The dev boards for the ESP32 family of MCU use CP210x (or similar) "FTDI" chips to communicate with the MCU when flashing. CP210x presents a COM port to the host computer which runs esptool.py, a script which implements the Esressif communication protocol. Rather then use a CP210x, I would like to utilize a SAMD21 in its place.
I have managed to receive logs from my ESP32, to a serial monitor on my computer, via the SAMD21, over USB. The SAMD21 connects to the ESP32 via UART, with the standard ESP configuration of 115200 8N1. I can manually enter bootloader mode by holding the correct pins low at boot, and I get the log back confirming the correct bootloader mode.
When I run esptool.py, however, the connection fails, and I get a timeout. Likewise the esptool "monitor" fails to acknowledge the same logs which my terminal emulator easily detects.
What is the communication protocol between the host computer running esptool.py, the CP210x FTDI chip, and the ESP32, and how can I emulate the CP210x with a SAMD21? The definition of "FTDI", "TTL" and "RS232" are all a bit fuzzy, as far as I can determine with research online, so if anyone has experience in this arena, I would be very curious to hear your advice.
The code I have on my SAMD21 is just:
#include <Arduino.h>
void setup()
{
Serial.begin(115200);
Serial1.begin(115200);
}
void loop()
{
if(Serial.available())
{
Serial1.write(Serial.read());
}
if(Serial1.available())
{
Serial.write(Serial1.read());
}
}
Where Serial1 is the UART and Serial is the USB Serial connection.
esptool.py expects a serial port (known as COM port on Windows) to communicate with the ESP32. It doesn't care if the computer has an old-style serial port, is using a USB-to-serial bridge with a proprietary protocol (FTDI, CP210x and the like) or is using the standardized UBS protocol for serial communication (USB CDC ACM). This is left to the operating system and the installed drivers.
However, esptool.py modifies the baud rate and uses the RTS and DTR signals to reset the ESP32. It is also rather susceptible to timing issues with regards to the reset. If you set the ESP32 in boot mode manually, you should be able to get away without these.
However, the most likely cause is that the Arduino CDC implementation does not implement flow control. If esptool.py sends more data than fit into the internal buffer, it is likely discarded, instead of sending a NAK back so the host computer can retry later.
I don't fully understand the SAMD21 Arduino core to verify it. If so, I don't see how you can make it work with an Arduino program. You would need to resort to some other framework for programming the SAMD21.
Update
After more tests, it turns out the USB CDC implementation of the SAMD21 Arduino core correctly implements flow control. So no data will be lost.
In fact, I was able to successfully upload code to an ESP32 module. The setup was:
Arduino code built with PlatformIO. Instead of Serial, I've used SerialUSB as I'm unsure how to control the project settings available in the regular Arduino IDE.
For the ESP32, I've used a ESP32-WROOM-32 module on a minimal board (reset and boot button, 2 pull-up resistors).
I've connected the board via GND, 3.3V, TX, RX directly to the SAMD21 dev board.
I've verified that I can see the ESP32 log output in normal run mode and the "waiting for download" prompt in bootloader mode (after pressing BOOT and RESET).
Arduino has multiple boards where the esp32 is on-board as WiFi adapter. To flash the esp32, there is a tool sketch called SerialNINAPassthrough in examples of the WiFi library, which should be uploaded into the main MCU of the board (SAMD21 on two of the official boards).
The SerialNINAPassthrough sketch handles the DTR and RTS signals sent by the esptool to reset the board into the flashing mode.
Related
I'm using atmega168 with AVRUSB. (yeah, old version of V-USB. already integrated and seems to work otherwise, so no hurry to change)
My hardware can be powered by USB or via other source. How can I detect if the host is actually connected? It would be also nice to init USB whenever it's connected, but not necessary. Most important is that I need to skip the blocking USB polling if there's no host.
The hardware I'm using doesn't have USB VBUS connected to any GPIO, so a software-based method is required. Maybe I could add some timeout to the USB init routine or something similar?
I have an STM32-discovery board and I am trying to program it with not using any cables.In the place where I am doing my internship, they first wanted me to program STM32-discovery with UART. I was able to do this by making the necessary connections and using the Flash loader demo. Now my next task is to add an ESP-07 wifi module on the STM32-discovery board, connect this module to the same network as my computer, and wirelessly program it from my computer. No other device is wanted in between (like Raspberry). I did some research on this topic but couldn't come to a conclusion. What I found; I can remote program by connecting the card to a Raspberry or a device called Codegrip. Is it possible to do this with only an ESP-07 without these devices? I will be glad if you just tell me what should I look for.
Yes, it's possible to reprogram the STM32 flash wirelessly if the STM32 is running a program that supports this capability. When you programmed the STM32 via the UART there was a program running on the STM32 that:
opened the UART port,
received the new program data via the UART (using some protocol),
and then programmed that new data onto the flash.
To do likewise wirelessly, the STM32 will need to be running a program that:
opens the Wi-Fi port,
receives the new program data via Wi-Fi (using some protocol),
and then programs that new data onto the flash.
You may have used the STM32 internal ROM bootloader to reprogram via the UART. And if so then you used the protocol required by that ROM bootloader. But the ROM bootloader probably does not support Wi-Fi. So you'll probably be creating your own bootloader program that can communicate over Wi-Fi. And you might be defining your own protocol for transferring the program data over Wi-Fi. Or maybe you can apply some established protocol such as FTP. Search for examples of bootloaders that support OTA (over the air) firmware updates.
There are two possible solutions.
Write a custom bootloader for the STM32 - the flash is organised with smaller blocks at the start to support that, so you would move your application to higher memory and have the bootloader either jump to the application to load a new application. The bootloader can then access the Wi-Fi module (and other interfaces) to get updates.
Write custom firmware for the ESP0-07 so that it receives and stores the STM32 image, then transfers it to the STM32 using the existing ROM serial bootloader. In this case you need the details of the bootloader protocol, and it would be useful if the ESP-07 had a GPIO connection to the STM32 reset line so that it can invoke the bootloader without a manual reset.
Either way, you need to write software for one or other of the devices.
You can use any standard bootloader and connect the Wireless module like ESP32 (Bluetooth and Wifi), ESP8266 (Bluetooth and Wifi), BT-05 (Bluetooth), HM-10 (Bluetooth), etc.
Then create the android application or web application and update the Firmware or application.
If you don't want to use the Standard Bootloader, you can implement your own bootloader and add this OTA feature to that.
We have added the Tutorials step by step. Please refer to this if you get time. There we have developed the custom bootloader and updated the Firmware.
I'm working with a commercial device which uses a STM32F103RBT6 microcontroller. I need to replace the firmware to customize some functionalities, but before I would like to dump the current one to be able to restore it if it's needed.
I connected properly the board to my ST-Link v2 programmer, the device is powered by the programmer and in fact when I plug it on the USB the device starts correctly. The problem is that I don't manage to connect to the microcontroller using the ST-Link utility, I always get a "can't connect" error (error message), trying with different settings.
I need to reset the chip before? How?
Thanks!!
Please check you have connected the JTAG/SWD signals from ST-Link debugger to correct pins on the target.
Also ensure the board is power.
Then check settings in ST-Link utility, check JTAG/SWD connection, speed and connect under reset which assert the NRST pin on the target in order to allow connection on JTAG/SWD pins.
If this doesn't work then it can be also the case that the MCU is protected against reading by setting an option byte (look for RDP2 in reference manual). If this bit is set then you won't be able to connect.
I'm working on a Communications Device Class (CDC) driver for an embedded device, a Full Speed implementation of USB 2.0. The COM port settings are 115200, 8-bit, no parity, 1 stop bit, no flow control. Our PC application (32-bit, Windows 7, .NET 2.0) communicates with the target device through a virtual COM port, which on the target device can connect to either a FTDI (USB-to-SCI bridge) chip or the integrated USB peripheral in the microcontroller, depending on which port is selected by the application.
Both virtual COM ports work without any problems using Realterm. However, while our desktop application works using the virtual COM port connected via the FTDI chip, it hangs when attempting to use the virtual COM connected via the microcontroller's integrated USB peripheral.
When connected via the virtual COM port using the integrated USB, the application consistently hangs on the second call to SerialPort.Write(...). Using Serial Monitor from HHD Software I can see that the data is transmitted on the first call to SerialPort.Write(...). However, that data is never received by the target device.
It's odd because the only time I have seen similar problems on previous projects was when the flow control settings on each side of the bus were mismatched.
Additional info...
Here is the data captured from various port monitoring tools while running our PC application connected to the target device via its integrated USB peripheral. Any insight would be appreciated.
Sysinternals Portmon
Advanced USB Port Monitor
Device Monitoring Studio - Request View
Device Monitoring Studio - Packet View
For those that are interested, I am using CodeWarrior 10.2 with the MCF51JM128 from Freescale.
Any ideas or suggestions would be appreciated. Thanks.
It is clear from the logs that you are making the classic mistake of not taking care of the hardware handshaking signals. That only ever works by accident, a terminal emulator like Realterm will never make that mistake.
You must set the DtrEnable property to true. That turns on the Data Terminal Ready signal. It is important because RS-232 is an unterminated bus so is subject to electrical noise when the cable is disconnected or the power turned off. DTR convinces the device that it is in fact connected to a powered device. This is emulated of course in your case but the driver or firmware will still typically implement the RS-232 behavior.
And the RtsEnable property is important, used to handshake with the device and prevent the receive buffer from overflowing when the app isn't emptying the buffer in a timely matter. You really should set the Handshake property to Handshake.RequestToSend, the most common way a device implements it. Which then also takes care of turning RTS on. If you have to use Handshake.None for some reason then you have to turn it on yourself by setting RtsEnable to true.
This ought to take of the problem. If you still have trouble then use PortMon to spy on the way Realterm initializes the driver. Compare the commands you see against the commands that the SerialPort class sends. Make sure they are the same. In value, not in sequence.
The Arduino Nano (and other models) has a USB Connector on the pcb.
Can a Arduino Application (Code inside the loop() Function) communicate to a PC/Mac over the built in USB Channel?
The board at the link you posted uses an FTDI USB to UART chip; the ATMega168 itself has no USB controller. The UART side of the FTDI chip is attached to the ATMega168's RXD/TXD UART pins. So from the point of view of the Arduino code, you are just communicating with a UART driven serial port.
From the PC end, the FTDI chip uses the USBSER.SYS driver to emulate a legacy UART serial port (A Virtual COM Port or VCP). You will be able to see this and which COM port it has been assigned to in Device Manager.
So in essence all you need to know is how to do serial port programming on both the PC and the Arduino and you are good to go.
This is how I have done it. You also need to write a program to your computer - for POSIX-compilant OSes, this one could help you out.