Related
QUESTION: My training is super slow. How do I rewrite my code to make my deep learning model training faster?
BACKGROUND: I have built a CNN with TensorFlow 2.8.1 to classify CIFAR-100 images using a custom loss function. The CIFAR dataset includes 32x32-pixel RGB images of 100 fine classes (e.g., bear, car) categorized into 20 coarse classes (e.g., large omnivore, vehicle). My custom loss function is a weighted sum of two other loss functions (see code below). The first component is the crossentropy loss for the fine label. The second component is the crossentropy loss for the coarse label. My hope is that this custom loss function will enforce accurate classification of the coarse label to get a more accurate classifications of the fine label (fingers crossed). The comparator will be crossentropy loss of just the fine label (the baseline model). Note that to derive the coarse (hierarchical) loss component, I had to map the y_true (true fine label, integer) and y_pred (predicted softmax probabilities for the fine labels, vector) to the y_true_coarse_int (true coarse label, integer) and y_pred_coarse_hot (predicted coarse label, one hot encoded vector), respectively. FineInts_to_CoarseInts is a python dictionary that allows this mapping.
The training takes >5-hours to run with the custom loss function, whereas training with regular crossentropy loss for the fine classes takes ~1hr. Code was run on a high performance computing cluster with a 32GB CPU and 1 GPU.
See below:
# THIS CODE CELL IS TO DEFINE A CUSTOM LOSS FUNCTION
def crossentropy_loss(y_true, y_pred):
return SparseCategoricalCrossentropy()(y_true, y_pred)
def hierarchical_loss(y_true, y_pred):
y_true = tensorflow.cast(y_true, dtype=float)
y_true_reshaped = tensorflow.reshape(y_true, -1)
y_true_coarse_int = [FineInts_to_CoarseInts[K.eval(y_true_reshaped[i])] for i in range(y_true_reshaped.shape[0])]
y_true_coarse_int = tensorflow.cast(y_true_coarse_int, dtype=tensorflow.float32)
y_pred = tensorflow.cast(y_pred, dtype=float)
y_pred_int = tensorflow.argmax(y_pred, axis=1)
y_pred_coarse_int = [FineInts_to_CoarseInts[K.eval(y_pred_int[i])] for i in range(y_pred_int.shape[0])]
y_pred_coarse_int = tensorflow.cast(y_pred_coarse_int, dtype=tensorflow.float32)
y_pred_coarse_hot = to_categorical(y_pred_coarse_int, 20)
return SparseCategoricalCrossentropy()(y_true_coarse_int, y_pred_coarse_hot)
def custom_loss(y_true, y_pred):
H = 0.5
total_loss = (1 - H) * crossentropy_loss(y_true, y_pred) + H * hierarchical_loss(y_true, y_pred)
return total_loss
During model compilation I had to set the run_eagerly parameter to True. See below:
# THIS CODE CELL IS TO COMPILE THE MODEL
model.compile(optimizer="adam", loss=custom_loss, metrics="accuracy", run_eagerly=True)
The full code is below:
# THIS CODE CELL LOADS THE PACKAGES USED IN THIS NOTEBOOK
# Load core packages for data analysis and visualization
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sn
import sys
!{sys.executable} -m pip install pydot
!{sys.executable} -m pip install graphviz
# Load deep learning packages
import tensorflow
from tensorflow.keras.datasets.cifar100 import load_data
from tensorflow.keras import (Model, layers)
from tensorflow.keras.losses import SparseCategoricalCrossentropy
import tensorflow.keras.backend as K
from tensorflow.keras.utils import (to_categorical, plot_model)
from tensorflow.lookup import (StaticHashTable, KeyValueTensorInitializer)
# Load model evaluation packages
import sklearn
from sklearn.metrics import (confusion_matrix, classification_report)
# Print versions of main ML packages
print("Tensorflow version " + tensorflow.__version__)
print("Scikit learn version " + sklearn.__version__)
# THIS CODE CELL LOADS DATASETS AND CHECKS DATA DIMENSIONS
# There is an option to load the "fine" (100 fine classes) or "coarse" (20 super classes) labels with integer (int) encodings
# We will load both labels for hierarchical classification tasks
(x_train, y_train_fine_int), (x_test, y_test_fine_int) = load_data(label_mode="fine")
(_, y_train_coarse_int), (_, y_test_coarse_int) = load_data(label_mode="coarse")
# EXTRACT DATASET PARAMETERS FOR USE LATER ON
num_fine_classes = 100
num_coarse_classes = 20
input_shape = x_train.shape[1:]
# THIS CODE CELL PROVIDES THE CODE TO LINK INTEGER LABELS TO MEANINGFUL WORD LABELS
# Fine and coarse labels are provided as integers. We will want to link them both to meaningful world labels.
# CREATE A DICTIONARY TO MAP THE 20 COARSE LABELS TO THE 100 FINE LABELS
# This mapping comes from https://keras.io/api/datasets/cifar100/
# Except "computer keyboard" should just be "keyboard" for the encoding to work
CoarseLabels_to_FineLabels = {
"aquatic mammals": ["beaver", "dolphin", "otter", "seal", "whale"],
"fish": ["aquarium fish", "flatfish", "ray", "shark", "trout"],
"flowers": ["orchids", "poppies", "roses", "sunflowers", "tulips"],
"food containers": ["bottles", "bowls", "cans", "cups", "plates"],
"fruit and vegetables": ["apples", "mushrooms", "oranges", "pears", "sweet peppers"],
"household electrical devices": ["clock", "keyboard", "lamp", "telephone", "television"],
"household furniture": ["bed", "chair", "couch", "table", "wardrobe"],
"insects": ["bee", "beetle", "butterfly", "caterpillar", "cockroach"],
"large carnivores": ["bear", "leopard", "lion", "tiger", "wolf"],
"large man-made outdoor things": ["bridge", "castle", "house", "road", "skyscraper"],
"large natural outdoor scenes": ["cloud", "forest", "mountain", "plain", "sea"],
"large omnivores and herbivores": ["camel", "cattle", "chimpanzee", "elephant", "kangaroo"],
"medium-sized mammals": ["fox", "porcupine", "possum", "raccoon", "skunk"],
"non-insect invertebrates": ["crab", "lobster", "snail", "spider", "worm"],
"people": ["baby", "boy", "girl", "man", "woman"],
"reptiles": ["crocodile", "dinosaur", "lizard", "snake", "turtle"],
"small mammals": ["hamster", "mouse", "rabbit", "shrew", "squirrel"],
"trees": ["maple", "oak", "palm", "pine", "willow"],
"vehicles 1": ["bicycle", "bus", "motorcycle", "pickup" "truck", "train"],
"vehicles 2": ["lawn-mower", "rocket", "streetcar", "tank", "tractor"]
}
# CREATE A DICTIONARY TO MAP THE INTEGER-ENCODED COARSE LABEL TO THE WORD LABEL
# Create list of Course Labels
CoarseLabels = list(CoarseLabels_to_FineLabels.keys())
# The target variable in CIFER100 is encoded such that the coarse class is assigned an integer based on its alphabetical order
# The CoarseLabels list is already alphabetized, so no need to sort
CoarseInts_to_CoarseLabels = dict(enumerate(CoarseLabels))
# CREATE A DICTIONARY TO MAP THE WORD LABEL TO THE INTEGER-ENCODED COARSE LABEL
CoarseLabels_to_CoarseInts = dict(zip(CoarseLabels, range(20)))
# CREATE A DICTIONARY TO MAP THE 100 FINE LABELS TO THE 20 COARSE LABELS
FineLabels_to_CoarseLabels = {}
for CoarseLabel in CoarseLabels:
for FineLabel in CoarseLabels_to_FineLabels[CoarseLabel]:
FineLabels_to_CoarseLabels[FineLabel] = CoarseLabel
# CREATE A DICTIONARY TO MAP THE INTEGER-ENCODED FINE LABEL TO THE WORD LABEL
# Create a list of the Fine Labels
FineLabels = list(FineLabels_to_CoarseLabels.keys())
# The target variable in CIFER100 is encoded such that the fine class is assigned an integer based on its alphabetical order
# Sort the fine class list.
FineLabels.sort()
FineInts_to_FineLabels = dict(enumerate(FineLabels))
# CREATE A DICTIONARY TO MAP THE INTEGER-ENCODED FINE LABELS TO THE INTEGER-ENCODED COARSE LABELS
b = list(dict(sorted(FineLabels_to_CoarseLabels.items())).values())
FineInts_to_CoarseInts = dict(zip(range(100), [CoarseLabels_to_CoarseInts[i] for i in b]))
#Tensor version of dictionary
#fine_to_coarse = tensorflow.constant(list((FineInts_to_CoarseInts).items()), dtype=tensorflow.int8)
# THIS CODE CELL IS TO BUILD A FUNCTIONAL MODEL
inputs = layers.Input(shape=input_shape)
x = layers.BatchNormalization()(inputs)
x = layers.Conv2D(64, (3, 3), padding='same', activation="relu")(x)
x = layers.MaxPooling2D(pool_size=(2, 2))(x)
x = layers.Dropout(0.30)(x)
x = layers.Conv2D(256, (3, 3), padding='same', activation="relu")(x)
x = layers.MaxPooling2D(pool_size=(2, 2))(x)
x = layers.Dropout(0.30)(x)
x = layers.Conv2D(256, (3, 3), padding='same', activation="relu")(x)
x = layers.MaxPooling2D(pool_size=(2, 2))(x)
x = layers.Dropout(0.30)(x)
x = layers.Conv2D(1024, (3, 3), padding='same', activation="relu")(x)
x = layers.MaxPooling2D(pool_size=(2, 2))(x)
x = layers.Dropout(0.30)(x)
x = layers.GlobalAveragePooling2D()(x)
x = layers.BatchNormalization()(x)
x = layers.Dropout(0.30)(x)
x = layers.Dense(512, activation = "relu")(x)
x = layers.BatchNormalization()(x)
x = layers.Dropout(0.30)(x)
output_fine = layers.Dense(num_fine_classes, activation="softmax", name="output_fine")(x)
model = Model(inputs=inputs, outputs=output_fine)
# THIS CODE CELL IS TO DEFINE A CUSTOM LOSS FUNCTION
def crossentropy_loss(y_true, y_pred):
return SparseCategoricalCrossentropy()(y_true, y_pred)
def hierarchical_loss(y_true, y_pred):
y_true = tensorflow.cast(y_true, dtype=float)
y_true_reshaped = tensorflow.reshape(y_true, -1)
y_true_coarse_int = [FineInts_to_CoarseInts[K.eval(y_true_reshaped[i])] for i in range(y_true_reshaped.shape[0])]
y_true_coarse_int = tensorflow.cast(y_true_coarse_int, dtype=tensorflow.float32)
y_pred = tensorflow.cast(y_pred, dtype=float)
y_pred_int = tensorflow.argmax(y_pred, axis=1)
y_pred_coarse_int = [FineInts_to_CoarseInts[K.eval(y_pred_int[i])] for i in range(y_pred_int.shape[0])]
y_pred_coarse_int = tensorflow.cast(y_pred_coarse_int, dtype=tensorflow.float32)
y_pred_coarse_hot = to_categorical(y_pred_coarse_int, 20)
return SparseCategoricalCrossentropy()(y_true_coarse_int, y_pred_coarse_hot)
def custom_loss(y_true, y_pred):
H = 0.5
total_loss = (1 - H) * crossentropy_loss(y_true, y_pred) + H * hierarchical_loss(y_true, y_pred)
return total_loss
# THIS CODE CELL IS TO COMPILE THE MODEL
model.compile(optimizer="adam", loss=crossentropy_loss, metrics="accuracy", run_eagerly=False)
# THIS CODE CELL IS TO TRAIN THE MODEL
history = model.fit(x_train, y_train_fine_int, epochs=200, validation_split=0.25, batch_size=100)
# THIS CODE CELL IS TO VISUALIZE THE TRAINING
history_frame = pd.DataFrame(history.history)
history_frame.to_csv("history.csv")
history_frame.loc[:, ["accuracy", "val_accuracy"]].plot()
history_frame.loc[:, ["loss", "val_loss"]].plot()
plt.show()
# THIS CODE CELL IS TO EVALUATE THE MODEL ON AN INDEPENDENT DATASET
score = model.evaluate(x_test, y_test_fine_int, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
Quantization
Quantization is the technique that converts your number type float32 to int8. It means your model size will be lesser.
There are two types of quantization before training and after training.
Try to apply quantization before training and let me know the results.
Refer to this video for Quantization
I need to train a GPR model in multiple batches per epoch using a custom loss function. I would like to do this using GPflow and I would like to compile my training using tf.function to increase the efficiency. However, gpflow.GPR must be re-instantiated each time you supply new data, so tf.function will have to re-trace each time. This makes the code slower rather than faster.
This is the initial setup:
import numpy as np
from itertools import islice
import tensorflow as tf
import tensorflow_probability as tfp
tfb = tfp.bijectors
from sklearn.model_selection import train_test_split
import gpflow
from gpflow.kernels import SquaredExponential
import time
data_size = 1000
train_fract = 0.8
batch_size = 250
n_epochs = 3
iterations_per_epoch = int(train_fract * data_size/batch_size)
tf.random.set_seed(3)
# Generate dummy data
x = np.arange(data_size)
y = np.arange(data_size) + np.random.rand(data_size)
# Slice into train and validate sets
x_train, x_validate, y_train, y_validate = train_test_split(x, y, random_state = 1, test_size = 1-train_fract )
# Convert data into tensorflow constants
x_train = tf.constant(x_train[:, np.newaxis], dtype=np.float64)
x_validate = tf.constant(x_validate[:, np.newaxis], dtype=np.float64)
y_train = tf.constant(y_train[:, np.newaxis], dtype=np.float64)
y_validate = tf.constant(y_validate[:, np.newaxis], dtype=np.float64)
# Batch data
batched_dataset = (
tf.data.Dataset.from_tensor_slices((x_train, y_train))
.shuffle(buffer_size=len(x_train), seed=1)
.repeat(count=None)
.batch(batch_size)
)
# Create kernel
constrain_positive = tfb.Shift(np.finfo(np.float64).tiny)(tfb.Exp())
amplitude = tfp.util.TransformedVariable(initial_value=1, bijector=constrain_positive, dtype=np.float64, name="amplitude")
len_scale = tfp.util.TransformedVariable(initial_value=10, bijector=constrain_positive, dtype=np.float64, name="len_scale")
kernel = SquaredExponential(variance=amplitude, lengthscales=len_scale, name="squared_exponential_kernel")
obs_noise = tfp.util.TransformedVariable(initial_value=1e-3, bijector=constrain_positive, dtype=np.float64, name="observation_noise")
# Define custom loss function
#tf.function(autograph=False, experimental_compile=False)
def my_custom_loss(y_predict, y_true):
return tf.math.reduce_mean(tf.math.squared_difference(y_predict, y_true))
#optimizer = tf.keras.optimizers.Adam(learning_rate=0.1)
optimizer = tf.keras.optimizers.SGD(learning_rate=0.1)
This is how I train without a tf.function:
gpr_model_j_i = gpflow.models.GPR(data=(x_train, y_train), kernel=kernel, noise_variance=obs_noise)
# Start training loop
for j in range(n_epochs):
for i, (x_train_j_i, y_train_j_i) in enumerate(islice(batched_dataset, iterations_per_epoch)):
with tf.GradientTape() as tape:
gpr_model_j_i = gpflow.models.GPR(data=(x_train_j_i, y_train_j_i), kernel=kernel, noise_variance=gpr_model_j_i.likelihood.variance)
y_predict_j_i = gpr_model_j_i.predict_f(x_validate)[0]
loss_j_i = my_custom_loss(y_predict_j_i, y_validate)
grads_j_i = tape.gradient(loss_j_i, gpr_model_j_i.trainable_variables)
optimizer.apply_gradients(zip(grads_j_i, gpr_model_j_i.trainable_variables))
This is how I train with a tf.function:
#tf.function(autograph=False, experimental_compile=False)
def tf_function_attempt_3(model): #, optimizer):
with tf.GradientTape() as tape:
y_predict_j_i = model.predict_f(x_validate)[0]
loss_j_i = my_custom_loss(y_predict_j_i, y_validate)
grads_j_i = tape.gradient(loss_j_i, model.trainable_variables)
optimizer.apply_gradients(zip(grads_j_i, model.trainable_variables))
print("TRACING...", end="")
for j in range(n_epochs):
for i, (x_train_j_i, y_train_j_i) in enumerate(islice(batched_dataset, iterations_per_epoch)):
gpr_model_j_i = gpflow.models.GPR(data=(x_train_j_i, y_train_j_i), kernel=kernel, noise_variance=gpr_model_j_i.likelihood.variance)
tf_function_attempt_3(gpr_model_j_i)#, optimizer)
The tf.function retraces for each batch and is significantly slower than the normal training.
Is there a way to speed up the batched training of my GPR model with tf.function while using a custom loss function and GPflow? If not, I am open to suggestions for an alternative approach.
You don't have to re-instantiate GPR each time. You can construct tf.Variable holders with unconstrained shape and then .assign to them:
import gpflow
import numpy as np
import tensorflow as tf
input_dim = 1
initial_x, initial_y = np.zeros((0, input_dim)), np.zeros((0, 1)) # or your first batch
x_var = tf.Variable(initial_x, shape=(None, input_dim), dtype=tf.float64)
y_var = tf.Variable(initial_y, shape=(None,1), dtype=tf.float64)
# in principle you could also set shape=(None, None)...
m = gpflow.models.GPR((x_var, y_var), gpflow.kernels.SquaredExponential())
loss = m.training_loss_closure() # compile=True default wraps in tf.function()
N1 = 3
x1, y1 = np.random.randn(N1, input_dim), np.random.randn(N1, 1)
m.data[0].assign(x1)
m.data[1].assign(y1)
loss() # traces the first time
N2 = 7
x2, y2 = np.random.randn(N2, input_dim), np.random.randn(N2, 1)
m.data[0].assign(x2)
m.data[1].assign(y2)
loss() # does not trace again
I've got a working CNN model that classifies images from a custom dataset that is loaded with a csv file. The dataset is split up into training, validation and test dataset after being shuffled. Now I want to expand the image input by four extra input classes containing info / metadata about the images.
I've already learnt that I should split up my cnn model into two branches, one for the images and one for the extra input. My question is, how must I modify my data input so that the model can correctly process both images and additional input?
I'm very new to creating neural networks in tensorflow. My entire code is basically from this website. However, none of the topics could solve the problem for my code.
This is my code: (additional metadata are called usages, completions, heights, constructions)
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers, regularizers
from keras.callbacks import History
import matplotlib.pyplot as plt
import sklearn.metrics
from sklearn.metrics import confusion_matrix
import seaborn as sns
import io
# READ IMAGES, METADATA AND LABELS
df = pd.read_csv('dataset.csv')
df = df.sample(frac=1)
file_paths = df['file_name'].values
labels = df['label'].values
usages = df['usage'].values
completions = df['completion'].values
heights = df['height'].values
constructions = df['construction'].values
# SPLITTING THE DATASET INTO 80 % TRAINING DATA, 10 % VALIDATION DATA, 10 % TEST DATA
dataset_size = len(df.index)
train_size = int(0.8 * dataset_size)
val_size = int(0.1 * dataset_size)
test_size = int(0.1 * dataset_size)
img_height = 350
img_width = 350
batch_size = 16
autotune = tf.data.experimental.AUTOTUNE
# FUNCTION TO READ AND NORMALIZE THE IMAGES
def read_image(image_file, label, usg, com, hei, con):
image = tf.io.read_file(image_file)
image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.resize(image, (img_width, img_height))
return tf.cast(image, tf.float32) / 255.0, label, \
tf.cast(usg, tf.float32), tf.cast(com, tf.float32), \
tf.cast(hei, tf.float32), tf.cast(con, tf.float32)
# FUNCTION FOR DATA AUGMENTATION
def augment(image, labeL, usg, com, hei, con):
if tf.random.uniform((), minval=0, maxval=1) < 0.1:
image = tf.tile(tf.image.rgb_to_grayscale(image), [1, 1, 3])
image = tf.image.random_brightness(image, max_delta=0.25)
image = tf.image.random_contrast(image, lower=0.75, upper=1.25)
image = tf.image.random_saturation(image, lower=0.75, upper=1.25)
image = tf.image.random_flip_left_right(image)
return image, label, usg, com, hei, con
# SETUP FOR TRAINING, VALIDATION & TEST DATASET
ds_train = ds_train.map(read_image, num_parallel_calls=autotune)
ds_train = ds_train.cache()
ds_train = ds_train.map(augment, num_parallel_calls=autotune)
ds_train = ds_train.batch(batch_size)
ds_train = ds_train.prefetch(autotune)
ds_val = ds_val.map(read_image, num_parallel_calls=autotune)
ds_val = ds_val.batch(batch_size)
ds_val = ds_val.prefetch(autotune)
ds_test = ds_test.map(read_image, num_parallel_calls=autotune)
ds_test = ds_test.batch(batch_size)
ds_test = ds_test.prefetch(autotune)
## HOW TO SPLIT UP THE DATASET FOR THE MODEL FROM HERE? ##
# DEFINING FUNCTIONAL MODEL
input_img = keras.Input(shape=(img_width, img_height, 3))
input_dat = keras.Input(shape=(4,)) # how is this shape supposed to be?
x = layers.Conv2D(16, (3, 3), activation='relu', kernel_regularizer=regularizers.l2(0.02), padding='same')(input_img)
x = layers.BatchNormalization(momentum=0.9)(x)
x = layers.MaxPooling2D()(x)
x = layers.Conv2D(32, (3, 3), activation='relu', kernel_regularizer=regularizers.l2(0.02), padding='same')(x)
x = layers.BatchNormalization(momentum=0.9)(x)
x = layers.MaxPooling2D()(x)
x = layers.Conv2D(64, (3, 3), activation='relu', kernel_regularizer=regularizers.l2(0.02), padding='same')(x)
x = layers.BatchNormalization(momentum=0.9)(x)
x = layers.MaxPooling2D()(x)
x = layers.Conv2D(128, (3, 3), activation='relu', kernel_regularizer=regularizers.l2(0.02), padding='same')(x)
x = layers.BatchNormalization(momentum=0.9)(x)
x = layers.MaxPooling2D()(x)
out1 = layers.Flatten()(x)
out2 = layers.Dense(128, activation='relu')(input_dat)
merge = layers.concatenate([out1, out2])
x = layers.Dense(256, activation='relu')(merge)
x = layers.Dropout(0.35)(x)
output = layers.Dense(8, activation='sigmoid')(x)
model = keras.Model(inputs=[input_img, input_dat], outputs=output)
history = History()
no_overfit = keras.callbacks.EarlyStopping(monitor='val_loss', # stop training when overfitting occurs
min_delta=0.015, patience=1,
verbose=2, mode='auto')
# TRAINING STEP
model.compile(
optimizer=keras.optimizers.Adam(3e-5),
loss=[keras.losses.SparseCategoricalCrossentropy()],
metrics=["accuracy"])
model.fit(ds_train, epochs=30, callbacks=[no_overfit, history],
verbose=1, validation_data=ds_val)
So far I've only added the extra inputs to the dataset tensor and changed the model structure. How exactly do I split my dataset into input_img and input_dat so that each model branch will receive their proper input?
Also I have a custom test step in order to plot a confusion matrix. How is this supposed to be modified? Here the working code, for just the image input:
y_true = []
y_pred = []
for x, y in ds_test:
y_true.append(y)
predicts = model.predict(x) # compute model predictions for test step
y_pred.append(np.argmax(predicts, axis=-1))
true = tf.concat([item for item in y_true], axis=0)
pred = tf.concat([item for item in y_pred], axis=0)
cm = confusion_matrix(true, pred) # confusion matrix from seaborn
testacc = np.trace(cm) / float(np.sum(cm)) # calculating test accuracy
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
fig, ax = plt.subplots(figsize=(10, 10))
color = sns.light_palette("seagreen", as_cmap=False)
sns.heatmap(cm, annot=True, square=True, cmap=color, fmt=".3f",
linewidths=0.6, linecolor='k', cbar_kws={"shrink": 0.8})
plt.yticks(rotation=0)
plt.xlabel('\nPredicted Labels', fontsize=18)
plt.ylabel('True Labels\n', fontsize=18)
plt.title('Multiclass Model - Confusion Matrix (Test Step)\n', fontsize=24)
plt.text(10, 1.1, 'Accuracy = {:0.4f}'.format(testacc), fontsize=20)
ax.axhline(y=8, color='k', linewidth=1.5) # depending on amount of classes
ax.axvline(x=8, color='k', linewidth=1.5)
plt.show()
print('\naccuracy: {:0.4f}'.format(testacc))
Any help is greatly appreciated!!
I am learning this new ONNX framework that allows us to deploy the deep learning (and others) model into production.
However, there is one thing I am missing. I thought that the main reason for having such a framework is so that for inference purposes e.g. when we have a trained model and want to use it in a different venv (where for example we cannot have PyTorch) the model still can be used.
I have preped a "from scratch" example here:
# Modules
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset
import torchvision
import onnx
import onnxruntime
import matplotlib.pyplot as plt
import numpy as np
# %config Completer.use_jedi = False
# MNIST Example dataset
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST(
'data', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
])),
batch_size=800)
# Take data and labels "by hand"
inputs_batch, labels_batch = next(iter(train_loader))
# Simple Model
class CNN(nn.Module):
def __init__(self, in_channels, num_classes):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(in_channels=in_channels,
out_channels = 10, kernel_size = (3, 3), stride = (1, 1), padding=(1, 1))
self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride = (2, 2))
self.conv2 = nn.Conv2d(in_channels = 10, out_channels=16, kernel_size = (3, 3), stride = (1, 1), padding=(1, 1))
self.fc1 = nn.Linear(16*7*7, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = self.pool(x)
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.reshape(x.shape[0], -1)
x = self.fc1(x)
return x
# Training setting
device = 'cpu'
batch_size = 64
learning_rate = 0.001
n_epochs = 10
# Dataset prep
dataset = TensorDataset(inputs_batch, labels_batch)
TRAIN_DF = DataLoader(dataset = dataset, batch_size = batch_size, shuffle = True)
# Model Init
model = CNN(in_channels=1, num_classes=10)
optimizer = optim.Adam(model.parameters(), lr = learning_rate)
# Training Loop
for epoch in range(n_epochs):
for data, labels in TRAIN_DF:
model.train()
# Send Data to GPU
data = data.to(device)
# Send Data to GPU
labels = labels.to(device)
# data = data.reshape(data.shape[0], -1)
# Forward
pred = model(data)
loss = F.cross_entropy(pred, labels)
# Backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Check Accuracy
def check_accuracy(loader, model):
num_correct = 0
num_total = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device)
y = y.to(device)
# x = x.reshape(x.shape[0], -1)
scores = model(x)
_, pred = scores.max(1)
num_correct += (pred == y).sum()
num_total += pred.size(0)
print(F"Got {num_correct} / {num_total} with accuracy {float(num_correct)/float(num_total)*100: .2f}")
check_accuracy(TRAIN_DF, model)
# Inference with ONNX
# Create Artifical data of the same size
img_size = 28
dummy_data = torch.randn(1, img_size, img_size)
dummy_input = torch.autograd.Variable(dummy_data).unsqueeze(0)
input_name = "input"
output_name = "output"
model_eval = model.eval()
torch.onnx.export(
model_eval,
dummy_input,
"model_CNN.onnx",
input_names=["input"],
output_names=["output"],
)
# Take Random Image from Training Data
X_pred = data[4].unsqueeze(0)
# Convert the Tensor image to PURE numpy and pretend we are working in venv where we only have numpy - NO PYTORCH
X_pred_np = X_pred.numpy()
X_pred_np = np.array(X_pred_np)
IMG_Rando = np.random.rand(1, 1, 28, 28)
np.shape(X_pred_np) == np.shape(IMG_Rando)
ort_session = onnxruntime.InferenceSession(
"model_CNN.onnx"
)
def to_numpy(tensor):
return (
tensor.detach().gpu().numpy()
if tensor.requires_grad
else tensor.cpu().numpy()
)
# compute ONNX Runtime output prediction
# WORKS
# ort_inputs = {ort_session.get_inputs()[0].name: X_pred_np}
# DOES NOT WORK
ort_inputs = {ort_session.get_inputs()[0].name: IMG_Rando}
# WORKS
# ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(X_pred)}
ort_outs = ort_session.run(None, ort_inputs)
ort_outs
Firstly, we create a simple model and train it on the MNIST dataset.
Then we export the trained model using the ONNX framework.
Now, when I want to classify an image using the X_pred_np It works even though it is a "pure" NumPy, which is what I want.
However, I suspect that this particular case works only because it has been derived from the PyTorch tensor object, and thus "under the hood" it still has PyTorch attributes.
While when I try to inference on the random "pure" NumPy object IMG_Rando, there seems to be a problem:
Unexpected input data type. Actual: (tensor(double)) , expected: (tensor(float)).
Referring that PyTorch form is needed.
Is there a way how to be able to use only numpy Images for the ONNX predictions?. So the inference can be performed in separated venv where no pytorch is installed?
Secondly, is there a way that ONNX would remember the actual classes?
In this particular case, the index corresponds to the label of the image. However, in animal classification, ONNX would not provide us with the "DOG" and "CAT" and other labels but would only provide us the index of the predicted label. Which we would need to run throw our own "prediction dictionary" so we know that the fifth label is associated with "cat" and sixth label is associated with "dog" etc.
Numpy defaults to float64 while pytorch defaults to float32. Cast the input to float32 before the inference:
IMG_Rando = np.random.rand(1, 1, 28, 28).astype(np.float32)
double is short for double-precision floating-point format, which is a floating point number representation on 64 bits, while float refers to a floating point number on 32 bits.
As an improvement to the accepted answer, the idiomatic way to generate random numbers in Numpy is now by using a Generator. This offers the benefit of being able to create the array in the right type directly, rather than using the expensive astype operation, which copies the array (as in the accepted answer). Thus, the improved solution would look like:
rng = np.random.default_rng() # set seed if desired
IMG_Rando = rng.random((1, 1, 28, 28), dtype=np.float32)
Here I would like to generate a tutorial usage of LSTM in MxNet, with the example for Tensorflow. (location at https://github.com/mouradmourafiq/tensorflow-lstm-regression/blob/master/lstm_sin.ipynb"
Here is my major code
import mxnet as mx
import numpy as np
import pandas as pd
import argparse
import os
import sys
from data_processing import generate_data
import logging
head = '%(asctime)-15s %(message)s'
logging.basicConfig(level=logging.DEBUG, format=head)
TIMESTEPS = 3
BATCH_SIZE = 100
X, y = generate_data(np.sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
train_iter = mx.io.NDArrayIter(X['train'], y['train'], batch_size=BATCH_SIZE, shuffle=True, label_name='lro_label')
eval_iter = mx.io.NDArrayIter(X['val'], y['val'], batch_size=BATCH_SIZE, shuffle=False)
test_iter = mx.io.NDArrayIter(X['test'], batch_size=BATCH_SIZE, shuffle=False)
num_layers = 3
num_hidden = 50
data = mx.sym.Variable('data')
label = mx.sym.Variable('lro_label')
stack = mx.rnn.SequentialRNNCell()
for i in range(num_layers):
stack.add(mx.rnn.LSTMCell(num_hidden=num_hidden, prefix='lstm_l%d_'%i))
#stack.reset()
outputs, states = stack.unroll(length=TIMESTEPS,
inputs=data,
layout='NTC',
merge_outputs=True)
outputs = mx.sym.reshape(outputs, shape=(BATCH_SIZE, -1))
# purpose of fc1 was to make shape change to (batch_size, *), or label shape won't match LSTM unrolled output shape.
outputs = mx.sym.FullyConnected(data=outputs, num_hidden=1, name='fc1')
label = mx.sym.reshape(label, shape=(-1,))
outputs = mx.sym.LinearRegressionOutput(data=outputs,
label=label,
name='lro')
contexts = mx.cpu(0)
model = mx.mod.Module(symbol = outputs,
data_names = ['data'],
label_names = ['lro_label'])
model.fit(train_iter, eval_iter,
optimizer_params = {'learning_rate':0.005},
num_epoch=4,
batch_end_callback=mx.callback.Speedometer(BATCH_SIZE, 2))
This code runs but the train_accuracy is Nan.
The question is how to make it correct?
And since unrolled out shape has sequence_length, how can it match to label shape? Did my FC1 net make sense?
pass auto_reset=False to Speedometer callback, say, batch_end_callback=mx.callback.Speedometer(BATCH_SIZE, 2, auto_reset=False), should fix the NaN train-acc.