I have features which are numeric and a binary response. I am trying to build ensemble decision trees such as random forest and gradient-boosted trees. However, I get an error. I have reproduced the error with iris data.
The error is below and the whole error message is at the bottom.
TypeError: Could not convert 12.631578947368421 to int
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.classification import GBTClassifier
import pandas as pd
from sklearn import datasets
iris = datasets.load_iris()
y = list(iris.target)
df = pd.read_csv("https://raw.githubusercontent.com/venky14/Machine- Learning-with-Iris-Dataset/master/Iris.csv")
df = df.drop(['Species'], axis = 1)
df['label'] = y
spark_df = spark.createDataFrame(df).drop('Id')
cols = spark_df.drop('label').columns
assembler = VectorAssembler(inputCols = cols, outputCol = 'features')
output_dat = assembler.transform(spark_df).select('label', 'features')
rf = RandomForestClassifier(labelCol = "label", featuresCol = "features")
paramGrid_rf = ParamGridBuilder() \
.addGrid(rf.maxDepth, np.linspace(5, 30, 6)) \
.addGrid(rf.numTrees, np.linspace(10, 60, 20)).build()
crossval_rf = CrossValidator(estimator = rf,
estimatorParamMaps = paramGrid_rf,
evaluator = BinaryClassificationEvaluator(),
numFolds = 5)
cvModel_rf = crossval_rf.fit(output_dat)
TypeError Traceback (most recent call last)
<ipython-input-24-44f8f759ed8e> in <module>
2 paramGrid_rf = ParamGridBuilder() \
3 .addGrid(rf.maxDepth, np.linspace(5, 30, 6)) \
----> 4 .addGrid(rf.numTrees, np.linspace(10, 60, 20)) \
5 .build()
6
~/spark-2.4.0-bin-hadoop2.7/python/pyspark/ml/tuning.py in build(self)
120 return [(key, key.typeConverter(value)) for key, value in zip(keys, values)]
121
--> 122 return [dict(to_key_value_pairs(keys, prod)) for prod in itertools.product(*grid_values)]
123
124
~/spark-2.4.0-bin-hadoop2.7/python/pyspark/ml/tuning.py in <listcomp>(.0)
120 return [(key, key.typeConverter(value)) for key, value in zip(keys, values)]
121
--> 122 return [dict(to_key_value_pairs(keys, prod)) for prod in itertools.product(*grid_values)]
123
124
~/spark-2.4.0-bin-hadoop2.7/python/pyspark/ml/tuning.py in to_key_value_pairs(keys, values)
118
119 def to_key_value_pairs(keys, values):
--> 120 return [(key, key.typeConverter(value)) for key, value in zip(keys, values)]
121
122 return [dict(to_key_value_pairs(keys, prod)) for prod in itertools.product(*grid_values)]
~/spark-2.4.0-bin-hadoop2.7/python/pyspark/ml/tuning.py in <listcomp>(.0)
118
119 def to_key_value_pairs(keys, values):
--> 120 return [(key, key.typeConverter(value)) for key, value in zip(keys, values)]
121
122 return [dict(to_key_value_pairs(keys, prod)) for prod in itertools.product(*grid_values)]
~/spark-2.4.0-bin-hadoop2.7/python/pyspark/ml/param/__init__.py in toInt(value)
197 return int(value)
198 else:
--> 199 raise TypeError("Could not convert %s to int" % value)
200
201 #staticmethod
TypeError: Could not convert 12.631578947368421 to int```
Both maxDepth and numTrees need to be integers; Numpy linspace procudes floats:
import numpy as np
np.linspace(10, 60, 20)
Result:
array([ 10. , 12.63157895, 15.26315789, 17.89473684,
20.52631579, 23.15789474, 25.78947368, 28.42105263,
31.05263158, 33.68421053, 36.31578947, 38.94736842,
41.57894737, 44.21052632, 46.84210526, 49.47368421,
52.10526316, 54.73684211, 57.36842105, 60. ])
So, your code bumps upon the first non-integer value (here 12.63157895), and produces an error.
Use arange instead:
np.arange(10, 60, 20)
# array([10, 30, 50])
Related
What is the solution to the following error in tensorflow.
ValueError: The two structures don't have the same sequence length.
Input structure has length 1, while shallow structure has length 2.
I tried tensorflow versions: 2.9.1 and 2.4.0.
The toy example is given to reproduce the error.
import tensorflow as tf
d1 = tf.data.Dataset.range(10)
d1 = d1.map(lambda x:tf.cast([x], tf.float32))
def func1(x):
y1 = 2.0 * x
y2 = -3.0 * x
return tuple([y1, y2])
d2 = d1.map(lambda x: tf.py_function(func1, [x], [tf.float32, tf.float32]))
d3 = d2.padded_batch(3, padded_shapes=(None,))
for x, y in d2.as_numpy_iterator():
pass
The full error is:
ValueError Traceback (most recent call last)
~/Documents/pythonProject/tfProjects/asr/transformer/dataset.py in <module>
256 return tuple([y1, y2])
257 d2 = d1.map(lambda x: tf.py_function(func1, [x], [tf.float32, tf.float32]))
---> 258 d3 = d2.padded_batch(3, padded_shapes=(None,))
259 for x, y in d2.as_numpy_iterator():
260 pass
~/miniconda3/envs/jtf2/lib/python3.7/site-packages/tensorflow/python/data/ops/dataset_ops.py in padded_batch(self, batch_size, padded_shapes, padding_values, drop_remainder, name)
1887 padding_values,
1888 drop_remainder,
-> 1889 name=name)
1890
1891 def map(self,
~/miniconda3/envs/jtf2/lib/python3.7/site-packages/tensorflow/python/data/ops/dataset_ops.py in __init__(self, input_dataset, batch_size, padded_shapes, padding_values, drop_remainder, name)
5171
5172 input_shapes = get_legacy_output_shapes(input_dataset)
-> 5173 flat_padded_shapes = nest.flatten_up_to(input_shapes, padded_shapes)
5174
5175 flat_padded_shapes_as_tensors = []
~/miniconda3/envs/jtf2/lib/python3.7/site-packages/tensorflow/python/data/util/nest.py in flatten_up_to(shallow_tree, input_tree)
377 `input_tree`.
378 """
--> 379 assert_shallow_structure(shallow_tree, input_tree)
380 return list(_yield_flat_up_to(shallow_tree, input_tree))
381
~/miniconda3/envs/jtf2/lib/python3.7/site-packages/tensorflow/python/data/util/nest.py in assert_shallow_structure(shallow_tree, input_tree, check_types)
290 if len(input_tree) != len(shallow_tree):
291 raise ValueError(
--> 292 "The two structures don't have the same sequence length. Input "
293 f"structure has length {len(input_tree)}, while shallow structure "
294 f"has length {len(shallow_tree)}.")
ValueError: The two structures don't have the same sequence length. Input structure has length 1, while shallow structure has length 2.
The following modification in padded_shapes argument will resolve the error.
import tensorflow as tf
d1 = tf.data.Dataset.range(10)
d1 = d1.map(lambda x:tf.cast([x], tf.float32))
def func1(x):
y1 = 2.0 * x
y2 = -3.0 * x
return tuple([y1, y2])
d2 = d1.map(lambda x: tf.py_function(func1, [x], [tf.float32, tf.float32]))
d3 = d2.padded_batch(3, padded_shapes=([None],[None]))
for x, y in d2.as_numpy_iterator():
pass
I am using a Premade code that works on colab.research.google.com but when I downloaded it locally and used Jupyter I got this error
RuntimeError: class '__torch__.kornia.geometry.boxes.Boxes3D' already defined.
Here is the premade code
# #title 3) Download Libraries for Neural Network
import argparse
import math
from pathlib import Path
import sys
sys.path.append('./taming-transformers')
from IPython import display
from base64 import b64encode
from omegaconf import OmegaConf
from PIL import Image
from taming.models import cond_transformer, vqgan
import torch
from torch import nn, optim
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms import functional as TF
from tqdm.notebook import tqdm
from CLIP import clip
import kornia.augmentation as K
import numpy as np
import imageio
from PIL import ImageFile, Image
from imgtag import ImgTag # metadatos
from libxmp import * # metadatos
import libxmp # metadatos
from stegano import lsb
import json
ImageFile.LOAD_TRUNCATED_IMAGES = True
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.view([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.view([n, c, h, w])
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class ReplaceGrad(torch.autograd.Function):
#staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
#staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
class ClampWithGrad(torch.autograd.Function):
#staticmethod
def forward(ctx, input, min, max):
ctx.min = min
ctx.max = max
ctx.save_for_backward(input)
return input.clamp(min, max)
#staticmethod
def backward(ctx, grad_in):
input, = ctx.saved_tensors
return grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None
clamp_with_grad = ClampWithGrad.apply
def vector_quantize(x, codebook):
d = x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x # codebook.T
indices = d.argmin(-1)
x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) # codebook
return replace_grad(x_q, x)
class Prompt(nn.Module):
def __init__(self, embed, weight=1., stop=float('-inf')):
super().__init__()
self.register_buffer('embed', embed)
self.register_buffer('weight', torch.as_tensor(weight))
self.register_buffer('stop', torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
def parse_prompt(prompt):
vals = prompt.rsplit(':', 2)
vals = vals + ['', '1', '-inf'][len(vals):]
return vals[0], float(vals[1]), float(vals[2])
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.augs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
# K.RandomSolarize(0.01, 0.01, p=0.7),
K.RandomSharpness(0.3,p=0.4),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'),
K.RandomPerspective(0.2,p=0.4),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7))
self.noise_fac = 0.1
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
def load_vqgan_model(config_path, checkpoint_path):
config = OmegaConf.load(config_path)
if config.model.target == 'taming.models.vqgan.VQModel':
model = vqgan.VQModel(**config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
elif config.model.target == 'taming.models.cond_transformer.Net2NetTransformer':
parent_model = cond_transformer.Net2NetTransformer(**config.model.params)
parent_model.eval().requires_grad_(False)
parent_model.init_from_ckpt(checkpoint_path)
model = parent_model.first_stage_model
elif config.model.target == 'taming.models.vqgan.GumbelVQ':
model = vqgan.GumbelVQ(**config.model.params)
print(config.model.params)
model.eval().requires_grad_(False)
model.init_from_ckpt(checkpoint_path)
else:
raise ValueError(f'unknown model type: {config.model.target}')
del model.loss
return model
def resize_image(image, out_size):
ratio = image.size[0] / image.size[1]
area = min(image.size[0] * image.size[1], out_size[0] * out_size[1])
size = round((area * ratio)**0.5), round((area / ratio)**0.5)
return image.resize(size, Image.LANCZOS)
def download_img(img_url):
try:
return wget.download(img_url,out="input.jpg")
except:
return
again there isn't any problem with the code it is working, just not in this local conda environment
Here is the output error
RuntimeError Traceback (most recent call last)
Input In [22], in <cell line: 22>()
19 from tqdm.notebook import tqdm
21 from CLIP import clip
---> 22 import kornia.augmentation as K
23 import numpy as np
24 import imageio
File ~\anaconda3\envs\taming\lib\site-packages\kornia\__init__.py:10, in <module>
7 from . import geometry
9 # import the other modules for convenience
---> 10 from . import (
11 augmentation,
12 color,
13 contrib,
14 enhance,
15 feature,
16 losses,
17 metrics,
18 morphology,
19 tracking,
20 utils,
21 x,
22 )
23 # NOTE: we are going to expose to top level very few things
24 from kornia.constants import pi
File ~\anaconda3\envs\taming\lib\site-packages\kornia\augmentation\__init__.py:54, in <module>
41 from kornia.augmentation._3d import (
42 CenterCrop3D,
43 RandomAffine3D,
(...)
51 RandomVerticalFlip3D,
52 )
53 from kornia.augmentation._3d.base import AugmentationBase3D
---> 54 from kornia.augmentation.container import AugmentationSequential, ImageSequential, PatchSequential, VideoSequential
56 __all__ = [
57 "AugmentationBase2D",
58 "GeometricAugmentationBase2D",
(...)
109 "VideoSequential",
110 ]
File ~\anaconda3\envs\taming\lib\site-packages\kornia\augmentation\container\__init__.py:1, in <module>
----> 1 from kornia.augmentation.container.augment import AugmentationSequential
2 from kornia.augmentation.container.image import ImageSequential
3 from kornia.augmentation.container.patch import PatchSequential
File ~\anaconda3\envs\taming\lib\site-packages\kornia\augmentation\container\augment.py:20, in <module>
18 from kornia.augmentation.container.video import VideoSequential
19 from kornia.constants import DataKey
---> 20 from kornia.geometry.boxes import Boxes
22 __all__ = ["AugmentationSequential"]
25 class AugmentationSequential(ImageSequential):
File ~\anaconda3\envs\taming\lib\site-packages\kornia\geometry\boxes.py:465, in <module>
460 self._data = self._data.to(device=device, dtype=dtype)
461 return self
464 #torch.jit.script
--> 465 class Boxes3D:
466 r"""3D boxes containing N or BxN boxes.
467
468 Args:
(...)
478 `hexahedrons <https://en.wikipedia.org/wiki/Hexahedron>`_ are cubes and rhombohedrons.
479 """
480 def __init__(
481 self, boxes: torch.Tensor, raise_if_not_floating_point: bool = True,
482 mode: str = "xyzxyz_plus"
483 ) -> None:
File ~\anaconda3\envs\taming\lib\site-packages\torch\jit\_script.py:924, in script(obj, optimize, _frames_up, _rcb)
921 def fail(self, *args, **kwargs):
922 raise RuntimeError(name + " is not supported on ScriptModules")
--> 924 return fail
File ~\anaconda3\envs\taming\lib\site-packages\torch\jit\_script.py:64, in _compile_and_register_class(obj, rcb, qualified_name)
61 def _reduce(cls):
62 raise pickle.PickleError("ScriptFunction cannot be pickled")
---> 64 ScriptFunction.__reduce__ = _reduce # type: ignore[assignment]
67 if _enabled:
68 Attribute = collections.namedtuple("Attribute", ["value", "type"])
RuntimeError: class '__torch__.kornia.geometry.boxes.Boxes3D' already defined.
https://colab.research.google.com/drive/1lx9AGsrh7MlyJhK9UrNTK8pYpARnx457?usp=sharing
this is the link to the project I downloaded locally instead of using it online, so I am trying to get it up and running
Thanks!!!
I am new to python. I am getting an error when running below code. The issue seems to be with date. can someone help me to correct i please. I have tried changing the date format in the excel but it does not solve the issue. The excel have a list of several bonds. I want to generate the coupon dates of the different bonds
BondData = pd.read_excel (r'C:\Users\Avishen\Desktop\Python\BONDDATA.xlsx')
Data = pd.DataFrame(BondData)
def scheduledates():
tenor = ql.Period(ql.Semiannual)
day_count = ql.Thirty360
calendar = ql.UnitedStates()
businessConvention = ql.Unadjusted
dateGeneration = ql.DateGeneration.Backward
monthEnd = False
# Dates in Bond Period
return ql.Schedule (issueDate, maturityDate, tenor, calendar, businessConvention,
businessConvention , dateGeneration, monthEnd)
new_df["Dates"]= Data.apply(lambda x: scheduledates(),axis = 1)
new_df["ISIN"] = Data.ISIN
new_df
Error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-4-877415e9cf83> in <module>
21 businessConvention , dateGeneration, monthEnd)
22
---> 23 new_df["Dates"]= Data.apply(lambda x: scheduledates(),axis = 1)
24 new_df["ISIN"] = Data.ISIN
25 new_df
~\anaconda3\lib\site-packages\pandas\core\frame.py in apply(self, func, axis, raw, result_type, args, **kwds)
7546 kwds=kwds,
7547 )
-> 7548 return op.get_result()
7549
7550 def applymap(self, func) -> "DataFrame":
~\anaconda3\lib\site-packages\pandas\core\apply.py in get_result(self)
178 return self.apply_raw()
179
--> 180 return self.apply_standard()
181
182 def apply_empty_result(self):
~\anaconda3\lib\site-packages\pandas\core\apply.py in apply_standard(self)
269
270 def apply_standard(self):
--> 271 results, res_index = self.apply_series_generator()
272
273 # wrap results
~\anaconda3\lib\site-packages\pandas\core\apply.py in apply_series_generator(self)
298 for i, v in enumerate(series_gen):
299 # ignore SettingWithCopy here in case the user mutates
--> 300 results[i] = self.f(v)
301 if isinstance(results[i], ABCSeries):
302 # If we have a view on v, we need to make a copy because
<ipython-input-4-877415e9cf83> in <lambda>(x)
21 businessConvention , dateGeneration, monthEnd)
22
---> 23 new_df["Dates"]= Data.apply(lambda x: scheduledates(),axis = 1)
24 new_df["ISIN"] = Data.ISIN
25 new_df
<ipython-input-4-877415e9cf83> in scheduledates()
8
9 def scheduledates():
---> 10 issueDate = ql.Date(Data.issuedate)
11 maturityDate = ql.Date(Data.maturitydate)
12 tenor = ql.Period(ql.Semiannual)
~\anaconda3\lib\site-packages\QuantLib\QuantLib.py in __init__(self, *args)
425
426 def __init__(self, *args):
--> 427 _QuantLib.Date_swiginit(self, _QuantLib.new_Date(*args))
428
429 def weekdayNumber(self):
TypeError: Wrong number or type of arguments for overloaded function 'new_Date'.
Possible C/C++ prototypes are:
Date::Date()
Date::Date(Day,Month,Year)
Date::Date(Day,Month,Year,Hour,Minute,Second,Millisecond,Microsecond)
Date::Date(Day,Month,Year,Hour,Minute,Second,Millisecond)
Date::Date(Day,Month,Year,Hour,Minute,Second)
Date::Date(BigInteger)
Date::Date(std::string const &,std::string)
---------------------------------------------------------------------------
Data = pd.DataFrame(BondData)
Fields from Bond Data
ISIN
issuedate
maturitydate
coupon
Tradeyield
Bond_Price
MarketPrice
Nominal_Amount
From the traceback, the problem is the line:
issueDate = ql.Date(Data.issuedate)
(which for some reason is not in the code you pasted). Coming from Excel, issuedate should be an integer and thus compatible with the ql.Date constructor, but it's possible that pandas is reading it as a string or some other type. You should examine the data frame and check the type of the column. If it's not what you expect, you'll have to figure out if there are data in that column that pandas can't interpret as integers, and either clean them up of force the conversion somehow before passing them to ql.Date.
Alright, just started a new job and i have been tasked with writing a simple notebook in jupyter. I really want to impress my supervisor and have been working on this code for hours and can't get it to work, hopefully somebody here can help me.
Here is the code I have been working on:
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import seaborn as sns
df = pd.read_csv(r'C:\Users\jk2588\Documents\EDA\EDA Practice\top1000_dataset.csv', converters={'GENDER': lambda x: int(x == 'Male')}, usecols = ['MEMBER_ID', 'GENDER', 'Age', 'Dement'])
df_gp_1 = df[['MEMBER_ID', 'Dement']].groupby('MEMBER_ID').agg(np.mean).reset_index()
df_gp_2 = df[['MEMBER_ID', 'GENDER', 'Age']].groupby('MEMBER_ID').agg(max).reset_index()
df_gp = pd.merge(df_gp_1, df_gp_2, on = ['MEMBER_ID'])
df.head()
Output: MEMBER_ID Age Dement GENDER
0 000000002 01 36 NaN 0
1 000000002 01 36 NaN 0
2 000000002 01 36 NaN 0
3 000000002 01 36 NaN 0
4 000000002 01 36 NaN 0
df['Dement'] = df['Dement'].fillna(0)
df['Dement'] = df['Dement'].astype('int64')
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 999 entries, 0 to 998
Data columns (total 4 columns):
MEMBER_ID 999 non-null object
Age 999 non-null int64
Dement 999 non-null int64
GENDER 999 non-null int64
dtypes: int64(3), object(1)
memory usage: 31.3+ KB
freq = ((df_gp.Age.value_counts(normalize = True).reset_index().sort_values(by = 'index').Age)*100).tolist()
number_gp = 7
def ax_settings(ax, var_name, x_min, x_max):
ax.set_xlim(x_min,x_max)
ax.set_yticks([])
ax.spines['left'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.spines['bottom'].set_edgecolor('#444444')
ax.spines['bottom'].set_linewidth(2)
ax.text(0.02, 0.05, var_name, fontsize=17, fontweight="bold", transform = ax.transAxes)
return None
fig = plt.figure(figsize=(12,7))
gs = gridspec.GridSpec(nrows=number_gp,
ncols=2,
figure=fig,
width_ratios= [3, 1],
height_ratios= [1]*number_gp,
wspace=0.2, hspace=0.05
)
ax = [None]*(number_gp + 1)
features = ['0-17', '18-25', '26-35', '36-45', '46-50', '51-55', '55+']
for i in range(number_gp):
ax[i] = fig.add_subplot(gs[i, 0])
ax_settings(ax[i], 'Age: ' + str(features[i]), -1000, 20000)
sns.kdeplot(data=df_gp[(df_gp.GENDER == 'M') & (df_gp.Age == features[i])].Dement, ax=ax[i], shade=True, color="blue", bw=300, legend=False)
sns.kdeplot(data=df_gp[(df_gp.GENDER == 'F') & (df_gp.Age == features[i])].Dement, ax=ax[i], shade=True, color="red", bw=300, legend=False)
if i < (number_gp - 1): ax[i].set_xticks([])
ax[0].legend(['Male', 'Female'], facecolor='w')
ax[number_gp] = fig.add_subplot(gs[:, 1])
ax[number_gp].spines['right'].set_visible(False)
ax[number_gp].spines['top'].set_visible(False)
ax[number_gp].barh(features, freq, color='#004c99', height=0.4)
ax[number_gp].set_xlim(0,100)
ax[number_gp].invert_yaxis()
ax[number_gp].text(1.09, -0.04, '(%)', fontsize=10, transform = ax[number_gp].transAxes)
ax[number_gp].tick_params(axis='y', labelsize = 14)
plt.show()
I am then met with:
C:\Users\jk2588\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\ops.py:1167: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
result = method(y)
--------------------------------------------------------------------------
TypeError Traceback (most recent call last
<ipython-input-38-8665030edb1c> in <module>()
24 ax[i] = fig.add_subplot(gs[i, 0])
25 ax_settings(ax[i], 'Age: ' + str(features[i]), -1000, 20000)
---> 26 sns.kdeplot(data=df_gp[(df_gp.GENDER == 'M') & (df_gp.Age == features[i])].Dement, ax=ax[i], shade=True, color="blue", bw=300, legend=False)
27 sns.kdeplot(data=df_gp[(df_gp.GENDER == 'F') & (df_gp.Age == features[i])].Dement, ax=ax[i], shade=True, color="red", bw=300, legend=False)
28 if i < (number_gp - 1): ax[i].set_xticks([])
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\ops.py in wrapper(self, other, axis)
1281
1282 with np.errstate(all='ignore'):
-> 1283 res = na_op(values, other)
1284 if is_scalar(res):
1285 raise TypeError('Could not compare {typ} type with Series'
~\AppData\Local\Continuum\anaconda3\lib\site-packages\pandas\core\ops.py in na_op(x, y)
1167 result = method(y)
1168 if result is NotImplemented:
-> 1169 raise TypeError("invalid type comparison")
1170 else:
1171 result = op(x, y)
TypeError: invalid type comparison
Please help, i have been faced with an absurd amount of errors this week
I am using the following code to create a clustering model:
import pandas as pd
pandas_df = pd.read_pickle('df_features.pickle')
spark_df = sqlContext.createDataFrame(pandas_df)
from pyspark.ml.linalg import Vectors
from pyspark.ml.clustering import KMeans
kmeans = KMeans(k=2, seed=1.0)
modela = kmeans.fit(spark_df)
Then I got errors:
AnalysisException Traceback (most recent call last)
<ipython-input-26-00e1e2ba1983> in <module>()
3
4 kmeans = KMeans(k=2, seed=1.0)
----> 5 modela = kmeans.fit(spark_df)
/home/edamame/spark/spark-2.0.0-bin-hadoop2.6/python/pyspark/ml/base.pyc in fit(self, dataset, params)
62 return self.copy(params)._fit(dataset)
63 else:
---> 64 return self._fit(dataset)
65 else:
66 raise ValueError("Params must be either a param map or a list/tuple of param maps, "
/home/edamame/spark/spark-2.0.0-bin-hadoop2.6/python/pyspark/ml/wrapper.pyc in _fit(self, dataset)
211
212 def _fit(self, dataset):
--> 213 java_model = self._fit_java(dataset)
214 return self._create_model(java_model)
215
/home/edamame/spark/spark-2.0.0-bin-hadoop2.6/python/pyspark/ml/wrapper.pyc in _fit_java(self, dataset)
208 """
209 self._transfer_params_to_java()
--> 210 return self._java_obj.fit(dataset._jdf)
211
212 def _fit(self, dataset):
/home/edamame/spark/spark-2.0.0-bin-hadoop2.6/python/lib/py4j-0.10.1-src.zip/py4j/java_gateway.py in __call__(self, *args)
931 answer = self.gateway_client.send_command(command)
932 return_value = get_return_value(
--> 933 answer, self.gateway_client, self.target_id, self.name)
934
935 for temp_arg in temp_args:
/home/edamame/spark/spark-2.0.0-bin-hadoop2.6/python/pyspark/sql/utils.pyc in deco(*a, **kw)
67 e.java_exception.getStackTrace()))
68 if s.startswith('org.apache.spark.sql.AnalysisException: '):
---> 69 raise AnalysisException(s.split(': ', 1)[1], stackTrace)
70 if s.startswith('org.apache.spark.sql.catalyst.analysis'):
71 raise AnalysisException(s.split(': ', 1)[1], stackTrace)
AnalysisException: u"cannot resolve '`features`' given input columns: [field_1, field_2, field_3, field_4, field_5, field_6, field_7];"
Did I create the data frame wrong? Does anyone know what I missed? Thanks!
You need to use VectorAssembler
http://spark.apache.org/docs/latest/api/python/pyspark.ml.html#pyspark.ml.feature.VectorAssembler
from pyspark.ml.feature import VectorAssembler
vecAssembler = VectorAssembler(inputCols=spark_df.columns, outputCol="features")
vector_df = vecAssembler.transform(spark_df)
kmeans = KMeans().setK(n_clusters).setSeed(1)
model = kmeans.fit(vector_df )
For kmeans, it requires an rdd of DenseVectors. So you need to create a rdd of DenseVectors, where each vector corresponds to one row of your dataframe. So supposing that your dataframe has three columns you are feeding into the K Means model, I would refactor it to be along the lines of:
spark_rdd = spark_df.rdd.sortByKey()
modelInput = spark_rdd.map(lambda x: Vectors.dense(x[0],x[1],x[2])).sortByKey()
modelObject = Kmeans.train(modelInput,2)
Then if you want to get the results back from an RDD into a dataframe, I would do something like:
labels = modelInput.map(lambda x: model.predict(x))
results = labels.zip(spark_rdd)
resultFrame = results.map(lambda x: Row(Label = x[0], Column1 = x[0][1], Column2 = x[1][1],Column3 = x[1][2]).toDF()
data = [(Vectors.dense( [x[0], x[1]]),) for x in pandas_df.iloc[0:,2:4].values]
spark_df = spark.createDataFrame(data, ["features"])
kmeans = KMeans(k=2, seed=1.0)
modela = kmeans.fit(spark_df)
for more details refer to the official manual