How to let the Coin-or Cbc Solver write solution file? - coin-or-cbc

I use the C++ library of COIN-OR Cbc Solver to solve some LP problems. And I can't find anywhere a function or something that writes the solution file. I think somewhere in the code there is this functionality because you can use COIN-OR's command line interface to write the solution as a file ( cbc problem.lp solve -solu solution.txt ). I found a few functions in the ClpModel class that set parameters, namely setIntParam , setDblParam and setStrParam. But they couldn't help me either. Thanks in advance.

Related

compile error related to "in expansion of macro ‘CHKERRQ"’

I have this compiler error related to "in expansion of macro ‘CHKERRQ’" from PETSC whenever I call "CHKERRQ", I am not sure what causes it, could anyone please give any advice?
Thanks for your help in advance,
Feng
I solved the problem in the end. The return type of my function is void. I need to set the return type of my function, which calls lots of PETSC routines, to PetscErrorCode.

Problem with type FreeRV while adding new distribution

I'm trying to add a new discrete distribution to PyMC3 (a Wallenius non-central hypergeometric) by wrapping Agner Fogs c++ version of it (https://www.agner.org/random/).
I have successfully put the relevant functions in a c++ extension and added broadcasting so that it behaves as scipy's distributions. (For now broadcasting is done in Python. .. will later try the xtensor-python bindings for more performant vectorization in c++.)
I'm running into the following problem: when I instantiate an RV of the new distribution in a model context, I'm getting a "TypeError: an integer is required (got type FreeRV)" from where "value" is passed to the logp() function of the new distribution.
I understand that PyMC3 might need to connect RVs to the functions, but I find no way to cast them into something my new functions can work with.
Any hints on how to resolve this or general info on adding new distributions to PyMC3 or the internal workings of distributions would be extremely helpful.
Thanks in advance!
Jan
EDIT: I noticed that FreeRV inherits from theanos TensorVariable, so I tried calling .eval(). This leads to another error along the lines that no input is connected. (I don't have the exact error message right now).
One thing which puzzles me is why logp is called at instantiation of the variable when setting up the model ...

Why cannot CMake functions return values?

A question for CMake experts out-there.
According to the CMake function documentation a function simply does not return anything. To change variable values one has to pass it to the function, and inside the function set the new value specifying the PARENT_SCOPE option.
Fine, this is a well-known feature of CMake.
My question here is not about the how, rather on why: why CMake functions do not return values? What is the idea behind?
For example, a function cannot be used inside a if expression, or called inside a set command.
If I remember correctly, it is the same with autotools, therefore I do not think it is like this just by chance.
Is there any expert that knows why?
You can find a partial answer by Ken Martin in a message from the CMake's mailing list:
With respect to the general question of functions returning values it
could be done but it is a bit of a big change. Functions and commands
look the same (and should act the same IMO) to the people using them.
So really we are talking about commands returning values. This is
mostly just a syntax issue. Right now we have
command(arg arg arg
)
to support return values we need something that could handle
command (arg command2(arg arg) arg arg
)
or in your case
if(assertdef(foo))
or in another case
set(foo get_property(
))
etc. This hits the parser and the argument processing in CMake but I
think it could be done. I guess I’m not sure if we should do it.
Open to opinions here.

Using String variable as an expression

Passing commands as variables. I am creating a POP3 client and was crunching through some code when I though of something interesting.
Is it possible to pass strings of vb code to an object so that the object will execute it. I am relatively familiar with vb.net's source code being converted to Intermediate language and then being thrown into a JIT virtual machine, but I was hoping there was a simple way to implement this idea.
I want to be able to use strings
Dim Command as string
Command = "If a + b > 0 then c = a + b" '<----syntactical sugar!
System.Compiler.Something.execute(command)
If anyone has any direction, or any correction to any of the above. I appreciate your time.
Rah!
As a start you may want to check out the open source FileHelpers project.
The Runtime.ClassBuilder class in that project creates a .Net class from text, which can then be used as a normal class.

Writing a TemplateLanguage/VewEngine

Aside from getting any real work done, I have an itch. My itch is to write a view engine that closely mimics a template system from another language (Template Toolkit/Perl). This is one of those if I had time/do it to learn something new kind of projects.
I've spent time looking at CoCo/R and ANTLR, and honestly, it makes my brain hurt, but some of CoCo/R is sinking in. Unfortunately, most of the examples are about creating a compiler that reads source code, but none seem to cover how to create a processor for templates.
Yes, those are the same thing, but I can't wrap my head around how to define the language for templates where most of the source is the html, rather than actual code being parsed and run.
Are there any good beginner resources out there for this kind of thing? I've taken a ganer at Spark, which didn't appear to have the grammar in the repo.
Maybe that is overkill, and one could just test-replace template syntax with c# in the file and compile it. http://msdn.microsoft.com/en-us/magazine/cc136756.aspx#S2
If you were in my shoes and weren't a language creating expert, where would you start?
The Spark grammar is implemented with a kind-of-fluent domain specific language.
It's declared in a few layers. The rules which recognize the html syntax are declared in MarkupGrammar.cs - those are based on grammar rules copied directly from the xml spec.
The markup rules refer to a limited subset of csharp syntax rules declared in CodeGrammar.cs - those are a subset because Spark only needs to recognize enough csharp to adjust single-quotes around strings to double-quotes, match curley braces, etc.
The individual rules themselves are of type ParseAction<TValue> delegate which accept a Position and return a ParseResult. The ParseResult is a simple class which contains the TValue data item parsed by the action and a new Position instance which has been advanced past the content which produced the TValue.
That isn't very useful on it's own until you introduce a small number of operators, as described in Parsing expression grammar, which can combine single parse actions to build very detailed and robust expressions about the shape of different syntax constructs.
The technique of using a delegate as a parse action came from a Luke H's blog post Monadic Parser Combinators using C# 3.0. I also wrote a post about Creating a Domain Specific Language for Parsing.
It's also entirely possible, if you like, to reference the Spark.dll assembly and inherit a class from the base CharGrammar to create an entirely new grammar for a particular syntax. It's probably the quickest way to start experimenting with this technique, and an example of that can be found in CharGrammarTester.cs.
Step 1. Use regular expressions (regexp substitution) to split your input template string to a token list, for example, split
hel<b>lo[if foo]bar is [bar].[else]baz[end]world</b>!
to
write('hel<b>lo')
if('foo')
write('bar is')
substitute('bar')
write('.')
else()
write('baz')
end()
write('world</b>!')
Step 2. Convert your token list to a syntax tree:
* Sequence
** Write
*** ('hel<b>lo')
** If
*** ('foo')
*** Sequence
**** Write
***** ('bar is')
**** Substitute
***** ('bar')
**** Write
***** ('.')
*** Write
**** ('baz')
** Write
*** ('world</b>!')
class Instruction {
}
class Write : Instruction {
string text;
}
class Substitute : Instruction {
string varname;
}
class Sequence : Instruction {
Instruction[] items;
}
class If : Instruction {
string condition;
Instruction then;
Instruction else;
}
Step 3. Write a recursive function (called the interpreter), which can walk your tree and execute the instructions there.
Another, alternative approach (instead of steps 1--3) if your language supports eval() (such as Perl, Python, Ruby): use a regexp substitution to convert the template to an eval()-able string in the host language, and run eval() to instantiate the template.
There are sooo many thing to do. But it does work for on simple GET statement plus a test. That's a start.
http://github.com/claco/tt.net/
In the end, I already had too much time in ANTLR to give loudejs' method a go. I wanted to spend a little more time on the whole process rather than the parser/lexer. Maybe in version 2 I can have a go at the Spark way when my brain understands things a little more.
Vici Parser (formerly known as LazyParser.NET) is an open-source tokenizer/template parser/expression parser which can help you get started.
If it's not what you're looking for, then you may get some ideas by looking at the source code.