opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(b1, b2))
opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2))
return [opt_g, opt_d], []
def train_dataloader(self):
transform = transforms.Compose([transforms.Resize((self.hparams.image_size, self.hparams.image_size)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
dataset = MNIST(os.getcwd(), train=True, download=True, transform=transform)
return DataLoader(dataset, batch_size=self.hparams.batch_size)
# transform = transforms.Compose([transforms.Resize((self.hparams.image_size, self.hparams.image_size)),
# transforms.ToTensor(),
# transforms.Normalize([0.5], [0.5])
# ])
# train_dataset = torchvision.datasets.ImageFolder(
# root="./drive/My Drive/datasets/ghibli_dataset_small_overfit/",
# transform=transform
# )
# return DataLoader(train_dataset, num_workers=self.hparams.num_workers, shuffle=True, batch_size=self.hparams.batch_size)
def on_epoch_end(self):
z = torch.randn(4, self.hparams.latent_dim, 1, 1)
# match gpu device (or keep as cpu)
if self.on_gpu:
z = z.cuda(self.last_imgs.device.index)
# log sampled images
sample_imgs = self.generator(z)
sample_imgs = sample_imgs.view(-1, self.hparams.nc, self.hparams.image_size, self.hparams.image_size)
grid = torchvision.utils.make_grid(sample_imgs, nrow=2)
self.logger.experiment.log_image(grid.permute(1, 2, 0), f'generated_images_epoch{self.current_epoch}', step=self.current_epoch)
# save model
if self.current_epoch % self.hparams.save_model_every_epoch == 0:
trainer.save_checkpoint(self.checkpoint_folder + "/" + self.experiment_name + "_epoch_" + str(self.current_epoch) + ".ckpt")
comet_logger.experiment.log_asset_folder(self.checkpoint_folder, step=self.current_epoch)
# Deleting the folder where we saved the model so that we dont upload a thing twice
dirpath = Path(self.checkpoint_folder)
if dirpath.exists() and dirpath.is_dir():
shutil.rmtree(dirpath)
# creating checkpoint folder
access_rights = 0o755
os.makedirs(dirpath, access_rights)
from argparse import Namespace
args = {
'batch_size': 48,
'lr': 0.0002,
'b1': 0.5,
'b2': 0.999,
'latent_dim': 128, # tested value which worked(in V4_1): 100
'nc': 1,
'ndf': 32,
'ngf': 32,
'epochs': 10,
'save_model_every_epoch': 5,
'image_size': 64,
'num_workers': 2,
'level_of_noise': 0.15,
'experience_save_per_batch': 1, # this value should be very low; tested value which works: 1
'experience_batch_size': 50 # this value shouldnt be too high; tested value which works: 50
}
hparams = Namespace(**args)
# Parameters
experiment_name = "DCGAN_V4_2_MNIST"
dataset_name = "MNIST"
checkpoint_folder = "DCGAN/"
tags = ["DCGAN", "MNIST", "OVERFIT", "64x64"]
dirpath = Path(checkpoint_folder)
# init logger
comet_logger = loggers.CometLogger(
api_key="",
rest_api_key="",
project_name="gan",
experiment_name=experiment_name,
#experiment_key="f23d00c0fe3448ee884bfbe3fc3923fd" # used for resuming trained id can be found in comet.ml
)
#defining net
net = DCGAN(hparams, comet_logger, checkpoint_folder, experiment_name)
#logging
comet_logger.experiment.set_model_graph(str(net))
comet_logger.experiment.add_tags(tags=tags)
comet_logger.experiment.log_dataset_info(dataset_name)
trainer = pl.Trainer(#resume_from_checkpoint="GHIBLI_DCGAN_OVERFIT_64px_epoch_6000.ckpt",
logger=comet_logger,
max_epochs=args["epochs"]
)
trainer.fit(net)
comet_logger.experiment.end()
I fixed it with importing this:
from IPython.display import clear_output

AttributeError: 'numpy.float32' object has no attribute 'to_cpu'

Good day,
I'm developing a deep learning model for wireless signal detection. Below is the snippet of the function that computes the model accuracy and bit error rate (BER):
from chainer.datasets import TupleDataset
import numpy as np
from chainer import cuda
from chainer import function
def get_idp_acc(model, dataset_tuple, comp_ratio, profile = None, batchsize = 128, gpu = -1):
chainer.config.train = True
xp = np if gpu < 0 else cuda.cupy
x, indices, x_zf, HtH, Hty = dataset_tuple._datasets[0], dataset_tuple._datasets[1], dataset_tuple._datasets[2], dataset_tuple._datasets[3], dataset_tuple._datasets[4]
accs = 0
BERs = 0
model.train = False
for j in range(0, len(x), batchsize):
x_batch = xp.array(x[j:j + batchsize])
indices_batch = xp.array(indices[j:j + batchsize])
x_zf_batch = xp.array(x_zf[j:j + batchsize])
HtH_batch = xp.array(HtH[j:j + batchsize])
Hty_batch = xp.array(Hty[j:j + batchsize])
if profile == None:
acc_data = model(x_batch, indices_batch, x_zf_batch, HtH_batch, Hty_batch, comp_ratio = comp_ratio,
ret_param = 'acc')
else:
acc_data = model(x_batch, indices_batch, x_zf_batch, HtH_batch, Hty_batch, comp_ratio = comp_ratio,
ret_param = 'acc', profile = profile)
acc_data.to_cpu()
acc = acc_data.data
BER = 1.0 - acc
accs += acc * len(x_batch)
BERs += BER * len(x_batch)
return (accs / len(x)) * 100.
When the code is run, I get the following error below despite having imported all the required chainer modules. I really need your help on this issue as I'm stuck for nearly two months without making any headways in my project.
Traceback (most recent call last):
File "/Users/mac/Documents/idp_detnet/examples/run_mlp.py", line 14, in <module>
mlp.run(args)
File "/Users/mac/Documents/idp_detnet/examples/mlp.py", line 39, in run
acc_dict[name], BER_dict[name] = util.sweep_idp(model, test, comp_ratios, args)
File "/Users/mac/Documents/idp_detnet/examples/util.py", line 107, in sweep_idp
batchsize=args.batchsize, profile=profile))
File "/Users/mac/Documents/idp_detnet/examples/util.py", line 83, in get_idp_acc
acc_data.to_cpu()
AttributeError: 'numpy.float32' object has no attribute 'to_cpu'
Below is the additional information providing codes for model definition:
K = 10
num_layers = 3*K
def lin_soft_sign(x, t):
'''Linear soft sign activation function from the original paper Eq. (11)'''
y = -1 + F.relu(x + t)/ F.absolute(t) - F.relu(- t)/ F.absolute(t)
return y
def accuracy(x, y):
'''Computes the fraction of elements for which x and y are equal'''
return np.mean(np.equal(x, y)).astype(np.float32)
class MLP(chainer.Chain):
def __init__(self, K, coeff_generator, profiles = None, z_dims = 8*K, v_dims = 2*K):
super(MLP, self).__init__()
if profiles == None:
profiles = [(0, 10)]
self.coeff_generator = coeff_generator
self.z_dims = z_dims
self.v_dims = v_dims
self.K = K
self.profiles = profiles
self.profile = 0
with self.init_scope():
self.p0_l1 = IncompleteLinear(None, self.z_dims)
self.p1_l1 = IncompleteLinear(None, self.z_dims)
self.p2_l1 = IncompleteLinear(None, self.z_dims)
self.p0_lv = IncompleteLinear(None, self.v_dims)
self.p1_lv = IncompleteLinear(None, self.v_dims)
self.p2_lv = IncompleteLinear(None, self.v_dims)
self.p0_l3 = IncompleteLinear(None, self.K)
self.p1_l3 = IncompleteLinear(None, self.K)
self.p2_l3 = IncompleteLinear(None, self.K)
def __call__(self, x, indices, x_zf, HtH, Hty, ret_param = 'loss', profile = None, comp_ratio = None):
if profile == None:
profile = self.profile
# Form Zero-forcing detection
err_rel = F.sum((x - x_zf)**2, axis = 1)
params = layer_profile(self.coeff_generator,
*self.profiles[profile], self.z_dims,
self.v_dims, comp_ratio)
def detnet_layer(x_d, x_logit, v, z_dims, v_dims):
HtH_x = np.matmul(HtH, np.expand_dims(x_d.data, axis = 2).astype(np.float32))
HtH_x = F.squeeze(HtH_x, axis = -1)
#x_concat = np.concatenate([Hty, x, HtH_x, v], axis=1)
x_concat = F.concat([Hty, x_d, HtH_x, v], axis = 1)
if profile == 0:
z = F.relu(self.p0_l1(x_concat))
v += self.p0_lv(z, *params)
x_logit += self.p0_l3(z, *params)
x = lin_soft_sign(x_logit, F.broadcast_to(np.ones(1).astype(np.float32), x_logit.shape))
elif profile == 1:
z = F.relu(self.p1_l1(x_concat))
v += self.p1_lv(z, *params)
x_logit += self.p1_l3(z, *params)
x = lin_soft_sign(x_logit, F.broadcast_to(np.ones(1).astype(np.float32), x_logit.shape))
elif profile == 2:
z = F.relu(self.p2_l1(x_concat))
v += self.p2_lv(z, *params)
x_logit += self.p2_l3(z, *params)
x = lin_soft_sign(x_logit, F.broadcast_to(np.ones(1).astype(np.float32), x_logit.shape))
return x, x_logit, v
x_k = np.zeros((Hty.shape[0], self.K), dtype = np.float32)
x_k_logit = np.zeros((Hty.shape[0], self.K), dtype = np.float32)
v = np.zeros((Hty.shape[0], self.v_dims), dtype = np.float32)
loss = 0
mod = sg.Modulator('BPSK', K)
for k in range(1, num_layers + 1):
x_k, x_k_logit, v = detnet_layer(x_k, x_k_logit, v, self.z_dims, self.v_dims)
err = F.sum((x - x_k)**2, 1)
loss += (np.log(k)).astype(np.float32) * F.mean(err/err_rel)
report = {'loss': loss, 'acc': accuracy(mod.demodulate(x_k.data), indices)}
reporter.report(report, self)
return report[ret_param]
def report_params(self):
return ['validation/main/acc']
def param_names(self):
if len(self.profiles) > 1:
return 'IDPDETNET_{}_{}_{}_p{}'.format(self.z_dims, self.v_dims, self.coeff_generator.__name__, len(self.profiles))
return 'IDPDETNET_{}_{}_{}'.format(self.z_dims, self.v_dims, self.coeff_generator.__name__)
import os
import sys
sys.path.insert(0, os.path.abspath(
os.path.join(os.path.dirname(__file__), '..')))
import numpy as np
import visualize as vz
import idp.coeffs_generator as cg
from net import MLP
import util
K = 10
N = 4
v_dims = 2*K
z_dims = 8*K
SNR_dB_tmin = -4
SNR_dB_tmax = 24
SNR_dB_test = np.linspace(SNR_dB_tmin, SNR_dB_tmax, 8)
num_snr_test = len(SNR_dB_test)
def run(args):
train, test = util.get_dataset(args.modeltype)
names = ['all-one (standard)', 'linear']
colors = [vz.colors.all_one_lg, vz.colors.linear_lg]
models = [
MLP.MLP(K, cg.uniform, z_dims = 8*K, v_dims = 2*K),
MLP.MLP(K, cg.linear, z_dims = 8*K, v_dims = 2*K)
]
comp_ratios = np.linspace(0.1, 1.0, 20)
acc_dict = {}
BER_dict = {}
ratios_dict = {}
for i in range(num_snr_test):
for name, model in zip(names, models):
util.load_or_train_model(model, train, test, args)
acc_dict[name], BER_dict[name] = util.sweep_idp(model, test, comp_ratios, args)
ratios_dict[name] = [100. * cr for cr in comp_ratios]
filename = "IDPDETNET1_{}".format(args.modeltype)
vz.plot(ratios_dict, acc_dict, names, filename, colors = colors,
folder = args.figure_path, ext=args.ext,
title = 'IDPDETNET (BPSK)',
xlabel = 'IDP (%)',
ylabel = 'Test Accuracy (%)', ylim = (0, 100))
filename = "IDPDETNET2_{}".format(args.modeltype)
vz.plot(ratios_dict, BER_dict, names, filename, colors = colors,
folder=args.figure_path, ext=args.ext,
title='IDPDETNET (BPSK)',
xlabel='IDP (%)',
ylabel='BER (bits/sec)')
filename = "IDPDETNET3_{}".format(args.modeltype)
vz.plot(num_snr_test, BER_dict, names, filename, colors = colors,
folder = args.figure_path, ext = args.ext,
title = 'IDPDETNET (BPSK)',
xlabel = 'SNR (dB)',
ylabel = ' BER (bits/sec)')
if __name__ == '__main__':
args = util.default_parser('IDPDETNET Example').parse_args()
run(args)
Hi Seiya Tokui. Thank you for your kind input. Here is the model definition based on the above code:
model = MLP.MLP(K, cg.uniform, z_dims = 8*K, v_dims = 2*K)
OR
model = MLP.MLP(K, cg.linear, z_dims = 8*K, v_dims = 2*K)
Hi #BloodyD. Thank for your brilliant contributions. The model started training, but then later returned the following error:
1 nan nan 0.50108 5.85448
Traceback (most recent call last):
File "run_mlp.py", line 14, in <module>
mlp.run(args)
File "/Users/mac/Documents/idp_detnet/examples/mlp.py", line 38, in run
util.load_or_train_model(model, train, test, args)
File "/Users/mac/Documents/idp_detnet/examples/util.py", line 204, in load_or_train_model
train_model(model, train, test, args)
File "/Users/mac/Documents/idp_detnet/examples/util.py", line 184, in train_model
return eval(fp.read().replace('\n', ''))
File "<string>", line 1, in <module>
NameError: name 'NaN' is not defined
The error occurs in the last line of this snippet code below:
name = model.param_names()
save_model(model, os.path.join(args.model_path, name))
chainer.config.train = False
with open(os.path.join(args.out, 'log'), 'r') as fp:
return eval(fp.read().replace('\n', ''))

Spark random forest - could not convert float to int error

I have features which are numeric and a binary response. I am trying to build ensemble decision trees such as random forest and gradient-boosted trees. However, I get an error. I have reproduced the error with iris data.
The error is below and the whole error message is at the bottom.
TypeError: Could not convert 12.631578947368421 to int
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.classification import GBTClassifier
import pandas as pd
from sklearn import datasets
iris = datasets.load_iris()
y = list(iris.target)
df = pd.read_csv("https://raw.githubusercontent.com/venky14/Machine- Learning-with-Iris-Dataset/master/Iris.csv")
df = df.drop(['Species'], axis = 1)
df['label'] = y
spark_df = spark.createDataFrame(df).drop('Id')
cols = spark_df.drop('label').columns
assembler = VectorAssembler(inputCols = cols, outputCol = 'features')
output_dat = assembler.transform(spark_df).select('label', 'features')
rf = RandomForestClassifier(labelCol = "label", featuresCol = "features")
paramGrid_rf = ParamGridBuilder() \
.addGrid(rf.maxDepth, np.linspace(5, 30, 6)) \
.addGrid(rf.numTrees, np.linspace(10, 60, 20)).build()
crossval_rf = CrossValidator(estimator = rf,
estimatorParamMaps = paramGrid_rf,
evaluator = BinaryClassificationEvaluator(),
numFolds = 5)
cvModel_rf = crossval_rf.fit(output_dat)
TypeError Traceback (most recent call last)
<ipython-input-24-44f8f759ed8e> in <module>
2 paramGrid_rf = ParamGridBuilder() \
3 .addGrid(rf.maxDepth, np.linspace(5, 30, 6)) \
----> 4 .addGrid(rf.numTrees, np.linspace(10, 60, 20)) \
5 .build()
6
~/spark-2.4.0-bin-hadoop2.7/python/pyspark/ml/tuning.py in build(self)
120 return [(key, key.typeConverter(value)) for key, value in zip(keys, values)]
121
--> 122 return [dict(to_key_value_pairs(keys, prod)) for prod in itertools.product(*grid_values)]
123
124
~/spark-2.4.0-bin-hadoop2.7/python/pyspark/ml/tuning.py in <listcomp>(.0)
120 return [(key, key.typeConverter(value)) for key, value in zip(keys, values)]
121
--> 122 return [dict(to_key_value_pairs(keys, prod)) for prod in itertools.product(*grid_values)]
123
124
~/spark-2.4.0-bin-hadoop2.7/python/pyspark/ml/tuning.py in to_key_value_pairs(keys, values)
118
119 def to_key_value_pairs(keys, values):
--> 120 return [(key, key.typeConverter(value)) for key, value in zip(keys, values)]
121
122 return [dict(to_key_value_pairs(keys, prod)) for prod in itertools.product(*grid_values)]
~/spark-2.4.0-bin-hadoop2.7/python/pyspark/ml/tuning.py in <listcomp>(.0)
118
119 def to_key_value_pairs(keys, values):
--> 120 return [(key, key.typeConverter(value)) for key, value in zip(keys, values)]
121
122 return [dict(to_key_value_pairs(keys, prod)) for prod in itertools.product(*grid_values)]
~/spark-2.4.0-bin-hadoop2.7/python/pyspark/ml/param/__init__.py in toInt(value)
197 return int(value)
198 else:
--> 199 raise TypeError("Could not convert %s to int" % value)
200
201 #staticmethod
TypeError: Could not convert 12.631578947368421 to int```
Both maxDepth and numTrees need to be integers; Numpy linspace procudes floats:
import numpy as np
np.linspace(10, 60, 20)
Result:
array([ 10. , 12.63157895, 15.26315789, 17.89473684,
20.52631579, 23.15789474, 25.78947368, 28.42105263,
31.05263158, 33.68421053, 36.31578947, 38.94736842,
41.57894737, 44.21052632, 46.84210526, 49.47368421,
52.10526316, 54.73684211, 57.36842105, 60. ])
So, your code bumps upon the first non-integer value (here 12.63157895), and produces an error.
Use arange instead:
np.arange(10, 60, 20)
# array([10, 30, 50])

Numerical discrepancy between tf.scan and matmul

Following the answer here: Tensorflow - matmul of input matrix with batch data
I compared between the tf.scan-based results and the tf.matmul-based results. As far as I can see, the results should be identical, but I'm getting different results, consistently. I also compared with Keras' K.dot with the same functionality as reference.
I'll appreciate any explanation as to why that is, or what is my mistake.
Attached is the full MWE, with two results, evaluated on two separate computers (with different GPUs).
import tensorflow as tf
import keras.backend as K
from keras.layers import Lambda, Input
import numpy as np
na = 100
nb = 10000
mb = 10
v = Input( (1,na) )
e = tf.placeholder(dtype=tf.float32, shape=(na,nb))
def dot_a(v):
res = K.dot(v,e)
return res
initer = np.zeros((1,nb),dtype=np.float32)
def dot_b(v):
res = tf.scan(lambda a,x: tf.matmul(x, e), v, initializer=tf.constant(initer))
return res
def dot_c(v):
v = tf.reshape(v, [-1, na])
h = tf.matmul(v, e)
res = tf.reshape(h, [-1, 1, nb])
return res
mul1 = Lambda(dot_a)(v)
mul2 = Lambda(dot_b)(v)
mul3 = Lambda(dot_c)(v)
# inputs
v0 = np.random.random((mb,1,na)).astype(np.float32)
e0 = np.random.random((na,nb)).astype(np.float32)
v0 = np.round(v0,decimals=2)
e0 = np.round(e0,decimals=2)
sess = tf.Session()
out1,out2,out3 = sess.run([mul1,mul2,mul3], feed_dict={v:v0,e:e0})
print 'norm(out, out-matmul)',np.linalg.norm(out1-out2)
print 'norm(out, out-scan)',np.linalg.norm(out1-out3)
Output in computer 1:
norm(out, out-matmul) 0.000715436
norm(out, out-scan) 0.0
Output in computer 2:
norm(out, out-matmul) 0.000511952
norm(out, out-scan) 0.0