Related
Good evening everyone,
I have 5 classes and each one has 2000 images, I built 2 Models with different model names and that's my model code
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(5, activation=tf.nn.softmax)
], name="Model1")
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_images, train_labels,
batch_size=128, epochs=30, validation_split=0.2)
model.save('f3_1st_model_seg.h5')
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(150, 150, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(128, (3, 3), activation='relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(5, activation=tf.nn.softmax)
], name="Model2")
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_images, train_labels,
batch_size=128, epochs=30, validation_split=0.2)
model.save('f3_2nd_model_seg.h5')
then I used this code to merge the 2 models
input_shape = [150, 150, 3]
model = keras.models.load_model('1st_model_seg.h5')
model.summary()
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 148, 148, 32) 896
max_pooling2d (MaxPooling2D (None, 74, 74, 32) 0
)
conv2d_1 (Conv2D) (None, 72, 72, 32) 9248
max_pooling2d_1 (MaxPooling (None, 36, 36, 32) 0
2D)
conv2d_2 (Conv2D) (None, 34, 34, 64) 18496
max_pooling2d_2 (MaxPooling (None, 17, 17, 64) 0
2D)
conv2d_3 (Conv2D) (None, 15, 15, 128) 73856
max_pooling2d_3 (MaxPooling (None, 7, 7, 128) 0
2D)
flatten (Flatten) (None, 6272) 0
dense (Dense) (None, 5) 31365
=================================================================
Total params: 133,861
Trainable params: 133,861
Non-trainable params: 0
model2 = keras.models.load_model('2nd_model_seg.h5')
model2.summary()
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 148, 148, 32) 896
max_pooling2d (MaxPooling2D (None, 74, 74, 32) 0
)
conv2d_1 (Conv2D) (None, 72, 72, 32) 9248
max_pooling2d_1 (MaxPooling (None, 36, 36, 32) 0
2D)
conv2d_2 (Conv2D) (None, 34, 34, 64) 18496
max_pooling2d_2 (MaxPooling (None, 17, 17, 64) 0
2D)
conv2d_3 (Conv2D) (None, 15, 15, 128) 73856
max_pooling2d_3 (MaxPooling (None, 7, 7, 128) 0
2D)
flatten (Flatten) (None, 6272) 0
dense (Dense) (None, 5) 31365
=================================================================
Total params: 133,861
Trainable params: 133,861
Non-trainable params: 0
def concat_horizontal(models, input_shape):
models_count = len(models)
hidden = []
input = tf.keras.layers.Input(shape=input_shape)
for i in range(models_count):
hidden.append(models[i](input))
output = tf.keras.layers.concatenate(hidden)
model = tf.keras.Model(inputs=input, outputs=output)
return model
new_model = concat_horizontal(
[model, model2], (input_shape))
new_model.save('f1_1st_merged_seg.h5')
new_model.summary()
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) [(None, 150, 150, 3 0 []
)]
model1 (Sequential) (None, 5) 133861 ['input_1[0][0]']
model2 (Sequential) (None, 5) 133861 ['input_1[0][0]']
concatenate (Concatenate) (None, 10) 0 ['model1[0][0]',
'model2[0][0]']
==================================================================================================
Total params: 267,722
Trainable params: 267,722
Non-trainable params: 0
so after I tested the merged model I found some images getting classes 7 and 9 although I have only 5 classes and that's my code for prediction
class_names = ['A', 'B', 'C', D', 'E']
for img in os.listdir(path):
# predicting images
img2 = tf.keras.preprocessing.image.load_img(
os.path.join(path, img), target_size=(150, 150))
x = tf.keras.preprocessing.image.img_to_array(img2)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = np.argmax(model.predict(images), axis=-1)
y_out = class_names[classes[0]]
I got this error
y_out = class_names[classes[0]]
IndexError: list index out of range
for this case it could have been done even by sequential method, look you are trying to concatenate two output layers with 5 columns; so it would lead into increase classes from 5 to 10; try out to define these two models up to output layer (the flatten layer as the last layer defined for both these models) and then define final model with input layer, these two models, and concatenate layer and then the output layer with five units and activation;
so remove output layer
tf.keras.layers.Dense(5, activation=tf.nn.softmax)
from those two models, and implement it just as one layer after the output layer you have defined here
def concat_horizontal(models, input_shape):
models_count = len(models)
hidden = []
input = tf.keras.layers.Input(shape=input_shape)
for i in range(models_count):
hidden.append(models[i](input))
output = tf.keras.layers.concatenate(hidden)
output = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(output)
model = tf.keras.Model(inputs=input, outputs=output)
return model
But notice it would be better to define branch models based on functional API method for these cases
I've just started to learn Tensorflow (2.1.0), Keras (2.3.7) with Python 3.7.7.
I want to use VGG16 network to do semantic segmentation with black and white images (200x200x1).
I have used this network, with its original input_size was (224,224,3):
def vgg16_encoder_decoder(input_size = (200,200,1)):
#################################
# Encoder
#################################
inputs = Input(input_size, name = 'input')
conv1 = Conv2D(64, (3, 3), activation = 'relu', padding = 'same', name ='conv1_1')(inputs)
conv1 = Conv2D(64, (3, 3), activation = 'relu', padding = 'same', name ='conv1_2')(conv1)
pool1 = MaxPooling2D(pool_size = (2,2), strides = (2,2), name = 'pool_1')(conv1)
conv2 = Conv2D(128, (3, 3), activation = 'relu', padding = 'same', name ='conv2_1')(pool1)
conv2 = Conv2D(128, (3, 3), activation = 'relu', padding = 'same', name ='conv2_2')(conv2)
pool2 = MaxPooling2D(pool_size = (2,2), strides = (2,2), name = 'pool_2')(conv2)
conv3 = Conv2D(256, (3, 3), activation = 'relu', padding = 'same', name ='conv3_1')(pool2)
conv3 = Conv2D(256, (3, 3), activation = 'relu', padding = 'same', name ='conv3_2')(conv3)
conv3 = Conv2D(256, (3, 3), activation = 'relu', padding = 'same', name ='conv3_3')(conv3)
pool3 = MaxPooling2D(pool_size = (2,2), strides = (2,2), name = 'pool_3')(conv3)
conv4 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', name ='conv4_1')(pool3)
conv4 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', name ='conv4_2')(conv4)
conv4 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', name ='conv4_3')(conv4)
pool4 = MaxPooling2D(pool_size = (2,2), strides = (2,2), name = 'pool_4')(conv4)
conv5 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', name ='conv5_1')(pool4)
conv5 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', name ='conv5_2')(conv5)
conv5 = Conv2D(512, (3, 3), activation = 'relu', padding = 'same', name ='conv5_3')(conv5)
pool5 = MaxPooling2D(pool_size = (2,2), strides = (2,2), name = 'pool_5')(conv5)
#################################
# Decoder
#################################
#conv1 = Conv2DTranspose(512, (2, 2), strides = 2, name = 'conv1')(pool5)
upsp1 = UpSampling2D(size = (2,2), name = 'upsp1')(pool5)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', name = 'conv6_1')(upsp1)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', name = 'conv6_2')(conv6)
conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', name = 'conv6_3')(conv6)
upsp2 = UpSampling2D(size = (2,2), name = 'upsp2')(conv6)
conv7 = Conv2D(512, 3, activation = 'relu', padding = 'same', name = 'conv7_1')(upsp2)
conv7 = Conv2D(512, 3, activation = 'relu', padding = 'same', name = 'conv7_2')(conv7)
conv7 = Conv2D(512, 3, activation = 'relu', padding = 'same', name = 'conv7_3')(conv7)
upsp3 = UpSampling2D(size = (2,2), name = 'upsp3')(conv7)
conv8 = Conv2D(256, 3, activation = 'relu', padding = 'same', name = 'conv8_1')(upsp3)
conv8 = Conv2D(256, 3, activation = 'relu', padding = 'same', name = 'conv8_2')(conv8)
conv8 = Conv2D(256, 3, activation = 'relu', padding = 'same', name = 'conv8_3')(conv8)
upsp4 = UpSampling2D(size = (2,2), name = 'upsp4')(conv8)
conv9 = Conv2D(128, 3, activation = 'relu', padding = 'same', name = 'conv9_1')(upsp4)
conv9 = Conv2D(128, 3, activation = 'relu', padding = 'same', name = 'conv9_2')(conv9)
upsp5 = UpSampling2D(size = (2,2), name = 'upsp5')(conv9)
conv10 = Conv2D(64, 3, activation = 'relu', padding = 'same', name = 'conv10_1')(upsp5)
conv10 = Conv2D(64, 3, activation = 'relu', padding = 'same', name = 'conv10_2')(conv10)
conv11 = Conv2D(3, 3, activation = 'relu', padding = 'same', name = 'conv11')(conv10)
model = Model(inputs = inputs, outputs = conv11, name = 'vgg-16_encoder_decoder')
return model
Model summary:
Model: "vgg-16_encoder_decoder"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input (InputLayer) (None, 200, 200, 1) 0
_________________________________________________________________
conv1_1 (Conv2D) (None, 200, 200, 64) 640
_________________________________________________________________
conv1_2 (Conv2D) (None, 200, 200, 64) 36928
_________________________________________________________________
pool_1 (MaxPooling2D) (None, 100, 100, 64) 0
_________________________________________________________________
conv2_1 (Conv2D) (None, 100, 100, 128) 73856
_________________________________________________________________
conv2_2 (Conv2D) (None, 100, 100, 128) 147584
_________________________________________________________________
pool_2 (MaxPooling2D) (None, 50, 50, 128) 0
_________________________________________________________________
conv3_1 (Conv2D) (None, 50, 50, 256) 295168
_________________________________________________________________
conv3_2 (Conv2D) (None, 50, 50, 256) 590080
_________________________________________________________________
conv3_3 (Conv2D) (None, 50, 50, 256) 590080
_________________________________________________________________
pool_3 (MaxPooling2D) (None, 25, 25, 256) 0
_________________________________________________________________
conv4_1 (Conv2D) (None, 25, 25, 512) 1180160
_________________________________________________________________
conv4_2 (Conv2D) (None, 25, 25, 512) 2359808
_________________________________________________________________
conv4_3 (Conv2D) (None, 25, 25, 512) 2359808
_________________________________________________________________
pool_4 (MaxPooling2D) (None, 12, 12, 512) 0
_________________________________________________________________
conv5_1 (Conv2D) (None, 12, 12, 512) 2359808
_________________________________________________________________
conv5_2 (Conv2D) (None, 12, 12, 512) 2359808
_________________________________________________________________
conv5_3 (Conv2D) (None, 12, 12, 512) 2359808
_________________________________________________________________
pool_5 (MaxPooling2D) (None, 6, 6, 512) 0
_________________________________________________________________
upsp1 (UpSampling2D) (None, 12, 12, 512) 0
_________________________________________________________________
conv6_1 (Conv2D) (None, 12, 12, 512) 2359808
_________________________________________________________________
conv6_2 (Conv2D) (None, 12, 12, 512) 2359808
_________________________________________________________________
conv6_3 (Conv2D) (None, 12, 12, 512) 2359808
_________________________________________________________________
upsp2 (UpSampling2D) (None, 24, 24, 512) 0
_________________________________________________________________
conv7_1 (Conv2D) (None, 24, 24, 512) 2359808
_________________________________________________________________
conv7_2 (Conv2D) (None, 24, 24, 512) 2359808
_________________________________________________________________
conv7_3 (Conv2D) (None, 24, 24, 512) 2359808
_________________________________________________________________
upsp3 (UpSampling2D) (None, 48, 48, 512) 0
_________________________________________________________________
conv8_1 (Conv2D) (None, 48, 48, 256) 1179904
_________________________________________________________________
conv8_2 (Conv2D) (None, 48, 48, 256) 590080
_________________________________________________________________
conv8_3 (Conv2D) (None, 48, 48, 256) 590080
_________________________________________________________________
upsp4 (UpSampling2D) (None, 96, 96, 256) 0
_________________________________________________________________
conv9_1 (Conv2D) (None, 96, 96, 128) 295040
_________________________________________________________________
conv9_2 (Conv2D) (None, 96, 96, 128) 147584
_________________________________________________________________
upsp5 (UpSampling2D) (None, 192, 192, 128) 0
_________________________________________________________________
conv10_1 (Conv2D) (None, 192, 192, 64) 73792
_________________________________________________________________
conv10_2 (Conv2D) (None, 192, 192, 64) 36928
_________________________________________________________________
conv11 (Conv2D) (None, 192, 192, 3) 1731
=================================================================
Total params: 31,787,523
Trainable params: 31,787,523
Non-trainable params: 0
_________________________________________________________________
The last convolutional layer returns a shape of (192, 192, 3) but I need to return an image with shape (200, 200, 1).
I think I can change the last convolutional layer with this one to get a 1 channel image:
conv11 = Conv2D(1, 3, activation = 'relu', padding = 'same', name = 'conv11')(conv10)
But I don't know if this is correct because I've been reading about VGG16 network and it is for 3 channels images.
Can I use VGG16 for one channel images?
What you read about VGG being for three channel (RGB) images applies only to the pre-trained model, which is trained on the ImageNet dataset and contains only color images. Since you are not using the pre-trained model, you are not bound by this limitation.
So you can use one, three, or any number of inputs or output channels.
I have made an autoencoder, consisting of an encoder and a decoder part.
I have managed to get the encoder separated from the full network, but I have some troubles with the decoder part.
This part works:
encoder = tf.keras.Model(inputs=autoencoder.input, outputs=autoencoder.layers[5].output)
This part however doesn't:
decoder = tf.keras.Model(inputs=autoencoder.layers[6].input, outputs=autoencoder.output)
the error:
W0514 14:57:48.965506 78976 network.py:1619] Model inputs must come from tf.keras.Input (thus holding past layer metadata), they cannot be the output of a previous non-Input layer. Here, a tensor specified as input to "model_15" was not an Input tensor, it was generated by layer flatten.
Note that input tensors are instantiated via tensor = tf.keras.Input(shape).
The tensor that caused the issue was: flatten/Reshape:0
any ideas what to try?
thanks
/mikael
EDIT:
for kruxx
autoencoder = tf.keras.models.Sequential()
# Encoder Layers
autoencoder.add(tf.keras.layers.Conv2D(16, (3, 3), activation='relu', padding='same', input_shape=x_train_tensor.shape[1:]))
autoencoder.add(tf.keras.layers.MaxPooling2D((2, 2), padding='same'))
autoencoder.add(tf.keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same'))
autoencoder.add(tf.keras.layers.MaxPooling2D((2, 2), padding='same'))
autoencoder.add(tf.keras.layers.Conv2D(8, (3, 3), strides=(2,2), activation='relu', padding='same'))
# Flatten encoding for visualization
autoencoder.add(tf.keras.layers.Flatten())
autoencoder.add(tf.keras.layers.Reshape((4, 4, 8)))
# Decoder Layers
autoencoder.add(tf.keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same'))
autoencoder.add(tf.keras.layers.UpSampling2D((2, 2)))
autoencoder.add(tf.keras.layers.Conv2D(8, (3, 3), activation='relu', padding='same'))
autoencoder.add(tf.keras.layers.UpSampling2D((2, 2)))
autoencoder.add(tf.keras.layers.Conv2D(16, (3, 3), activation='relu'))
autoencoder.add(tf.keras.layers.UpSampling2D((2, 2)))
autoencoder.add(tf.keras.layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same'))
> Model: "sequential"
> _________________________________________________________________
> Layer (type).................Output Shape..............Param #
> =================================================================
> conv2d (Conv2D)..............(None, 28, 28, 16)........160
> _________________________________________________________________
> max_pooling2d (MaxPooling2D).(None, 14, 14, 16)........0
> _________________________________________________________________
> conv2d_1 (Conv2D)............(None, 14, 14, 8).........1160
> _________________________________________________________________
> max_pooling2d_1 (MaxPooling2.(None, 7, 7, 8)...........0
> _________________________________________________________________
> conv2d_2 (Conv2D)............(None, 4, 4, 8)...........584
> _________________________________________________________________
> flatten (Flatten)............(None, 128)...............0
> _________________________________________________________________
> reshape (Reshape)............(None, 4, 4, 8)...........0
> _________________________________________________________________
> conv2d_3 (Conv2D)............(None, 4, 4, 8)...........584
> _________________________________________________________________
> up_sampling2d (UpSampling2D).(None, 8, 8, 8)...........0
> _________________________________________________________________
> conv2d_4 (Conv2D)............(None, 8, 8, 8)...........584
> _________________________________________________________________
> up_sampling2d_1 (UpSampling2 (None, 16, 16, 8).........0
> _________________________________________________________________
> conv2d_5 (Conv2D)............(None, 14, 14, 16)........1168
> _________________________________________________________________
> up_sampling2d_2 (UpSampling2.(None, 28, 28, 16)........0
> _________________________________________________________________
> conv2d_6 (Conv2D)............(None, 28, 28, 1).........145
> =================================================================
> Total params: 4,385
> Trainable params: 4,385
> Non-trainable params: 0
> ______________________________________
I would approach the problem the other way:
# Encoder model:
encoder_input = Input(...)
# Encoder Hidden Layers
encoded = Dense()(...)
encoder_model = Model(inputs=[encoder_input], outputs=encoded)
# Decoder model:
decoder_input = Input(...)
# Decoder Hidden Layers
decoded = Dense()(...)
decoder_model = Model(inputs=[decoder_input], outputs=decoded)
And then the autoencoder could be defined as:
autoencoder = Model(inputs=[encoder_input], output=decoder_model(encoder_model))
I'm basically following this guide to build convolutional autoencoder with tensorflow backend. The main difference to the guide is that my data is 257x257 grayscale images. The following code:
TRAIN_FOLDER = 'data/OIRDS_gray/'
EPOCHS = 10
SHAPE = (257,257,1)
FILELIST = os.listdir(TRAIN_FOLDER)
def loadTrainData():
train_data = []
for fn in FILELIST:
img = misc.imread(TRAIN_FOLDER + fn)
img = np.reshape(img,(len(img[0,:]), len(img[:,0]), SHAPE[2]))
if img.shape != SHAPE:
print "image shape mismatch!"
print "Expected: "
print SHAPE
print "but got:"
print img.shape
sys.exit()
train_data.append (img)
train_data = np.array(train_data)
train_data = train_data.astype('float32')/ 255
return np.array(train_data)
def createModel():
input_img = Input(shape=SHAPE)
x = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu',padding='same')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid',padding='same')(x)
return Model(input_img, decoded)
x_train = loadTrainData()
autoencoder = createModel()
autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')
print x_train.shape
autoencoder.summary()
# Run the network
autoencoder.fit(x_train, x_train,
epochs=EPOCHS,
batch_size=128,
shuffle=True)
gives me a error:
ValueError: Error when checking target: expected conv2d_7 to have shape (None, 260, 260, 1) but got array with shape (859, 257, 257, 1)
As you can see this is not the standard problem with theano/tensorflow backend dim ordering, but something else. I checked that my data is what it's supposed to be with print x_train.shape:
(859, 257, 257, 1)
And I also run autoencoder.summary():
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 257, 257, 1) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 257, 257, 16) 160
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 129, 129, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 129, 129, 8) 1160
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 65, 65, 8) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 65, 65, 8) 584
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 33, 33, 8) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 33, 33, 8) 584
_________________________________________________________________
up_sampling2d_1 (UpSampling2 (None, 66, 66, 8) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 66, 66, 8) 584
_________________________________________________________________
up_sampling2d_2 (UpSampling2 (None, 132, 132, 8) 0
_________________________________________________________________
conv2d_6 (Conv2D) (None, 132, 132, 16) 1168
_________________________________________________________________
up_sampling2d_3 (UpSampling2 (None, 264, 264, 16) 0
_________________________________________________________________
conv2d_7 (Conv2D) (None, 264, 264, 1) 145
=================================================================
Total params: 4,385
Trainable params: 4,385
Non-trainable params: 0
_________________________________________________________________
Now I'm not exactly sure where the problem is, but it does look like things go wrong around conv2d_6 (Param # too high). I do know how CAE's work on principle, but I'm not that familiar with the exact technical details yet and I have tried to solve this mainly by messing with deconvolution padding (instead of same, using valid). The closes I got to dims matching was (None, 258, 258, 1). I achieved this by blindly trying different combinations of padding on deconvolution side, not really a smart way to solve a problem...
At this point I'm at a loss, and any help would be appreciated
Since your input and output data are the same, your final output shape should be the same as the input shape.
The last convolutional layer should have shape (None, 257,257,1).
The problem is happening because you have an odd number as the sizes of the images (257).
When you apply MaxPooling, it should divide the number by two, so it chooses rounding either up or down (it's going up, see the 129, coming from 257/2 = 128.5)
Later, when you do UpSampling, the model doesn't know the current dimensions were rounded, it simply doubles the value. This happening in sequence is adding 7 pixels to the final result.
You could try either cropping the result or padding the input.
I usually work with images of compatible sizes. If you have 3 MaxPooling layers, your size should be a multiple of 2³. The answer is 264.
Padding the input data directly:
x_train = numpy.lib.pad(x_train,((0,0),(3,4),(3,4),(0,0)),mode='constant')
This will require that SHAPE=(264,264,1)
Padding inside the model:
import keras.backend as K
input_img = Input(shape=SHAPE)
x = Lambda(lambda x: K.spatial_2d_padding(x, padding=((3, 4), (3, 4))), output_shape=(264,264,1))(input_img)
Cropping the results:
This will be required in any case where you do not change the actual data (numpy array) directly.
decoded = Lambda(lambda x: x[:,3:-4,3:-4,:], output_shape=SHAPE)(x)
I am trying to design a CNN that can do pixel wise segmentation of cell images. Such as these:
With segmentation masks such as this (except more than one segmentation mask for each raw image, eg: interior of cell, border of cell, background):
I have mostly copied the U-net design from here: https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
However even 10 annotated images (over 300 cells) I still get quite bad dice coefficient scores and not great predictions. According to the U-Net paper this number of annotated cells should be sufficient for a good prediction.
This is the code for the model I am using.
def get_unet():
inputs = Input((img_rows, img_cols, 1))
conv1 = Conv2D(16, window_size, activation='relu', padding='same')(inputs)
conv1 = Conv2D(16, window_size, activation='relu', padding='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D(64, window_size, activation='relu', padding='same')(pool1)
conv2 = Conv2D(64, window_size, activation='relu', padding='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D(128, window_size, activation='relu', padding='same')(pool2)
conv3 = Conv2D(128, window_size, activation='relu', padding='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D(128, window_size, activation='relu', padding='same')(pool3)
conv4 = Conv2D(128, window_size, activation='relu', padding='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(512, window_size, activation='relu', padding='same')(pool4)
conv5 = Conv2D(512, window_size, activation='relu', padding='same')(conv5)
up6 = concatenate([Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(conv5), conv4], axis=3)
conv6 = Conv2D(128, window_size, activation='relu', padding='same')(up6)
conv6 = Conv2D(128, window_size, activation='relu', padding='same')(conv6)
up7 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3)
conv7 = Conv2D(128, window_size, activation='relu', padding='same')(up7)
conv7 = Conv2D(128, window_size, activation='relu', padding='same')(conv7)
up8 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv7), conv2], axis=3)
conv8 = Conv2D(64, window_size, activation='relu', padding='same')(up8)
conv8 = Conv2D(64, window_size, activation='relu', padding='same')(conv8)
up9 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(conv8), conv1], axis=3)
conv9 = Conv2D(16, window_size, activation='relu', padding='same')(up9)
conv9 = Conv2D(16, window_size, activation='relu', padding='same')(conv9)
conv10 = Conv2D(f_num, (1, 1), activation='softmax')(conv9) # change to N,(1,1) for more classes and softmax
model = Model(inputs=[inputs], outputs=[conv10])
model.compile(optimizer=Adam(lr=1e-5), loss=dice_coef_loss, metrics=[dice_coef])
return model`
I have tried many different hyper-parameters for the model all with no success. Dice scores hover around 0.25 and my loss barely decreases between epochs.
I feel I am doing something fundamentally wrong here. Any suggestions?
EDIT: Sigmoid activation improves dice score from 0.25 to 0.33 (again however 1 epoch reaches this score and subsequent epochs only improve very slightly from 0.33 to 0.331 etc)
dice_coef_loss is defined as below
smooth = 1.
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
Also in case it's useful the model.summary output:
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) (None, 64, 64, 1) 0
_________________________________________________________________
conv2d_20 (Conv2D) (None, 64, 64, 16) 32
_________________________________________________________________
conv2d_21 (Conv2D) (None, 64, 64, 16) 272
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 32, 32, 16) 0
_________________________________________________________________
conv2d_22 (Conv2D) (None, 32, 32, 64) 1088
_________________________________________________________________
conv2d_23 (Conv2D) (None, 32, 32, 64) 4160
_________________________________________________________________
max_pooling2d_6 (MaxPooling2 (None, 16, 16, 64) 0
_________________________________________________________________
conv2d_24 (Conv2D) (None, 16, 16, 128) 8320
_________________________________________________________________
conv2d_25 (Conv2D) (None, 16, 16, 128) 16512
_________________________________________________________________
max_pooling2d_7 (MaxPooling2 (None, 8, 8, 128) 0
_________________________________________________________________
conv2d_26 (Conv2D) (None, 8, 8, 128) 16512
_________________________________________________________________
conv2d_27 (Conv2D) (None, 8, 8, 128) 16512
_________________________________________________________________
max_pooling2d_8 (MaxPooling2 (None, 4, 4, 128) 0
_________________________________________________________________
conv2d_28 (Conv2D) (None, 4, 4, 512) 66048
_________________________________________________________________
conv2d_29 (Conv2D) (None, 4, 4, 512) 262656
_________________________________________________________________
conv2d_transpose_5 (Conv2DTr (None, 8, 8, 512) 1049088
_________________________________________________________________
concatenate_5 (Concatenate) (None, 8, 8, 640) 0
_________________________________________________________________
conv2d_30 (Conv2D) (None, 8, 8, 128) 82048
_________________________________________________________________
conv2d_31 (Conv2D) (None, 8, 8, 128) 16512
_________________________________________________________________
conv2d_transpose_6 (Conv2DTr (None, 16, 16, 128) 65664
_________________________________________________________________
concatenate_6 (Concatenate) (None, 16, 16, 256) 0
_________________________________________________________________
conv2d_32 (Conv2D) (None, 16, 16, 128) 32896
_________________________________________________________________
conv2d_33 (Conv2D) (None, 16, 16, 128) 16512
_________________________________________________________________
conv2d_transpose_7 (Conv2DTr (None, 32, 32, 128) 65664
_________________________________________________________________
concatenate_7 (Concatenate) (None, 32, 32, 192) 0
_________________________________________________________________
conv2d_34 (Conv2D) (None, 32, 32, 64) 12352
_________________________________________________________________
conv2d_35 (Conv2D) (None, 32, 32, 64) 4160
_________________________________________________________________
conv2d_transpose_8 (Conv2DTr (None, 64, 64, 64) 16448
_________________________________________________________________
concatenate_8 (Concatenate) (None, 64, 64, 80) 0
_________________________________________________________________
conv2d_36 (Conv2D) (None, 64, 64, 16) 1296
_________________________________________________________________
conv2d_37 (Conv2D) (None, 64, 64, 16) 272
_________________________________________________________________
conv2d_38 (Conv2D) (None, 64, 64, 4) 68
=================================================================
Total params: 1,755,092.0
Trainable params: 1,755,092.0
Non-trainable params: 0.0